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Single particle tracking
Analysis of diffusion and flow in two-dimensional systems

Hong Qian,* Michael P. Sheetz,* and Elliot L. Elson*
*Department of Biochemistry and Molecular Biophysics, and *Department of Cell Biology and Physiology, Division of Biology and
Biomedical Sciences, Washington University Schoo! of Medicine, St. Louis, Missouri 63110 USA

ABSTRACT Analysis of the trajectories of small particles at high spatial and temporal resolution using video enhanced contrast
microscopy provides a powerful approach to characterizing the mechanisms of particle motion in living cells and in other systems.
We present here the theoretical basis for the analysis of these trajectories for particles undergoing random diffusion and/or
systematic transport at uniform velocity in two-dimensional systems. The single particle tracking method, based on observations of
the trajectories of individual particles, is compared with methods that characterize the motions of a large collection of particles such
as fluorescence photobleaching recovery. Determination of diffusion coefficients or transport velocities either from correlation of
positions or of velocities of the particies is discussed. A result of practical importance is an analysis of the dependence of the
expected statistical uncertainty of these determinations on the number of position measurements. This provides a way of judging

the accuracy of the diffusion coefficients and transport velocities obtained using this approach.

INTRODUCTION

The diffusion and systematic drift of membrane proteins
has been studied for a number of years for clues to the
mechanisms of various cellular processes such as the
formation of specialized surface structures (e.g., Dubin-
sky et al., 1989, and references cited therein), the
interactions between membrane bound enzymes and
other reaction constituents (e.g., Chazotte and Hacken-
brock, 1989), the ligand-receptor-mediated triggering of
cellular responses (Schlessinger, 1986), and cellular
locomotion (Sheetz et al., 1989). Although the diffusion
of membrane proteins may not limit the rates of these
processes (e.g., McCloskey and Poo, 1986), measure-
ments of membrane protein mobility can provide impor-
tant information about membrane structure, interac-
tions between membrane components, and mechanisms
of membrane and/or cytoskeleton functions (e.g., Cherry,
1979; Sheetz, 1983; Yechiel and Edidin, 1987; Angelides
et al, 1988; Ryan et al., 1988; Duband et al., 1988).
During the past two decades most experimental measure-
ments of the lateral diffusion of membrane lipids and
proteins have been carried out by fluorescence photo-
bleaching recovery (FPR, e.g., Elson, 1985, and refer-
ences cited therein), although other methods such as
electromigration and postfield relaxation, and diffusion
limited excimer formation (Poo, 1981; Eisinger et al.,
1986) have also been used. Recently, an optical method
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has been developed for measuring the movements of
single small particles (Geerts et al., 1987) with the
possibility of nanometer-scale precision (Gelles et al.,
1988; Sheetz et al., 1989). The single particle tracking
(SPT) method can provide information not available to
FPR and other measurements which are based on the
behavior of large ensembles of molecules (Dembo and
Harris, 1981). This paper presents methods for analyz-
ing SPT measurements, a comparison of SPT with FPR,
and, most important, a consideration of the statistical
accuracy of SPT measurements. A similar approach has
also been used to characterize the movements on fibro-
blasts of single LDL receptors monitored by fluores-
cence video microscopy (Gross and Webb, 1988).

FPR and SPT differ in their spatial resolution and
statistical characteristics. FPR measures fluorescence
recovery in a photobleached region of the sample due to
the diffusion or drift of a large number of molecules. The
spatial resolution, limited by the minimum size of a
diffraction-limited laser beam, can be on the order of
~0.5 pm. SPT measurements provide the x and y
coordinates of the centers of individual small (e.g., 40
nm) gold particles, presumed to be rigidly attached to
membrane proteins by antibodies or other ligands,
recorded at successive times by video enhanced differen-
tial interference contrast (DIC) microscopy. The trajec-
tories of random movement of these particles can be
determined to a resolution of <10 nm by analysis of the
video images (Gelles et al., 1988; de Brabander et al.,
1988). In principle, therefore, SPT can observe motion
over a spatial range at least an order of magnitude
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smaller than that accessible to FPR. In an SPT measure-
ment, numerous observations of the stochastic motion of
the individual gold particles must be characterized
statistically to yield the appropriate time averaged trans-
port properties. In contrast, the participation of many
fluorescent particles provides an ensemble average of
their diffusion behavior, and therefore their diffusion
coeflicient, in a single FPR recovery measurement.

The characteristics of the particle motion can be
derived either from the trajectory, the sequence of
positions: r,, r,, 75, . . . . at times £, t,, £,, . . . , or from the
changes of position at successive times, the velocities:
v, = (r,—r)/AT,v, = (r; — r,)/AT, .. .. where AT is the
time interval between each measurement. These two
approaches provide the same information about the
phenomenological characteristics of particle motion, but
from different perspectives. This will be demonstrated
along with some mathematical relationships between
the two types of analyses. The velocity analysis provides
a consistency check on the analysis of trajectories.

MACROSCOPIC AND MICROSCOPIC
MEASUREMENTS

For a uniform population of molecules, measurements
of the time averaged motion of a single molecule and of
the ensemble averaged motion of a collection of indepen-
dent molecules should yield identical values of the
diffusion coefficient or drift velocity (Landau and Lif-
shitz, 1969). In most systems of biological interest,
however, molecules of a specific type can exist in
different dynamic states. For example, the Con A
receptors bound to 40-nm gold particles on the surfaces
both of macrophages (Sheetz et al., 1989) and of fish
epidermal keratocytes (Kucik et al., 1989) can be either
randomly diffusing or systematically transported toward
or away from the cell nucleus. Even though each Con A
receptor eventually experiences both states, individual
molecules can be seen to be in either the diffusing or the
active transport state over a time range of ~10 s.
Because at any one time the actively transported mole-
cules represent only a small minority, they cannot be
observed by FPR, which measures an averaged behavior
of the entire population. In contrast, as long as particles
are observed in sufficient numbers to yield an adequate
representation of both populations, quantitatively ana-
lyzed SPT measurements can clearly characterize the
different dynamic properties of the two classes of Con A
receptors, as previously demonstrated (Sheetz et al.,
1989).

The superior spatial resolution of SPT over FPR
(~10 nm vs. ~0.5 pum) is even more useful in studying
systems which impose highly localized constraints on the

motion under study. In principle, high spatial (or tempo-
ral) resolution is not required to measure the diffusion
coefficient for a simple diffusion process in an unlimited
space. If one waits long enough, sufficient diffusion will
occur to permit adequate measurement, even using an
instrument with very low spatial (or temporal) resolu-
tion. Biological systems, however, frequently impose
spatial constraints on particle motion. For example, it
has been observed that the diffusion of cell surface
membrane proteins is retarded by unknown forces
and/or structures. One structural model proposes that
the membrane proteins are confined to cytoskeletal
“corrals” which permit free movement within the corral
but retard passage from one corral to the next (Sheetz,
1983). Therefore, submicron spatial resolution is neces-
sary to detect the motion within the corral, and such
resolution is accessible to SPT but not to FPR.
Constraint of the range of particle motion, however,
also imposes demands on the temporal resolution re-
quired for the measurement. When a characteristic
distance is set either by the measurement method or by
the structure of the sample system, a characteristic time
consequently arises together with a corresponding re-
quirement for sufficient temporal resolution to observe
the dynamic process within this time. For surface diffu-
sion with diffusion coefficient, D, the characteristic time,
At,, is related to the characteristic distance Ax, as Az, ~
Ax2/4D. A decrease in the characteristic distance causes
a corresponding decrease in the characteristic time and
so may require a corresponding increase in the temporal
resolution of measurement. Similarly, a shortening of
the characteristic time causes a decrease in characteris-
tic distance and so an increase in the spatial resolution
of the measurement is necessary. For example, in a
measurement of fast diffusion of a protein in solution by
FPR, one often uses a large illuminated volume to
increase the characteristic diffusion time above the
temporal resolution limit of instrument. Conversely, the
characteristic FPR diffusion time for a membrane pro-
tein with diffusion coefficient ~10~° ¢cm?/s in a small
cytoskeletal corral (0.1 ~ 0.3 um, Sheetz, 1983) should
be ~ 100 ms. This should be accessible to FPR, which is
capable of measurements of processes with characteris-
tic times > 100 ps. Nevertheless, the spatial resolution
of FPR, determined by the diffraction limited beam
radius (= ~0.5 um), is insufficient. In contrast the
10-nm spatial resolution of SPT is sufficient to measure
diffusion within a corral, but standard video methods
have insufficient temporal resolution (~ 30 ms). There-
fore, sufficient spatial and temporal resolution are both
needed to measure a restricted diffusion. The temporal
resolution of video microscopy can, however, be im-
proved by photoelectric techniques to the range of 100
us (Howard and Hudspeth, 1987; Kamimura, 1989),
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presumably sufficient to measure the diffusion of a
particle with diffusion coefficient D = 107 cm?/s in a
100-nm cage.

SPT and FPR also differ in that the former character-
izes microscopic properties of diffusing particles, namely,
the transition probabilities, i.e., the probability that a
particle initially at position r’ will be found at r at a later
time ¢ In many cases, the steady state microscopic
distribution does not affect the outcome of the measure-
ment. This is quite different from FPR measurements in
which the steady-state distribution usually is important
in the overall results (see below).

MEAN SQUARE DISPLACEMENT AND
CORRELATION FUNCTION OF POSITION

SPT yields the trajectory r(t) = [x(t), y(?)], i.e., the
coordinates at each time ¢, of a particle undergoing
two-dimensional diffusion and/or systematic transport.
Because the data are stochastic, they must be analyzed
statistically to yield the conventional phenomenological
diffusion coefficient and drift rate (Chandrasekhar,
1943). The mean square displacement (MSD) of the
trajectory, denoted as p(¢t), is a convenient quantitative
characteristic of the motion:

p(t) = ([r(?) - r(O)F)
= [ PG - r)P(|r, t) drar. (1)

Here, P(r) is the steady-state distribution of particle
position and P(r|r’, ) is the transition probability, i.c.,
the probability that a particle originally at 7’ will be at r
after a time period ¢. Because the process is stationary,
the ensemble average can be computed as a time
average for a single trajectory (Landau and Lifshitz,
1969). Therefore,

o(t) = [lr@e + 1) —r(e')ar'.

This allows determination of p(f) from an experimen-
tally measured trajectory. Particle positions are re-
corded in the form of a time sequence [x, = x(nAT),
Y. =y(mAT)|n=0,1,2,.. ], with the data acquisition
time interval AT. Therefore p(f) and its x, y components
are expressed in terms of discrete time sequences:

P(HAT) = 3 (50 = )/ (N + 1)

N
P(AT) = 32 (e = Y/ (N + 1), @
and
Po = p(nAT) = p,(nAT) + p,(nAT). 3
Fig. 1 depicts p(r) for simple diffusion.

0.40r

0.32} e

LACEMENT
\

©
N
P
\
\

(um?)
\

MEAN SQUARE DISP|
\
\

0 2 4 6 8 10 12 14 16 18 2
TIME (s)

FIGURE1 The mean square displacement as function of time for a
diffusing particle. (—) pure diffusion; (-----) diffusion with flow;
(- - ) diffusion in a cage. For these calculations D = 3 x 107 c¢m?/s,
V = 0.02 pm/s, and the cage size was 1 pm X 1 pm. The p(f) for
diffusion in a cage was calculated as described by Kolinski et al. (1986),
using their Eq. 5 extended to a two-dimensional system.

The mean square displacement as function of time is
closely related to the position correlation function:

&) = rey(©) = [ [ m'P@")P(|r', 1) drdr’
= f [ 1P +r2 = @ —rY1PC)PC|r, 1) drdr’
={r*) — p()/2. “)

Time correlation functions have been widely used in
kinetic studies (Zwanzig, 1965). Eq. 4 provides a formal
link to other methods used to measure diffusion such as
fluorescence correlation spectroscopy (FCS), a tech-
nique similar to FPR (Elson, 1985), and dynamic light
scattering (DLS). In these techniques it is not the
position of the diffusing particle itself as a stochastic
process r(¢), but rather some function of the particle
positions I(r), that can be directly measured. The de-
sired kinetic information is extracted from the time
correlation of the process I[r(t)]. In FCS, I(r) = I,
exp (—r*/w}), is the Gaussian laser profile which excites
fluorescence from particles at positions . Then the e 2
radius , determines the characteristic distance for this
measurement. In dynamic light scattering: I(r) = exp
(ir - q) where q is scattering vector, which varies inversely
as the wavelength of the incident light, and 1/|q]| is the
characteristic distance imposed on the diffusion measure-
ment (Cummins et al., 1969). In both cases, the photocur-
rent i(t) « I[r(t)] is the directly measured quantity.

Simple diffusion

The coordinates r = (x, y) of a particle undergoing free
diffusion can be represented as a Gaussian process with

912 Biophysical Journal

Volume 60 October 1991



transition probability (Chandrasekhar, 1943):
P(r|r', 1) = (1/4nuDt) exp [—(r — r')}/4Dt]. 5)

This transition probability for free space is applicable so
long as the characteristic dimension of the space avail-
able for diffusion, L, is sufficiently large that the measure-
ment time interval is much smaller than L?/4D. Then
p(t) = ([r(®) — r(0)])) = 4Dr. The average (- - -) is taken
not only over all the possible trajectories but also over all
the initial positions r(0). This emphasis, although unnec-
essary for free diffusion, is crucial to account for the
effects of the boundaries in an analysis of diffusion
within a finite region.

For diffusion in a finite region, from Eq. 4, p(x) =
2({r) = (r)»), which is proportional to the size of the
region accessible for diffusion. For example, p() = R?
for a disk with radius R; p(«) = \*/3 for a square of A X
\. (More precisely, yp,() and y/p() specify the linear
dimensions of the accessible region). Therefore, a mea-
surement of p(«) yields an estimate of the finite area
accessible for diffusion. For free diffusion, of course, the
available area is infinite, and so p(¢) increases without
bound, i.e., both p() and the second moment (r?) = o.
Hence, the time correlation function {r(£)r(0)) does not
exist for free diffusion, but its difference from (r?), that is
the p(¢), does exist. A typical plot of p(f) versus t for
diffusion in a finite region is also shown in Fig. 1.

Diffusion with flow

When diffusion and drift or flow with constant velocity V
are superimposed, the transition probability becomes
P(r|r’,£) = (4nuDt)™ exp (—(r — r’ — Vi)*/4Dt} (Chan-
drasekhar, 1943). Therefore,

p(t) = 4Dt + V% 6)

Here we have again supposed that the total measure-
ment time is much smaller than L?/4D. For most cell
experiments, L ~ 10 pm and D ~ 107" cm?/s, therefore
L*/4D > 10°s.

When there is drift or flow, p(f) is no longer linear in
time but, as shown in Eq. 6, has positive curvature. In
contrast to simple diffusion for which the slope, p'(¢) =
dp(?)/dt = 4D, is a constant, when drift or flow contrib-
utes, p'(f) continually increases (p"(f) = 2V > 0) as if
the diffusion rate for a particle were faster the farther it
had moved. This indicates that the contribution of
systematic motion becomes dominant at longer times.
Even if flow or drift is slow compared to diffusion,
because of its dependence on ¢%, the second term in Eq. 6
must dominate p(¢) at longer times. Hence, when both
diffusion and flow are present, the former will tend to
dominate at early times (¢t < 4D/V?), the latter, at later

times (t > 4D/V?). If there are no active contributions
to the motion, either p"(¥) = 0 for simple diffusion or
p"(®) < 0. As shown below, the latter possibility could
occur if there were barriers which slowed the diffusion
rate beyond some characteristic spatial scale (cf Fig. 1).
A curve-fitting procedure can be used to estimate both D
and V from experimentally determined p(?) (cf Sheetz et
al., 1989).

Nonideal diffusion due to interactions

Negative curvature of p(¢) indicates that diffusion occurs
not as a simple homogeneous process in free space but
rather that its rate is lower over longer than over shorter
distances. This observed behavior is most simply inter-
preted in terms of interactions between the diffusing
particles and other mobile or immobile structures.
Nonideal diffusive behavior has been studied theoreti-
cally recently either using Monte Carlo methods (Sax-
ton, 1987, 1989, 1990) or by analysis of a two-dimen-
sional version of a generalized Smoluchowski Equation
(Abney et al., 1989). The results of these studies indicate
that the effects of interactions, either attractive or
repulsive, with either mobile or immobile obstacles is to
retard the rate of diffusion. Furthermore, the behavior
of p(¢) will depend on the concentration of the obstacles.
Suppose that the barriers are separated from one
another by a mean characteristic distance A. On a
spatial scale much smaller than A the rate of diffusion is
not affected by the barriers, and so the diffusant is
characterized by a localized diffusion coefficient D,. On
a larger spatial scale, however, the presence of the
barriers will reduce the diffusion coefficient. Therefore,
with sufficient spatial and temporal resolution, p(¢)
should show a fast phase due to the local diffusion of the
particle with an initial slope of 4D_. This measurement
requires both spatial and temporal resolution sufficient
to measure motion over distances small compared to A,
and times short compared to A*/4D,_. On a longer time
scale and therefore a larger spatial scale p(¢) increases
more slowly with time to define an effective diffusion
coefficient, D,,, which is diminished due to the interac-
tions of the diffusant with the barriers and depends on
the fraction of the surface covered by barriers (Saxton,
1989). Percolation theory indicates that long-range diffu-
sion will cease altogether (i.e., D, — 0) if the barriers
are immobile and cover more than a threshold fraction
of the surface. Also, the long-time behavior of p(¢) might
depend nonlinearly on ¢ in the presence of immobile
obstacles (cf Ghosh and Webb, 1990). For immobile
barriers below the critical threshold and for mobile
barriers at any fractional coverage of the surface the rate
of long range diffusion will be greater than zero, al-
though diminished relative to diffusion unimpeded by
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barriers. Due to the high concentration of interacting
proteins and other possible barriers in membranes the
observed behavior of p(t) will be dominated by the latter
phase in which diffusion is obstructed by interactions
(Sheetz et al., 1989; Ghosh and Webb, 1990), and this
will be our principal concern.

FPR FOR STEADY STATE DIFFUSION WITH
DRIFT

A comparison of SPT and FPR for the characterization
of systems in which particles both diffuse and systemati-
cally drift shows an important difference in the applica-
bility of the two methods. In a system in which all
fluorophores are simultaneously undergoing both system-
atic drift with velocity V' and diffusion with diffusion
coefficient D the FPR recovery, restricted to small
extents of photobleaching for simplicity, is (Magde et al.,
1978):

f@) =1-kexp{—(@/7)/A + t/mH/A + t/7). (D

Here, « describes the extent of bleaching, 7, = w;/4D
and 1, = w,/V. This recovery, when t <« 1,, is similar to
that for uniform flow without diffusion:

f@y =1-xexp{-(t/7)}. ®

When the effects of systematic drift are just compen-
sated by diffusion, however, a steady-state concentration
gradient is established; there is no macroscopic mass
transfer. Then, P(r) ~ exp (V- r/D) (Bretscher, 1976).

Under these conditions, the FPR fluorescence recovery

f(¢) after a minimal extent of photobleaching has the
form:

f@O) =1 - wexp (—14/T)/(1 + t/7). ®)

(This result can be obtained either by calculation of the
FPR recovery in the steady-state gradient or from the
above more general expression for f(¢) by setting ¢ > 1,
This correspondence is expected because in the long
time limit, the equilibrium distribution exp (V- r/D)
would have been established.) Therefore, the sensitivity
of FPR measurements to flow in the presence of
diffusion is determined by the ratio of the characteristic
times for diffusion and flow, ;/7,. For a typical cell, V =
0.01 pm/s, D = 107" cm?/s, and in typical experiments,
®, = 1 pm, therefore, 1, = 255, 7, = 100 s. In Fig. 2, to
emphasize the difference between simple diffusion and
diffusion plus drift, the reciprocal of FPR recovery
curves are plotted. A straight line is expected for simple
diffusion in this type of plot. These curves show that
even for a uniform population of particles which diffuse
and flow simultaneously, the effect of flow is barely

F(e)-F(0)

F{=)-F(t)

t/r,

FIGURE 2 Effect of flow on the FPR recovery curve. The fluorescence
recovery, f(t), is plotted in reciprocal normalized form: 1/[1 — f(¢)].
The ratio 7, /7, is presented for each pair of curves. ( ) recovery
after photobleaching a steady state concentration gradient resulting
from a balance between flow and diffusion yielding P(x) = exp (V-
r/D). (.- ) recovery after photobleaching an initially uniform
concentration, P(x) = 1.

evident with this ratio of diffusion and flow rates. Within
limits, 7, /7, can be increased and so the ability to detect
flow can be enhanced by increasing the beam radius, w,,
using a microscope objective lens of lower magnification.
SPT measurements over long enough time, however, will
always detect systematic drift (cf Fig. 1). Theoretically,
FPR measurements extended to t > 7, could detect
even a small drift as a deviation from a straight line plot
as in Fig. 2. This is difficult, however, because of
uncertainty in determining the final extent of recovery,
F (), (van Zoelen et al., 1983).

DATA ANALYSIS IN VELOCITY SPACE

The velocity autocorrelation function g,(t) = (v(¢)v(0))
can supply an explicit test that the observed particle
motion is behaving as simple diffusion. According to the
rigorous mathematical theory of ideal diffusion, which
neglects all the detailed underlying mechanism of mo-
tion, g,(¢) should behave as a Dirac delta function:
{v(t)v(0)) = 2D3(f) (Zwanzig, 1965). For our purposes,
this relationship results from the fact that the velocity
v(t) is averaged over a time interval AT (ms) which is
long compared to the time between intermolecular
collisions (<107 s). Because of the large number of
collisions during the measuring interval the velocities
determined for successive intervals are completely uncor-
related (cf Chandrasekhar, 1943). Then, if the particle is
undergoing simple diffusion (with or without drift), a
computation of the correlation function from the experi-
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FIGURE3 The time correlation (Av(f)Av(0)) calculated from experi-
mental measurements of a diffusing 40-nm gold bead bound by the
plant lectin Concanavalin A to the surface of a mouse macrophage
(Sheetz et al., 1989). This figure illustrates the expected delta function
character of the velocity correlation function.

mental measurements asg (nAT) = 3, (v,,.v,)/N (n =0,
1,2,....)should have a nonzero value for n = 0. Fig. 3
demonstrates that this condition is fulfilled for our
experimental measurements.! Nevertheless, it is still
possible that particles apparently undergoing random
motion might be driven by forces other than thermal
molecular collisions. For example, particles on a cell
surface might be driven in random directions by cytoskel-
etal motors or by the inhomogeneity of the cortical
cytoskeletal network. If the duration of a “step” in these
processes were sufficiently great, a computation of g,(¢)
might show that the particle motion deviated from
simple diffusion; on the other hand, if the duration of
these “steps” were small compared to the measurement
resolution, the motion would be sufficiently character-
ized by a simple diffusion model (cf Nossal, 1971).
Measurement methods with higher temporal resolution
than 30 ms are now available which could yield more
information about the mechanism of nonBrownian par-
ticle motion. In principle, even in the absence of active
transport processes, the presence of obstacles to diffu-
sion could impose a significant correlation on particle
trajectories and thereby invalidate the delta function
relationship given above. As shown by Fig. 3 this does
not appear to have happened in measurements at the
current level of spatial and temporal resolution.

Under typical circumstances the diffusion coeflicient
can be calculated from (v*). The measurement of v =

'The time integral of g,(¢) provides the diffusion coefficient according
to the equation 2D = [ {(v(t)u(0)) dt. If u(¢) is the instantaneous velocity
of the particle, the integral takes into account its detailed dynamics
over a period which allows many collisions but not substantial
displacement. If, however, averaged velocities are used then the delta
function relationship indicated above renders this equation trivially
correct.

Ax/AT is limited by AT, the single video image acquisi-
tion time interval. Then, because AT is fixed,

(v*) = ((Ar/ATY?)
= (Ar?)/(ATY
= 4D/AT. (10)

If both diffusion (D) and drift () are considered,

(Ar*) = 4DAT + (VAT)?
{v*) = 4D/AT + (v)?
((Av)*) = (v?) - (v)* = 4D/AT. (11)

Hence, ((Av)*)AT/4 yields the diffusion constant D (Fig.
4). For a system involving drift, obviously (v) is another
measure of the drift rate. The calculation of (v) and
((Av)?) (the first two moments of the velocity histrogram)
provide an estimate for the same D and V' as polynomi-
nal fitting of p(¢) to V? + 4Dt. As expected, there exists
a relationship between the experimentally determined
g.(t) and p(?), in fact 2g,(¢t) = p"(t), as shown in Appendix
A.

STATISTICAL ACCURACY IN DIFFUSION
MEASUREMENTS

Because diffusion is a stochastic process and the correla-
tion calculation we have presented is statistical, even
with infinitely precise measurements of positions the
calculated mean square displacement (MSD), and the
diffusion coefficient and drift rate derived therefrom,
will have theoretically expected statistical variances.

on
0.09
007}
0.05¢

FREQUENCY x 10!

0.03

-490 -272 -54 54 272 490

VELOCITY (nm/s)}

FIGURE4 The histogram of velocity in a typical experimental measure-
ment of a diffusing 40-nm gold bead bound by Concanavalin A to the
surface of a mouse macrophage as in Sheetz et al. (1989). For this
measurement AT = 0.033 s. The histogram yields {v) = 58.3 nm/s and
{AvAv) = 8.18 x 10° (nm/s)?, therefore, D = 1.3 x 107'° cm?, calculated
from ((Av))* = 2D/AT. (Here we are considering the component of
diffusion along only one axis, and so we treat the diffusion as
one-dimensional.)
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Therefore, an estimate of statistical accuracy is essential
for our analysis.

The variance arises from the stochastic nature of
diffusion. Within the limits of the accuracy of the
experimental measurements of particle positions, this
variance will diminish as the number of position measure-
ments increases.

We can begin a statistical analysis by supposing that
we have K independent measurements of the squared
displacement, £ = |r(t) — r,|>. We want to calculate the
variance of the mean £ = {£(1) + £(2) + - - - + &K))/K.
First, let us consider a pure diffusion problem. The
probability distribution of £ considered as a random
variable is

Prob (z < & < z + dz} = (1/4Dt) exp (—z/4Dt) dz
2>0. (12)

From this, as pointed out in Appendix B, we can obtain
the probability distribution of £ for which the variance is
(4Dt)*/K. The measurement at time intervals AT of N
consecutive positions r allows the calculation of p,
[=p(nAT)], the experimentally determined mean square
displacement for a time interval nAT by averaging over
N—n + 1 measurements, i.e.,0ton,1ton + 1,2ton +
2,..., N — n to N. Successive determinations are not
statistically independent, however, due to the overlap
between the measurements. Taking account of this
dependence, the expected variance for the calculated p,
would be larger (see Eq. BS, Appendix B, setting K =
N —n + 1, and noting (2n* + 1)/3n > 1):

(4DnATY (0% + 1)/3n(N = n + 1). (13)

The variance increases with increasing n. This is because
the larger n, the smaller will be the number of statisti-
cally independent samples of displacement within the
interval NAT. Hence the maximum value of n (the last
point calculated in the MSD), say n = m, will incur the
largest statistical uncertainty. For n = m the standard
deviation is less than 4DmAT[2m/3(N — m + 1)]"* (Fig.
5). Therefore, even in the worst case, the standard
deviation in p(t), 0 < t < mAT, is less than 4DmAT [2m/
3(N ~ m + 1)]"2. Taking the maximum uncertainty of
this last, mth, data point, p,,, as an upper bound yields an
estimated relative error in the slope of p(t) and there-
fore also in D of ~ %[2m/3(N — m)}"2. If 3(N — m)/2m
is chosen to be >100, then the expected error in the
diffusion constant due to stochastic uncertainty is smaller
than 10%.

Whereas the diffusion coefficient is estimated from
the slope, the rate of systematic transport or drift is
determined from the curvature of p(¢). The statistical
uncertainty in p(¢) due to the stochastic character of
diffusion also leads to uncertainty in the estimation of

N
[
\

JRe
Vd
= 16 4
= N=100, 7
3 Ve
> 1.2} ’ N+1000 »“
S 7, ,’,
o V4 -
5 s -
~ 0.8 7 7
7 ” -
o P ,/ -
2 i - =" N+1000
” - -
0.4} > - ‘—'
2"
& e N:100
o i " 2 e Y'Y
0 20 40 60 80 100
TIME (AT )(s)

FIGURES The relative statistical error in msd, p(f) (—). Upper and
lower curve are {p,) + ({Ap,Ap,))%. N is the total number of position
measurements.

the drift rate. An upper bound of the uncertainty in the
curvature of p(¢) can be obtained by considering only
three points in p,, n = 0, 1, m, where the relative
uncertainties are 0, =1/{N and =[2m/3(N - m)]"?,
respectively. To obtain an upper bound of the curvature
likely to be observed for a randomly diffusing particle,
we use an underestimation of p(1) = 4DAT(1 - 1/ \/IT/ ),
an overestimation of p(m) = 4DmAT[1 + 2m/3(N —
m))"?], together with p(0) = 0 to maximize the curvature
calculation. It should be possible to detect true system-
atic transport with a velocity, V, comparable to this
curvature. Therefore:

(VmAT)? = 4DmAT[[2m/3(N — m)]'> + 1/yN]
< 4DmAT[m/(N - m)]"* (14)

Hence, an error in estimating the drift rate should be
<2{D*/[m(N — m)(AT)*]}'*. For example, with NAT =
100 s, D = 10 %cm?/s, and mAT = 50s, a drift rate as
small as 3nm/s should be detectable, and for D =
10%m?/s, drift on the order of 30 nm/s would be
detectable.

Similar statistical considerations hold for determina-
tion of rates of diffusion or systematic transport from
velocity measurements. Experimental estimates of (v)
and (AvAv) are obtained from the measured histogram
of velocity as v =(v, + v, + - vy)/N and v* = (v +
v} + - - - viv)/N, respectively, where N is the total num-
ber of data points acquired. One may verify that (v) =
{(ry — o))/ (NAT) and (v?) = p,/AT?>. Therefore, v yields
a diffusion coefficient valid only on the time scale of AT,
i.e., the experimental initial slope of p(¢). By definition
v’ = (Ar/AT)? hence the distribution of v* corresponds
to that of Ar*. Moreover, knowing the probability distri-
bution of Ar* and observing that ((Ar)?)/4DAT = (v2)AT/
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4D, we can use the method of Appendix B to obtain the
probability distribution of v’ from a series of N indepen-
dent measurements:

Prob {z < v’AT/AD < z + dz}
= Prob {z < p,/4DAT < z + dz|
= NZN1(N — 1)! exp (-Nz)dz (15)

The probability to obtain the correct diffusion coeffi-
cient from v, within 10% error, can be calculated by

integrating the above distribution as follows:

Prob {|v?AT — 4D|/4D < 0.1}
= Prob {|v?AT/4D — 1| < 0.1}
= Prob {0.9 < v’AT/4D < 1.1}

= f0:1 NNZN1/(N — 1)! exp (—Nz) dz (16)

This probability is 68.4% for N = 100 and 99.8% with
N = 1,000. The intrinsic statistical accuracy is high for
these measurements, but the result might not be the
diffusion coefficient we seek, because there may be
contributions to the MSD from other kinds of motion.
Therefore, it is important to ascertain whether other
processes contribute by calculating the full time course
of p(t), and verifying its linearity.

When N — «, for a purely diffusional process |ry — r,|
~N'"?, therefore |U] = |ry=r,//N ~ N> - 0. In
experimental measurements with finite N, however,
there is always a finite probability to have |U| > v, (an
arbitrary velocity) even in the absence of systematic
transport. That is, integrating the probability distribu-
tion for v,

Prob {|5]| > v,} = Prob {|ry — r,| > Nu,)
= exp (—vINAT/4D). a7

The statistical error in an estimation of drift rate, i.e.,
the variance in 7, is [ vid[exp (—vINAT/4D)] = 4D/
NAT. Hence, with NAT = 100 s, D = 10 2cm?/s, the
detectability of the drift rate (the square root of the
variance) is ~2 nm/s. Therefore, at its worst the
trajectory method is comparable to the velocity analysis
for obtaining the drift rate. This is expected because in
the trajectory method, the whole range of time correla-
tion is used (which is the reason that # is involved), while
in (v) only a single moment is used.

It is also worth noticing that the correlation coeflicient
for p, (=p(nAT)] and p, (=p(mAT)) is n/m, (m > n)
(Appendix C). Therefore, p, and p,, are highly correlated
when (m — n) < n, m. This means that we should not
expect the random deviation in the experimental p_ to be
symmetrically distributed around (p,). In other words,

the statistical accuracy of a measurement of p(z) cannot
be judged from the smoothness of a plot of p(t) versus ¢.
Rather, the accuracy of a measurement should be
assessed from the reproducibility of a series of corre-
sponding measurements. This distinction has been previ-
ously pointed out by Gross and Webb (1988) and has
also been verified by computer simulation (Fig. 6).

EFFECT OF ERROR IN POSITION
MEASUREMENTS

As demonstrated by Gelles et al. (1988), there is an
uncertainty in the measurements of the position of a
diffusing particle. The uncertainty is due to measure-
ment error and blurring over the acquisition time of
each video frame ( ~ 30 ms). This uncertainty usually is a
random error which is not correlated with time. There-
fore, its contribution to the MSD calculation is similar to
that of shot noise with amplitude on the order of 25-50
nm’, and should have no effect on the p(¢) function other
than at zero time. Hence, the errors in position measure-
ment should not influence the time course of the mean
squared displacement. Nevertheless, uncertainties due
to the stochastic nature of diffusion place limits on the
extent to which either positive or negative curvatures

1.2

0.8

o)
S

MSD (arbitary units)

0 20 40 60 80 100
TIME (AT)(s)

FIGURE 6 Computer simulations for a diffusing particle with the total
number of position measurements, N = 100 and N = 1,000. There are
five independent simulations for each N. The dashed line is the
theoretically expected mean square displacement, and the circles are
the averages of the five simulations. Although several of the curves for
individual simulations are relatively smooth, the overall standard
deviation can be judged not from the smoothness of single curve but
must be determined rather by a set of curves.
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due, respectively, to systematic transport or to con-
straints on the range of diffusion can be detected.

DISCUSSION

We have described a simple and convenient method for
analyzing the trajectories of individual particles, to
obtain the macroscopic diffusion coefficients and drift
velocities which characterize their motion. This comple-
ments methods such as FPR and FCS which monitor
large populations of particles. A major advantage of the
SPT method is its ability to characterize the distinct
dynamic properties of minority fractions of a population
which might be undetectable by FCS or FPR (cf Sheetz
et al, 1989). Even for a homogenous population of
particles, however, valid SPT measurements require the
observation either of a single particle over a long time
period or of many particles for shorter times to account
adequately for the stochastic character of diffusion. In
contrast to FPR both SPT and FCS share the require-
ment for long observation times which result from the
statistical character of the two methods.

The statistical validity and mechanistic interpretation
of the measurements are governed by characteristic
times determined by the structure of the experimental
system and measurement times set by the experimenter.
In general, there are two important operational factors
in these measurements. The time interval between each
position measurement should be smaller than the char-
acteristic time of interest. On the other hand, only those
measurements with time interval larger than the charac-
teristic time can be considered statistically independent.
Whereas the former point must be considered to provide
sufficient temporal resolution of the measurement, the
latter point is important in judging experimental accu-
racy, which increases as the number of statistically
independent measurements increases.

When there is only simple unrestricted diffusion, as
indicated by the linear dependence of p(¢) on ¢, the time
resolution of the position measurements does not influ-
ence the determination of the diffusion coefficient. This
is because ([r(¢) — r(0)]?) ~ t (i.e., there is no intrinsic
characteristic time in the system, and the correlation
between each measurement is negligible). Thus, the
duration of a single measurement (AT) can in principle
be prolonged to any extent necessary to observe suffi-
cient motion, even of very slowly diffusing particles.

In contrast, when diffusion is constrained by barriers
or boundaries, an individual microscopic diffusive fluctu-
ation takes place on average over a characteristic corre-
lation time, T, defined in terms of the distance, A,
separating the barriers or boundaries: 1 ~ A*/4D. The
determination of the diffusion coefficient from the

observation of a brief single diffusive fluctuation, even if
performed with high precision, is relatively inaccurate
due to the stochastic nature of the diffusion process. To
obtain an accurate estimate of the diffusion coefficient
many of these microscopic fluctuations must be ob-
served. The accuracy of the measurement increases with
the number of the fluctuations observed and therefore
with the total time of observations, 7. Thus, the relative
error varies as the reciprocal of the square root of the
number of observed fluctuations and so as 1/(T/7)"2
Considering again the model of membrane protein
diffusion constrained by cytoskeletal corrals (Sheetz,
1983), we can suppose that, D = 10~° cm*/s and A ~ 100
nm, and so T ~25 ms. Therefore, if the duration of the
measurement is 25 s and AT = 2.5 ms, 10,000 data points
will be obtained and so D should be obtained with an
estimated relative error of 1%. Of course, setting AT =
2.5 ms assumes a > 10-fold faster rate of data acquisition
than is available using conventional video methods. To
interpret the measurements in terms of free diffusion, it
is necessary to confine attention to p(nAT) for very small
n values. When nAT becomes comparable to 1, the walls
of the corrals strongly influence the diffusion behavior of
the particles (cf Fig. 1). Even for n = 2 or 3, however, it
should be possible to determine D from the initial slope
of the plot of p(t) vs. t. For particles diffusing in a cage
the deviation of p(t) from the straight line behavior
expected for free diffusion provides an estimate of the
dimensions of the cage.

This example also demonstrates how in principle SPT
could provide a powerful approach for the analysis of
interactions between diffusing particles and mobile or
immobile obstacles. In fact the measurement of p(¢)
should allow a direct comparison between theory (e.g.,
Abney et al., 1989; Saxton, 1987) and experiment. In real
membranes, however, the distances between structures
that could retard diffusion are likely to be quite small.
Hence, improvements in spatial and temporal resolution
of the measurement methods will be required to achieve
the full potential of this approach.

To carry out a complete analysis of the statistical
accuracy of SPT measurements in systems in which
interactions with mobile or immobile obstacles retard
diffusion would require determination of the probability
distribution of p(¢) in the presence of the obstacles. This
is beyond the scope of this work. Nevertheless, a more
approximate discussion is possible in much simpler
terms. In the presence of mobile obstacles or of immo-
bile obstacles below the percolation threshold p(t) is
proportional to ¢t (Saxton, 1987; Abney et al., 1989).
Hence, even in the presence of obstacles it is possible to
define a limiting effective diffusion coefficient D,; =
(1/4)dp(t)/dt for ¢t sufficiently great. It is reasonable to
suppose that diffusion is still essentially random under
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these circumstances and therefore that p(t) still has a
Gaussian probability distribution. Then the analysis
presented in Appendix B remains approximately valid.
Hence, as above, we can estimate the relative error in
the value of D measured from the slope dp/dt to be
about *[2m/3(N — m)]"? where mAT is the largest
interval used in the calculation of p(¢). Because the value
of D is decreased due to interactions with the obstacles,
a longer time will be required to diffuse a given distance
and so a correspondingly longer interval mAT is likely to
be selected. This in turn will require a longer total
measuring period NAT to achieve the same accuracy as
for unimpeded diffusion in the absence of obstacles. A
summary of the dependence of p(t) on time and of
expected relative errors for different mechanisms of
transport is presented in Table 1.

A practical consideration in studies of the behavior of
membrane glycoproteins is the possible perturbation
which results from attaching the observable particle.
Likely to be most significant is the binding of 2 number
of glycoproteins to a single particle due both to the
multivalency of the binding molecules, such as antibod-
ies or lectins, and the presence of several binding
molecules on the particle. Likely to be less significant is
the drag on the particle as it moves through the

TABLEI Summary of results

Expected
Transport mechanism p(nAT) variance
Free diffusion 4DnAT p(4DnATY
Free diffusion + flow 4DnAT + (VnAT)*  p(4DnAT)’
Diffusion confined to
a small region* AY3 (2A%/15)2
Interacting mobile
proteins*
Short time 4D nAT p(4D nAT)’
Long time* 4AD\nAT + A%/3 ~p(4DynAT)
Dy <D,) + (2A%/15)z
Percolation x(mATY (x < 1) ND
where

p = [(27* + 1)/3n(N — n + 1)); N is the total number of positions
measured; and z = [A*/(4ND,AT))

*For this example diffusion is limited to a square region of dimensions
A x A. Because the particle cannot exit from the defined region, D,, =
0, where Dy, characterizes diffusion over distances > A.

*For particles interacting with mobile obstacles the diffusion coeffi-
cient can be represented as varying with time or distance diffused as
indicated in the text (Abney et al., 1989; Saxton, 1989). Over distances
short compared to the spacing of the obstacles, their effect on diffusion
is small and so the apparent diffusion coefficient, D,, is greater than
for distances large compared to the spacing over which the obstacles
exert their full retarding effect to yield D,,.

¥The variance for this example results from a generalization for free
diffusion and diffusion in a confined region. A is the characteristic
distance between obstacles; A?/4D,, is the correlation time for diffu-
sion across the small domains between obstacles.

TABLE I Comparison between FPR and SPT

Diffusion coefficient
(cm?/s)
FPR SPT
Acetylcholine receptor
on myofibrils 6.4 x 107+ 4.16 x 107
Concanavalin 4 receptor
on macrophage 4.9 x 1071 3.60 x 10~

Sources *Dubinsky, et al., 1989; ‘Dubinsky, unpublished measure-
ments; *Henis and Elson, 1981; 'Sheetz et al., 1989.

extracellular solution of relatively low viscosity. A com-
parison of diffusion coefficients measured by SPT and
FPR is given in Table II.

An inherent advantage of the SPT method for cell
studies is that the qualitative behavior of the particle is
known before the position measurements. This is impor-
tant because particles can move onto rough regions of
the cell surface (e.g., microvilli or ruffles), reversibly stop
diffusion (Sheetz et al., 1989), or undergo rapid forward
displacements (Kucik et al., 1989; Sheetz et al., 1990).
None of these phenomena would be distinguished in a
normal FPR or FCS analysis but would obviously contrib-
ute to the apparent diffusion coefficient measurement.
Thus, we feel that a more reliable measurement of the
true membrane diffusion coefficient can be made using
the SPT method.

This analysis is not limited to the study of membrane
proteins. For example, it can equally be applied to the
trajectories of cells undergoing chemotaxis and to the
facilitated diffusion of DNA binding proteins such as lac
repressor on DNA.

APPENDIX A
Relationship between p(t) and g,(t)

We consider [x;|i =0,1,2,...,N} and the corresponding velocities
{vi= @ —x_)/AT|i =1,2,..., N|. Therefore,
{Vaim) = 2, U0 /N
=UNZ, (, = % )nim — Xosm-1)/(AT)
= 1/2N 2, [~ (%, = %pen) = Coy = Xpet)?
— Xoum)’ + (6 = X'V (AT)
=1/2[—pn = P + Prs1 + Pt J(AT)
= /2

+ (xn—l

that is:

28.(t) = 0"(®).
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APPENDIX B

Variance of p,

Consider the mean squared displacement of a particle diffusing in a
two-dimensional plane £ = |r(f) — r,|* as a random variable. Its

probability distribution is
Prob |z < £ < z + dz} = (1/4D¢) exp (-z/4Dt)dz z > 0,

which yields (§) = 4Dt and, for Af = £ — (£), (A£AE) = (£)%

If we have K independent measurements of £&: £(1), £(2), . . ., &(KX),
and define € = {£(1) + &(2) + - + £&K)}/K, then the probability
distribution for € can be obtained as successive convolutions of
Prob {z < & < z + dz} with itself (Feller, 1957). By a recurrent induc-
tive calculation, we have:

Prob{z < £ < z + dz}

_ K%* exp (—Kz/4Dt)dz >0 (B
S&K-D @Dof ¢>0 (8]

where 1 = nAT. Therefore, (E) = (£), (AEAE) = (A£AE)/K = (£)*/K, and
the relative error ((AEAZ)/(E))'"? = 1/yK.

Furthermore, the probability of finding a value of the ratio & /(£)
greater than some number X is obtained simply by integrating Eq. B1:

Prob (B/(€) = ) = [ " Prob [z < ¥/(8) < z + dz} dz

= f KK - 1) exp (—Kz) dz

=[1 + KX + (KN)Y/2!
+ o (KNCUEK - De ™
= Q(2KA|2K) (B2)
Here Q(x*|v) is the x* probability function which can be found in
mathematical tables (Abramowitz and Stegun, 1964).
Now we define &, = |r(t,) — r(0)|*and &, =|r(t;) — r(¢,)|30 s 1, <
t, < t,. The correlation between £, and §, can be characterized by the

correlation coefficient (A£AE)/((AE2){AE2)'. Because the diffusion
process is Markovian:

Prob f{r,, 0 7,, £ 1oy 13 13, t,}
= Prob [r|r,, t, — t,} X Prob {r,|r, t, - t,}
x Prob {r,|r,, ¢,} % Prob {r,)

therefore,

(AglAEZ) = ((rz - ’1)4) - ((’2 - ’1)2)2
= [4D(t, - 1)) (B3)

i.e., it is proportional to the square of the time overlap between ¢, and
&, and

<A§1A§2)/((A§f)(A§§>)m = (tz - tl)z/tz(ts - tl)‘

A positive value of the correlation coefficient indicates that £, and £,
are more likely to deviate from their mean values in the same
direction. Moreover, when t, — 1, = 0, £, and &, are uncorrelated. (This
is obviously also correct for ¢, < ;). When ¢, = 0, the coefficient is
equal to ¢,/t,.

When p, is calculated using a time average, £(1) = |r, — 1|3
§2) = |rom —nls .o 8K) = |raees = rea s

P = [E(D) + £(2) + - - - + EK)/K
= <§ Irn+i - ri|2>
= (Irn+i = ’i|2> + (2/N%)

1
- <|rn+1 - rilzlrnﬂ' - rjlz)

i=] j=

Depending on the time interval of the measurements, these £’s are not
necessarily statistically independent. Hence, there will be a correction
factor due to this consideration. A complex calculation yields:

(Bp,Bp, /(P )"
[(4n*K + 2K + n — n®)/6nK?]" K>n

“ i1+ (K = 4nK* + 4n — K)/onK] K<n BY

when K >» n, the relative error is:
[Ap,8p,/(p,))"" = [(2n” + 1)/3nK]"* ~ (21/3K)'*  (BS)
which is proportional to (K/n)~""? rather than K2 This correction is

significant, especially when n is large. When n = 1, (Ap,Ap,/{p, )" =
1/ \/IZ' as expected for uncorrelated £’s.

APPENDIX C
Covariance of p, and p,,

We consider the correlation coefficient of any two p, and p ..

N-n

P = |Fiw = FPIN =1 + 1)
=0

N-m

Pn= 2 |Fium — R I(N —m + 1),
i=0

where N is the total number of position measurements. Without loss of
generality, let us assume that m > n. Therefore (p,) = 4DnAT, (p,) =
4DmAT, and:

(Ap.ap, (A0, ) (B, ) )"
= n(N — m)(3 — n/m)*/4m(N — n).

Ifm,n « Nandm ~ n, then:

{Ap.Ap){(Ap) (AP = n/m.
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