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Plants associate with a wide range of beneficial fungi in their

roots which facilitate plant mineral nutrient uptake in exchange

for carbohydrates and other organic metabolites. These

associations play a key role in shaping terrestrial ecosystems

and are widely believed to have promoted the evolution of land

plants. To establish compatibility with their host, root-

associated fungi have evolved diverse colonization strategies

with distinct morphological, functional and genomic

specializations as well as different degrees of interdependence.

They include obligate biotrophic arbuscular mycorrhizal (AM),

and facultative biotrophic ectomycorrhizal (ECM) interactions

but are not restricted to these well-characterized symbioses.

There is growing evidence that root endophytic associations,

which due to their inconspicuous nature have been often

overlooked, can be of mutualistic nature and represent

important players in natural and managed environments.

Recent research into the biology and genomics of root

associations revealed fascinating insight into the phenotypic

and trophic plasticity of these fungi and underlined genomic

traits associated with biotrophy and saprotrophy. In this

review we will consider the commonalities and differences of

AM and ECM associations and contrast them with root

endophytes.
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Introduction
Beneficial root-associated fungi perform vital functions in

host mineral nutrient uptake, carbon (C) cycling, plant

growth promotion and/or increased resistance against

plant pathogens that are fundamental to sustainable plant

productivity. This is achieved by the establishment of an

intimate interaction between the host cells and the fungal
www.sciencedirect.com 
hyphae that can be more or less extensive and limited to

the epidermis or include the cortex layers. These multi-

faceted fungal symbioses comprise a full spectrum of

variation forming a continuum of interactions with highly

distinct anatomical features and separate evolutionary

histories [1–4]. The obligate biotrophic arbuscular mycor-

rhizal (AM) fungi belong to the Glomeromycota phylum,

one of the oldest fungal lineages, and form the most

widespread and common root–fungus associations. AM

fungi have evolved an efficient means of acquiring inor-

ganic nutrients from soil to supply plants, but cannot grow

apart from their hosts [3,5,6]. Therefore, they are thought

to have none or very little saprotrophic capability

[7��,8��]. Ectomycorrhizal (ECM) fungi have arisen inde-

pendently several times from saprotrophic ancestors and

can be found in the phyla Ascomycota and Basidiomycota

[9,10]. These fungi are important in forest ecosystems

and, although they are capable to colonize the surface of

non-host roots without penetrating them, intercellular

growth is restricted to specific plant families, mostly trees

[6]. These dual soil–plant inhabitants are efficient at

deriving nutrients saprotrophically from soil organic mat-

ter, where they live transitorily, and biotrophically from

plants, during mutualistic interactions. Thus, they display

a strong adaptation to life within hosts but have main-

tained saprotrophic characters [11��,12��]. Depending on

environmental conditions and host partners, ECM fungi

can additionally be involved in parasitism where fungal

infections may lead to the production of severe necrosis in

the root cortices [13–16], indicating potential for mutu-

alism and pathogenicity in this group of fungi. A different

class of root associations is represented by the non-mycor-

rhizal endophytes. This group of fungi can be of

beneficial nature and while the underpinning mechan-

isms are largely unknown, plant benefits range from

growth promotion to increased resistance to biotic and

abiotic stresses [17]. By definition root endophytes do not

form an interface of specialized hyphae and are thought to

colonize the host without efficient means for nutrient

transfer towards the host [18]. Yet recent evidence shows

that these fungi can form extensive biotrophic interfaces

with plant cells, during which fungal hyphae are encased

by the host plasma membrane [19,20�]. Indeed in several

endophytic interactions nutrient transfer between the two

partners was reported, but the means of transfer at the

biotrophic interface is still unclear [21–23]. These fungi

are widespread root inhabitants closely related to, but not

restricted to ECM, orchid mycorrhiza (OM) and ericoid

fungi, and also insect-parasitic fungi can act as beneficial

plant endophytes delivering the roots with insect-derived

nitrogen (N) [21,24]. Some mycoparasitic fungi feeding

on other fungi can also be classified as beneficial root
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endophytes. These fungi are widely used in agriculture as

biocontrol agents and whereas the mycoparasitism

represents the ancestral life style they have acquired

the ability to grow between cortical cells of their plant

hosts [25�,26]. Like the AM fungi, root endophytes have a

wide host range and can be found associated with the so-

called non-mycorrhizal (NM) plants where they are able

to establish biotrophy [19,20�,27]. Endophytic coloniza-

tion of NM plants by AM fungi has also been reported,

but it is considered to be functionally less significant as no

arbuscules are formed in these hosts and hyphae typically

occur in moribund cells with no plant growth promotion

[18,28].

Commonalities and differences in AM, ECM and endo-

phytic fungi, while sometimes difficult to grasp, are

important to understand the impact of individual sym-

biotic interactions in the ecosystem and might be

reflected in their genomic and transcriptomic traits.

The recent release of the genomes of the AM fungus

Rhizophagus irregularis (formerly known as Glomus intrar-
adices) [7��,8��], the ECM fungi, Laccaria bicolor [11��] and

Tuber melanosporum [12��], and the root endophyte Pir-
iformospora indica [29��] provides unprecedented insights

into how these beneficial root symbionts penetrate and

establish within their hosts and to which extent their

lifestyles are encoded in their genomes. This review

describes current advances in understanding the com-

ponents of root endophytic lifestyles from biological and

comparative genomic analyses.
Figure 1

(a)

(a) Section of paraffin-embedded root of M. truncatula inoculated with R. irr

germ agglutinin, WGA-FITC. Scale bar, 10 mm. Photo kindly provided by Ra

microscopy image of a transverse section of 12-week-old L. bicolor–Populus 

immunolocalization of L. bicolor MiSSP8 protein (unpublished data) and pla

10 mm. Photo kindly provided by Claire Veneault-Fourrey. (c) Maximum proje

Broad extraradical hyphae are visible at the boundary of the epidermis, whe

absent in the cortex cells, while the cylinder is undamaged and preserves in
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Biology of the symbiotic interface
The obligate biotrophic AM fungus R. irregularis (Glo-

meromycota, Glomerales) forms highly branched, tree-

shaped structures, the arbuscules, inside living cortical

cells, preferentially in the inner layers (Figures 1a, 2a).

This extensive interface was shown to be the site of

symbiotic nutrient transfer where phosphate and N are

actively transferred to the plant in exchange for simple

carbohydrates [3,5,30,31]. These fascinating fungal struc-

tures are associated with dramatic reprogramming of the

host cell to accommodate intracellular hyphae which start

even before actual penetration, resulting in the so-called

pre-penetration apparatus [32]. Host cell rearrangement

includes remodeling of actin filaments and microtubules,

movement of the host nucleus to the center of the cell and

site of fungal penetration, and deformation of the vacuole

with proliferation of plastids and mitochondria. Intense

re-organization of host cell architecture and physiology

seems to be characteristic of obligate biotrophy and can

be paralleled in mutualists and pathogens (e.g. powdery

mildew fungi) [33], reflecting a continued coevolution

with the hosts that led to the development of fungal and

plant tools efficiently tailored to each other. Successful

colonization and beneficial outcome by AM fungi is

indeed dependent on the presence of a common sym-

biosis signaling pathway (SYM pathway) in the hosts

[34,35]. This pathway is functionally conserved in several

plant families and has homologs in bryophytes and green

algae of the order Charales, suggesting the remote possib-

ility of symbiotic associations in green algae [36].
(b) (c)

Current Opinion in Plant Biology

egularis after staining with fluorescein isothiocyanate conjugate-wheat

ffaella Balestrini and Paola Bonfante. (b) Laser-scanning confocal

trichocarpa ectomycorrhiza root tip. Green signal corresponds to indirect

nt root cells are counterstained with propidium iodide in red. Scale bar,

ction of a barley root colonized by P. indica at 30 days post inoculation.

reas thin secondary hyphae are filling the cortical cells. Host nuclei are

tact nuclei. Scale bar, 50 mm.
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ECM associations with plants by the fungi L. bicolor
(Basidiomycota, Agaricales) and T. melanosporum (Asco-

mycota, Pezizales) are characterized by the production of

a sheath of organized hyphae, which encloses the fine

lateral roots, and by the Hartig net formed by hyphae

penetrating the anticlinal space of adjacent rhizodermis

cells and the outer layers of the root cortex [37] (Figures

1b, 2b). Intercellular and extraradical hyphae are thought

to have different functions. The Hartig net represents the

biotrophic interface between host cells and fungal hyphae

where communication and nutrient exchange between

the two partners occur. The fungal sheath serves as an

intermediate storage compartment for nutrients originat-

ing from the host via the Hartig net and from the soil-

growing hyphae [2,6,38,39]. It was recently suggested that

ECM fungi do not take up sucrose but glucose secreted

by the plant via mycorrhizal-induced hexose facilitators

[2]. In return, ECM fungi supply the plant with phos-

phate [40] and eventually N, although the possible N-

flow from the plant to the fungus via uptake of plant-

derived amino acids and proteins from the apoplast has

also been discussed [2,6]. Unlike AM fungi, ECM fungi

are not strictly dependent on the host, but in natural forest

ecosystems, where major nutrients are fixed in complex

organic matter, ECM interactions help overcoming nutri-

tional limitations faced by both partners, thus a substan-

tial degree of coevolution and specialization in this group

of fungi is expected [9].

The root endophyte P. indica (Basidiomycota, Sebaci-

nales) establishes an intermediate form of root associ-

ation with characteristics of both ectomycorrhizae and

endomycorrhizae (Figures 1c, 2c). During colonization

with many different plant families, P. indica forms an

external loose network of hyphae. Additionally, fungal

hyphae intercellularly and intracellularly colonize the

root epidermal layer and, depending on the host, the

outer cortex cells [19,41–43]. Piriformospora indica was

reported to be able to undergo beneficial relationships

with a broad range of experimental host species, in-

cluding the dicotyledonous NM plant Arabidopsis thali-
ana [44] and the monocotyledonous barley [41] and to

deliver phosphate to the plant [22], although an induc-

tion of mycorrhizal specific plant phosphate transporters

could not be observed [45]. Beside its capability to

colonize roots intracellularly, this symbiont is able to

gain organic nutrients by degrading dead root material

saprotrophically [29��]. The dual lifestyle of P. indica is

also evident during mutualistic fungal development in

the roots of barley and Arabidopsis where it displays a

biphasic colonization strategy. Upon penetration of the

root, P. indica establishes a biotrophic interaction where

hyphae are enveloped by the host plasma membrane in

viable cells. Later, P. indica hyphae are found more often

in dead or dying host cells where they secrete a large

variety of hydrolytic enzymes that degrade plant cell

walls and proteins, especially in the root cortex of

barley [20�,29��,41,46]. The expression of extracellular
www.sciencedirect.com 
proteases and metalloproteases in P. indica could

represent an alternative nutritional strategy where

demands for C and N may be satisfied by protein

degradation during the switch from biotrophy to the

cell-death associated phase [4]. Although a defined

switch to necrotrophy with massive cell death and tissue

maceration is missing and instead beneficial effects for

the hosts are present, this strategy of colonizing plants

resembles that of hemibiotrophic fungi, straddling the

divide of saprotrophy, necrotrophy and mutualism [47].

The maintenance or enforcement of saprotrophic char-

acters in this fungus together with the implementation

of biotrophic traits have possibly led to the ability to

colonize a large number of unrelated hosts, making this

fungus a classical generalist [4]. Whether beneficial out-

come of the interaction with a broad range of plants is

based on general mechanisms and signaling pathways

common to many plant families, as described for AM

fungi, remains an open question.

Host-dependent colonization strategies in
root symbioses
To establish and maintain a compatible interaction with

diverse hosts, mutualistic and pathogenic fungi must

evolve highly adaptive capacities to cope with a plethora

of different host-specific signals, resulting in the expan-

sion and diversification of the fungal toolkit and its

expression in a host-dependent manner. Alternative life-

styles and colonization strategies may thus be a con-

sequence of this adaptation to highly variable

environments. Recently it was shown, by cytological

studies and global investigations of P. indica transcrip-

tional responses to colonization of barley and Arabidopsis
at different symbiotic stages, that broad compatibility is

associated with host-dependent colonization strategies

and with host-specifically-induced effector candidates

[20�]. In Arabidopsis, P. indica establishes and maintains

predominant biotrophic nutrition within living epidermal

cells with production of bulbous hyphae, while in barley

the symbiont undergoes a nutritional switch to saprotro-

phy that is associated with the production of thinner

hyphae in cortex cells [20�]. Consistent with the occur-

rence of N limitation at the onset of saprotrophy in barley,

the concentrations of free amino acids (aa) in the older

root zone of barley are remarkably lower compared to the

early stage, irrespective of P. indica colonization [20�]. In

Arabidopsis, colonization by P. indica significantly

increases the level of free aa at the infection zone. The

altered organic N allocation is mainly due to changes in

asparagine, glutamine and threonine which might

represent a ready source of organic N during biotrophy

as described in other biotrophic interactions [48]. These

results contribute to the finding that different host meta-

bolic environments affect the colonization strategies in

root endophytes. Extensive host metabolic reprogram-

ming occurs also during L. bicolor colonization [49]. This

reprogramming is host-dependent, indicating that in
Current Opinion in Plant Biology 2014, 20:135–145
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Figure 2

BR, GA; cell deathSecondary metabolites;
cellular traffic/cytoskeleton

Endophyte (Piriformospora indica )

Effectors; N- and C-transporters

Intra- and intercellular biotrophic growth

Defense response (e.g.PR1, PR10); cell wall & lipid
metabolism; ABA, AUX

Chlamydospore
germination

Effectors (DELD & lectins);
hydrolytic enyzmes

(GH10/11, AA9)

(c)

Cell death phase associated
effectors; hydrolytic enzymes;
N-, C-, and ABC transporters

Intra- and extracellular
sporulation

Germination Invasive apoplastic growth +
arbuscule formation

Septation and
arbuscule collapse

Strigolactones P-, N-transporters,
H+-ATPase

Degradation of old
arbuscules

Effectors (SP7); stress response;
monosaccharide-; phosphate-; amino acid-transporters

(Lipo-)chitooligosaccharides

PPA, Ca2+ spiking
SYM pathway

Infecting hyphae Establishment of symbiosis;
invasive growth

Mantle and Hartig net formation;
exploratory hyphae

Signaling molecules

ET, JA; transportersP-, N-transportersAuxin

(b)
Ectomycorrhiza (Laccaria bicolor)

Effectors (MiSSP7, lectins, cysteine proteinase inhibitors);
N-, P-transporters, hexose importers 

PPA 

Hartig net

Mantle 

Arbuscule

Hyphopodium

Spore

Soil-growing
hyphae

Thin
hyphae

Chlamydospore

Arbuscular mycorrhiza (Rhizophagus irregularis )
(a)

Hyphopodium formation

Current Opinion in Plant Biology

Current Opinion in Plant Biology 2014, 20:135–145 www.sciencedirect.com



Root symbioses Zuccaro, Lahrmann and Langen 139
ECM fungi the metabolic responsiveness of plant roots is

a determinant factor in the interaction. Host-specific

colonization strategies with different morphological pat-

terns have long been known in AM fungi [50–52],

suggesting that this may represent a common feature

in broad compatibility in root symbioses. Knowledge of

the molecular and genetic mechanisms regulating AM

colonization strategies in different hosts is still limited

and it is unclear whether the establishment of different

fungal structures in different hosts is driven by host-

related metabolic cues. The release of the first AM fungal

genome [7��,8��] will conspicuously speed up our un-

derstanding of the fungal partner in this symbiosis.

Is fungal lifestyle reflected in the genomic
traits of root symbionts?
Fungal lifestyles and the level of specialization to the host

are expected to influence the evolution of genomic traits

and of effector proteins involved in the establishment of

compatibility. Root-associated fungi show a great varia-

bility in colonization and nutritional strategies and

although the examples we discuss in this review are all

defined as biotrophic mutualistic associations where both

the fungus and the plant benefit from each other, their

lifestyles range from obligate biotrophy to hemibiotrophy

with more or less marked saprotrophic characters.

Additionally, fungal colonization and nutritional strat-

egies may vary depending on the host, thus it becomes

evident that standard categories cannot be applied to

define root symbionts. Detailed analyses of the sapro-

trophic capabilities and colonization strategies of these

fungi in different hosts must be carefully performed and

definitions applied on a case-by-case basis. Genomics and

transcriptomics together with cytological and biochemical

studies provide valuable clues to understanding the

potentiality of these fungi. In particular comparative

genome analyses recently succeeded in shedding some

light on the possible common and specific genetic fea-

tures in such a heterogeneous set of root–fungus associ-

ations. One common genomic feature is represented by
(FIgure 2 Legend) (a) Germination of AM spores and hyphal branching is s

signaling molecules such as lipochitooligosaccharides, which induce calcium

After establishment of the hyphopodium on the root surface, the pre-penetrat

invasion. Several SYM genes were identified to be required for establishment

thought to suppress initial defense response of the plant as it was demonstra

ERF19 (ethylene response factor 19) [62]. Arbuscules are formed inside livin

exchanged under the control of both partners [56,63]. The symbiotic partners

are degraded in viable host cells [3]. (b) After first contact with the roots of 

successively the Hartig net. Colonization by the fungus triggers accumulatio

non-mycorrhizal plants [64]. To establish a mutualistic symbiosis, putative e

secreted [11��,39]. Some of these SSPs are translocated into the host cell as

by the Hartig net and C is taken up in the form of monosaccharides. At late s

are induced in the root to limit fungal colonization [66]. (c) Germinated chlam

attach to and penetrate the rhizodermis cells triggering initial defense respo

[67–69]. Subsequently, biotrophic hyphae grow inside living cells with suppr

secreted proteins like DELD effectors [19,29��]. During intracellular and interc

genes are induced [4,20,29��]. During the cell-death associated phase, funga

in brassinolide and gibberellic acid metabolism are observed in the roots [2
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the low number of genes involved in secondary metab-

olism, which are overrepresented in necrotrophic and

saprotrophic fungi [7��,11��,12��,29��]. This feature is

reflected in the genomes of obligate and non-obligate

biotrophic pathogens (Figure 3a), indicating convergent

adaptation to a life inside living host cells [53�,54�]. In the

genome of R. irregularis a dramatic expansion of genes

encoding proteins containing domains whose functions

are related to signaling transduction via phosphorylation

(e.g. tyrosine kinases) and regulation of gene expression

and protein levels (ubiquitin, BACK-domains, Kelch-

domains, LRR-domains, Sel1-domains, Bromo-domains

and BTB/POZ-domains) is present (Figure 3b). These

functional domains are involved in protein–protein inter-

actions with multiple cellular roles, such as recruitment to

E3 ligase complexes and in organization of the cytoske-

leton via interaction with actin and intermediate fila-

ments [55]. This is not surprising considering the

pivotal role of the perception of environmental signals

for association with plants and the dramatic morphologi-

cal changes associated with establishment of biotrophy in

this fungus. Expansion for gene families containing

domains involved in protein–protein and protein–DNA

interactions was also observed for L. bicolor and P. indica
(e.g. WD40-domains, F-box-domains, Bromo-domains,

TPR-domains, NB-ARC-domains, NACHT-domains,

IBR-domains and SH3_2-domains) and to a lesser extent

also for T. melanosporum (Figure 3b), suggesting that these

could represent a common genomic feature in root associ-

ations where the fungus undergoes complex changes in

anatomical structures (coils, arbuscules, multilobed

hyphae and thin hyphae), lifestyle (between soil-growing

hyphae and biotrophic hyphae inside the host) and inter-

action partners (soil-living microbes and plant hosts). Var-

ious genomic trends have been discussed as relevant for a

symbiotic lifestyle, such as larger genomes [47,53�]
(Figure 4), abundance of transposable elements, expan-

sion of multigene families [56,57], presence of a large

repertoire of in planta induced small secreted proteins

(SSPs < 300 aa) [4,57] or the absence/reduction of genes
timulated by strigolactones exuded by the roots. The fungus produces

 spiking, lateral root formation and changes in C-metabolism [59–61].

ion apparatus (PPA) is built as a transvacuolar structure guiding microbial

 of symbiosis with AM fungi as well as N-fixing rhizobia [34]. Effectors are

ted for the effector SP7 which interacts with the host transcription factor

g cells where nutrients like monosaccharides and phosphate are

 form a long-lasting interaction, while individual arbuscules collapse and

mycorrhizal plants, ECM fungi produce a mantle at the root tips and

n of auxin at root tips and lateral root formation in mycorrhizal as well as

ffectors like lectins, proteinase inhibitors and small proteins (SSPs) are

 demonstrated for MiSSP7 [65]. N and phosphate are supplied to the root

tages of colonization, ethylene (ET) and jasmonate (JA) responsive genes

ydospores or infecting hyphae of the mutualistic endophyte P. indica

nses and alterations in abscisic acid (ABA) and auxin (AUX) metabolism

ession of host defense responses and expression of lectins and small

ellular colonization of the cortex, fungal N and carbohydrate transporter

l hydrolytic enzymes and ABC transporters are activated and alterations

0,29��].
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Figure 3
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involved in N uptake, plant cell wall degradation [29��,53�]
and secreted invertases [7��,11��,12��,56,57]. With each

released genome it became evident that none of these

traits is mandatory for symbiosis [7��,9,11��,12��,29��,57].

Also the expansion expected for genes encoding carbo-

hydrate transporters was not detected in the genomes of

mutualistic symbionts.Carbohydrate transporters are actu-

ally underrepresented compared to necrotrophic fungi,

suggesting that uptake of different carbohydrates is more

important during necrotrophy, when the pathogen uses

dead and dying host cells as a nutrient source to support

rapid colonization and sporulation [58�]. An interesting

feature of the R. irregularis genome is the small number of

predicted secreted proteins in comparison to other patho-

genic and symbiotic fungal genomes [8��]. The secretome

of R. irregularis has been streamlined through the loss of

genes involved in saprotrophic growth with few small

secreted proteins that are induced in planta [7��,8��]. With

respect to the effectors of mutualistic fungi, one of the

challenges will be to determine their role in the establish-

ment of compatibility with a wide range of hosts.

The number of published genomes for symbiotic fungi is

still quite small. Nevertheless, data are valuable to infer

lifestyle complexity, showing that root-associated fungi

possess species-specific saprotrophic characteristics

(Figure 3c,d). This is confirmed by clustering analysis

of functional domains (Figure 4), underscoring the poly-

phyletic origins of these symbioses and their diverse

nutritional strategies. Fungi with an obligate or predomi-

nant biotrophic lifestyle cluster well together, demon-

strating that this habit is well reflected in their genomes.

This is also true for necrotrophs and hemibiotrophs. A

clear separation can also be found between white and

brown rot saprotrophs, independently from their phylo-
(Figure 3 Legend) Comparison of proteins containing different domains inv

protein interaction and carbohydrate binding from 42 fungal species of the 

selection of gene families which proved to be either expanded or contracte

comparative analyses. Proteins of publically available genomes were annota

containing one of the selected domains are shown in the y-axis. Fungi are g

biotrophic plant and animal pathogens (red dots), hemibiotrophic (red/black d

(yellow dots) and brown rot fungi (brown dots). Proteins involved in secondary

necrotrophs, hemibiotrophs and saprotrophs. An exception is the biotrophic

carbohydrate-degrading enzymes but many of these genes are not expresse

involved in signaling are expanded in symbionts whereas expansion for gen

Sebacinales (e.g. P. indica). Asterisks indicate obligate biotrophy. (a) Number

secondary metabolite production. The prediction was performed using the s

Number of proteins containing one of the following domains involved in prote

PF00400); ubiquitin family (ubiquitin, PF00240); tetratricopeptide repeat clas

TPR_8, PF13181; TPR_9, PF13371; TPR_10, PF13374; TPR_11, PF13414; T

(Sel1, PF08238); Ras family (Ras, PF00071); NB-ARC domain (NB-ARC, PF0

and 6–8 (LRR_1, PF00560; LRR_4, PF12799; LRR_6, PF13516; LRR_7, PF135

PF07646; Kelch_3, PF13415; Kelch_4, PF13418; Kelch_5, PF13854); IBR do

(BTB, PF00651); bromo (Bromodomain, PF00439); BTB and c-terminal Kelch

enzymatic domains: pregnancy-associated plasma protein-A (Pep_M43, PF

dependent lytic polysaccharide monooxygenases (AA9, formerly GH61, PF0

hydrolase family 10 (GH10, PF00331); glycoside hydrolase family 7 (GH7, P

proteins containing one of the following carbohydrate-binding domains: lysi

component domain, (WSC, PF01822); and carbohydrate-binding module 1 (

www.sciencedirect.com 
genetic positions, suggesting a strong relationship be-

tween lifestyle and expansion/contraction of functional

domains in the genomes of these fungi. The dual lifestyle

of P. indica is also well reflected in its genome. This is

shown, among others, by the presence of genes involved

in plant cell wall degradation (e.g. Glyco hydro GH6,

GH7, GH10, GH11 and AA9 formerly known as GH61)

and protein hydrolysis (e.g. Metallopeptidases M36 and

M43) which are strongly reduced or absent in obligate

biotrophs, but well represented in the genomes of white

rot fungi (Figure 3c). Both T. melanosporum and L. bicolor
still have a residual ability to degrade plant cell walls but

the hydrolytic gene classes differ in these two ECM fungi

[57]. The diverging enzymatic arsenal and the induction

of these genes in symbiotic tissues in T. melanosporum and

P. indica but not in L. bicolor suggests a different coloniza-

tion strategy where T. melanosporum and P. indica may act

more aggressively towards their hosts [20�,57]. Indeed in

both fungi the degradation of plant cell walls during

symbiotic interaction and induction of genes involved

in lipid and protein degradation was observed [12��,29��].
Global transcriptional responses associated with coloniza-

tion of barley and Arabidopsis by P. indica showed that

members of the AA9, GH10 and GH11 families were

induced in barley but to a lesser extent in Arabidopsis. It

may well be that host specialization influenced the

amount and type of genes encoding hydrolytic enzymes

in the genomes of symbiotic fungi. In support of this idea

is the fact that genes encoding AA9 and GH10 are over-

represented in the genome of the hemibiotrophic

pathogen Colletotrichum graminicola which primarily

infects maize, compared to the genome of the closely

related C. higginsianum, a pathogen of several members of

Brassicacea reflecting the different cell wall compositions

of monocots and dicots [58�].
olved in secondary metabolite biosynthesis, hydrolytic activity, protein–

Basidiomycota, Ascomycota and Glomeromycota phyla. Shown is a

d in the genomes of P. indica, L. bicolor, or R. irregularis based on

ted using the Pfam database version 27 [70]. The numbers of proteins

rouped based on their predominant lifestyle into symbionts (green dots),

ots) and necrotrophic plant pathogens (black dots), white rot saprotrophs

 metabolite biosynthesis and hydrolyses are expanded in the genomes of

 tomato pathogen C. fulvum which displays a large arsenal of

d in planta or are pseudogenized [71�]. Gene families encoding proteins

e families encoding lectins seems to be a specific feature of the genus

 of proteins and protein clusters predicted to be involved in antibiotic and

tand-alone version of antiSMASH v.2 [72] with standard settings. (b)

in–protein interaction and regulation: WD domain, G-beta repeat (WD40,

s 1, 2 and 7–12 (TPR_1, PF00515; TPR_2, PF07719; TPR_7, PF13176;

PR_12, PF13424); variant SH3 domain (SH3_2, PF07653); Sel1 repeat

0931); NACHT domain (NACHT, PF05729); leucine rich repeat class 1, 4

04; LRR_8, PF13855); kelch motif class 1–5 (Kelch_1, PF01344; Kelch_2,

main (IBR, PF01485); F-box domain (F-box, PF00646); BTB/POZ domain

 (BACK, PF07707). (c) Number of proteins containing one of the following

05572); fungalysin metallopeptidase (Pep_M36, PF02128); copper-

3443); glycoside hydrolase family 11 (GH11, PF00457); glycoside

F00840); glycoside hydrolase family 6 (GH6, PF01341). D: Number of

n motif domain (LysM, PF01476); cell wall integrity and stress response

CBM_1, PF00734).
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Clustering analysis of functional protein domains results in the separation of fungal groups based on their lifestyles and phylogenetic position. Proteins

of publically available fungal genomes were downloaded from the MycoCosm portal of the JGI [73] and annotated using the Pfam database V.27 [70].
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Conclusions
What do we learn from comparative genomics and tran-

scriptomics of beneficial fungi?

The different ways to communicate with their hosts and

to establish compatibility in divergent ECM, AM and root

endophytic fungal lineages, reflected in the different

amount and expression patterns of genes encoding for

example, SSPs, hydrolytic enzymes, lectins and genes

involved in signal transduction, suggest that similar func-

tional properties and outputs of interactions (e.g. phos-

phate transfer, growth promotion and establishment of

biotrophy) have evolved independently through conver-

gent evolution. Comparative genomic and transcriptomic

data, combined with a careful analysis of the individual

fungal behaviors on diverse hosts, are a valuable tool to

infer lifestyle complexity, aiding in the identification of

the symbiosis determinants and their evolution.
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