JOURNAL OF COMBINATORIAL THEORY, Series B 33, 271-275 (1982)

On Monochromatic Paths in Edge-Coloured Digraphs*

B. SANDS, N. SAUER, AND R. WOODROW

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Communicated by the Editors

Received April 22, 1982

DEDICATED TO RICHARD K. GUY ON THE OCCASION OF HIS RETIREMENT

Let G be a directed graph whose edges are coloured with two colours. Call a set S of vertices of G independent if no two vertices of S are connected by a monochromatic directed path. We prove that if G contains no monochromatic infinite outward path, then there is an independent set S of vertices of G such that, for every vertex x not in S, there is a monochromatic directed path from x to a vertex of S. In the event that G is infinite, the proof uses Zorn's lemma. The last part of the paper is concerned with the case when G is a tournament.

In this paper G will denote a directed graph, possibly infinite, possibly with multiple edges. A *directed path*, or simply a *path*, is a (finite or infinite) sequence $x_1x_2x_3\cdots$ of distinct vertices of G such that there is a directed edge from x_i to x_{i+1} for each *i*. If the sequence $x_1x_2x_3\cdots$ is infinite we call the path an *infinite outward path*. Let the edges of G be coloured with two colours. A set S of vertices of G is called *independent* if no two vertices of S are connected by a monochromatic directed path.

The following is our main result. It arose from consideration of an unpublished problem of I. Rival and the first author.

THEOREM 1. Let G be a directed graph whose edges are coloured with two colours, such that G contains no monochromatic infinite outward path. Then there is an independent set S of vertices of G such that, for every vertex x not in S, there is a monochromatic path from x to a vertex of S.

Proof. Let the two colours be red and blue. We first introduce some notation. For distinct vertices x, y of G, $x \rightarrow^{red} y$ will mean that there is a

^{*} Research supported by NSERC Grants 69-3378, 69-1325, and 69-0259.

directed path from x to y, all of whose edges are coloured red. If S is a set of vertices of G and x is a vertex of G, $x \rightarrow^{\text{red}} S$ $(S \rightarrow^{\text{red}} x)$ will mean that $x \rightarrow^{\text{red}} s$ $(s \rightarrow^{\text{red}} x)$ for some $s \in S$. The negation of, for instance, $x \rightarrow^{\text{red}} s$ will be denoted $x \not\rightarrow^{\text{red}} s$. Similarly we define, e.g., $x \rightarrow^{\text{blue}} y$ and $x \rightarrow^{\text{mono}} y$, the latter meaning that there is a monochromatic path from x to y.

For sets S, T of vertices of G, put $S \leq T$ if for all $s \in S$ there is a $t \in T$ such that either s = t, or $s \rightarrow^{blue} t$ and $t \not\rightarrow^{blue} s$. In particular, $S \subseteq T$ implies $S \leq T$. It is easy to see that the collection of all *independent* sets of vertices of G is partially ordered by \leq .

Let \mathscr{S} be the family of all nonempty independent sets S of vertices of G such that $S \rightarrow^{\text{red}} y$ implies $y \rightarrow^{\text{mono}} S$ for all vertices y of G. Note that \mathscr{S} is nonempty; there is a vertex v such that $v \rightarrow^{\text{red}} y$ implies $y \rightarrow^{\text{red}} v$ for all y (since otherwise we can construct an infinite outward red path), whence $\{v\} \in \mathscr{S}$.

We claim that (\mathcal{S}, \leq) has maximal elements. To see this, let \mathscr{C} be a chain in (\mathcal{S}, \leq) , and define

$$S^{\infty} = \left\{ s \in \bigcup \mathscr{C} : \exists S \in \mathscr{C} \text{ such that } s \in T \text{ whenever } T \in \mathscr{C} \text{ and } T \geqslant S \right\}.$$

 $(S^{\infty}$ consists of all vertices of G that belong to every member of \mathscr{C} from some point on.) Let $S \in \mathscr{C}$ and $s \in S$. If $s \notin S^{\infty}$, there is $S_1 \in \mathscr{C}$ such that $S_1 \ge S$ and $s \notin S_1$. Thus there must be $s_1 \in S_1$ such that $s \rightarrow b^{blue} s_1$ and $s_1 \neq^{blue} s$. If $s_1 \notin S^{\infty}$, then there is $S_2 \in \mathscr{C}$ such that $S_2 \ge S_1$ and $s_1 \notin S_2$. Thus there must be $s_2 \in S_2$ such that $s_1 \rightarrow blue s_2$ and $s_2 \not \rightarrow blue s_1$. It follows that $s \to blue s_2$ and $s_2 \neq blue s_2$. Now if $s_2 \notin S^{\infty}$ we may continue, but, since G has no infinite outward blue path, this procedure must eventually terminate. That is, we obtain some $S_n \in \mathscr{C}$ and $s_n \in S_n$ such that $s \to {}^{blue} s_n$, $s_n \neq {}^{blue} s_n$, and $s_n \in S^{\infty}$. We have proven that S^{∞} is nonempty and that $S^{\infty} \ge S$ for all $S \in \overset{\circ}{\mathscr{C}}$. To show S^{∞} is independent, let $s, t \in S^{\infty}$, and suppose without loss of generality that $S, T \in \mathscr{C}$ are such that $s \in S, s \in U$ whenever $U \in \mathscr{C}$ and $U \ge S$, $t \in T$, and $S \le T$. Then $s \in T$, and since T is independent s and t cannot be connected by a monochromatic path. Thus S^{∞} is independent. Finally, to show $S^{\infty} \in \mathscr{S}$ let $s \to^{red} y$ for $s \in S^{\infty}$ and y a vertex of G. There is $S \in \mathscr{C}$ such that $s \in S$, and from the definition of \mathscr{S} there is $t \in S$ such that $y \to m^{ono} t$. If $t \in S^{\infty}$, then we are done. Suppose $t \notin S^{\infty}$, so that in particular $t \neq s$. Then $y \neq^{\text{red}} t$, since S is independent and $s \rightarrow^{\text{red}} y$; thus $y \to^{blue} t$, and since $S^{\infty} \ge S$ there is $t^{\infty} \in S^{\infty}$ such that $t \to^{blue} t^{\infty}$. Hence $y \to b^{blue} S^{\infty}$, showing that $S^{\infty} \in \mathcal{S}$. We have proven that any chain in \mathcal{S} has an upper bound in \mathcal{S} , and so, by Zorn's lemma, (\mathcal{S}, \leq) contains maximal elements.

Let S be a maximal element of (\mathcal{S}, \leq) ; we claim that S is the set we seek. Suppose to the contrary that there is a vertex x not in S such that $x \neq^{\text{mono}} S$. Since G has no infinite outward red path, we may choose x so that $y \to^{\text{red}} x$ for each vertex y not in S satisfying $y \neq^{\text{mono}} S$ and $x \to^{\text{red}} y$. Also note that, by the definition of \mathcal{S} , $S \neq^{\text{red}} x$.

Let $T = \{t \in S \mid t \not\to^{\text{blue}} x\}$, so that (if $T \neq S$) $S - T \to^{\text{blue}} x$. Then $T \cup \{x\}$ is independent and $T \cup \{x\} > S$. By the maximality of S, there is a vertex y such that $T \cup \{x\} \to^{\text{red}} y$ and $y \not\to^{\text{mono}} T \cup \{x\}$. Clearly, $y \notin S$. If $T \to^{\text{red}} y$, then $S \to^{\text{red}} y$, and it follows from the definition of \mathscr{S} that $y \to^{\text{mono}} S - T$. But this is impossible; $y \not\to^{\text{red}} S - T$ because $T \to^{\text{red}} y$ and S is independent, and $y \not\to^{\text{blue}} S - T$ because $S - T \to^{\text{blue}} x$ and $y \not\to^{\text{blue}} x$. Hence we must have $x \to^{\text{red}} y$. Now $y \not\to^{\text{red}} S$ because $x \not\to^{\text{red}} S$, and $y \not\to^{\text{blue}} S$ because $S - T \to^{\text{blue}} x$ and $y \not\to^{\text{blue}} T \cup \{x\}$. Also $y \not\to^{\text{red}} x$, and this contradicts the choice of x. Thus S satisfies the conditions of the theorem.

We point out a special case.

COROLLARY 2. Let T be a finite tournament whose edges are coloured with two colours. Then there is a vertex v of T such that for every other vertex x of T there is a monochromatic path from x to v.

If the edges of the tournament are not coloured (or all coloured the same), then this result is fairly well known. In fact, every finite tournament T contains a vertex v such that for every other vertex x of T there is a directed path of length at most two from x to v (e.g., [2]; see [1] for an extension to directed graphs in general). On the other hand, no such bounding of path lengths is possible in Corollary 2. For example, consider the tournament with vertices $\{t_1, t_2, ..., t_n\}$ and coloured directed edges as follows:

> (t_i, t_{i+1}) coloured red for $1 \le i \le n-1$ (t_i, t_i) coloured blue for j > i+1.

Then t_n is the only vertex satisfying the conclusion of Corollary 2; moreover, the only monochromatic directed path from t_1 to t_n passes through all the other vertices.

Interestingly, if we use *more* than two colours the corollary is false. A simple counterexample is the three-element tournament $\{a, b, c\}$ with directed edges (a, b), (b, c), and (c, a), all coloured differently (for future reference, we call this edge-coloured tournament T_3). It is not hard to add vertices to this tournament to construct arbitrarily large finite counterexamples.

Now consider the tournament with vertices

$$a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$$

and coloured directed edges

$(a_1, a_2),$	$(b_1, b_2),$	(c_1, c_2)	coloured red,	
$(a_2, a_3),$	$(b_2, b_3),$	(c_2, c_3)	coloured blue,	
$(a_3, a_1),$	$(b_3, b_1),$	(c_3, c_1)	coloured green,	
(a_i, b_j)			coloured red for all	i, j,
(b_i, c_j)			coloured blue for all	i, j,
(c_i, a_j)			coloured green for all	i, j.

This is a tournament whose edges are coloured with three colours and for which no *pair* of vertices satisfies the conclusion of Corollary 2. More precisely, there is no set S of exactly two vertices such that for every other vertex v there is a monochromatic path from v to a vertex of S. For example, $S = \{a_1, b_2\}$ does not work because there is no monochromatic path from b_3 to either a_1 or b_2 . The following question (due also to Erdös) is still open.

PROBLEM. For each *n*, is there a (least) positive integer f(n) so that every finite tournament whose edges are coloured with *n* colours contains a set *S* of f(n) vertices with the property that for every vertex *v* not in *S* there is a monochromatic path from *v* to a vertex of *S*? In particular, is f(3) = 3?

Corollary 2, of course, just says that f(2) = 1.

Under certain circumstances Corollary 2 may still hold for tournaments whose edges are coloured with three colours. For instance, if the tournament is transitive (i.e., acyclic), Corollary 2 will hold no matter how many colours are used. Our final theorem gives a less trivial example.

THEOREM 3. Let T be a tournament whose edges are coloured with three colours, and whose vertices can be partitioned into disjoint blocks such that

(i) two vertices in different blocks are always connected by a red edge;

(ii) two vertices in the same block are always connected by a blue or a green edge.

Then there is a vertex v of T such that for every other vertex x of T there is a monochromatic path from x to v.

Proof. Let the blocks of T be $B_1, B_2, ..., B_n$. We first define a partial order on T consisting simply of a linear order on each block. The order on block B_i is determined as follows. The edges of B_i are two-coloured, so by Corollary 2 we may choose a vertex v_1 of B_i such that $x \rightarrow^{\text{mono}} v_1$ for all $x \in B_i - \{v_1\}$. Then $B_i - \{v_1\}$ is still a tournament whose edges are two-

coloured, so we may choose a vertex v_2 of $B_i - \{v_1\}$ such that $x \to w^{\text{mono}} v_2$ for all $x \in B_i - \{v_1, v_2\}$. Put $v_2 < v_1$. By continuing this process we construct a linear order on each B_i such that if v and w are vertices of B_i with v < w, then there is a monochromatic path in B_i from v to w.

For vertices x and v of T let us write $x \rightarrow^m v$ if

- (i) x and v are in different blocks of T and $x \rightarrow^{red} v$, or
- (ii) x and v are in the same block of T and x < v, or
- (iii) x and v are in the same block of T, v < x, and $x \rightarrow^{red} v$.

Note that $x \to {}^m v$ implies $x \to {}^{mono} v$, but the converse need not hold. For each v, let N(v) denote the number of vertices x for which $x \to {}^m v$. Choose a vertex v for which N(v) is as large as possible, say $v \in B_1$. We will show that v satisfies the conditions of the theorem.

First, suppose there is a vertex w not in B_1 such that $w \neq^{\text{mono}} v$. Then $v \to^{\text{red}} w$ (via a single edge), and moreover $x \to^{\text{red}} w$ for all vertices x such that $x \to^{\text{red}} v$. Since $N(w) \leq N(v)$ by the choice of v, there must be a vertex $v' \in B_1$ such that v' < v and $v' \neq^{\text{red}} w$, and we may choose v' so that $v'' \to^{\text{red}} w$ for all $v'' \in B_1$ satisfying v' < v'' < v. Thus $w \to^{\text{red}} v'$. But now $v \to^{\text{red}} v'$, and $x \to^{\text{red}} v'$ whenever $x \to^{\text{red}} v$. Also, for all $v'' \in B_1$ satisfying v' < v'' < v. It follows that N(v') > N(v), contradicting the choice of v.

Now suppose $w \not\rightarrow^{\text{mono}} v$ for some vertex $w \in B_1$, $w \neq v$. Then v < w (so $v \rightarrow^m w$) and $w \not\rightarrow^{\text{red}} v$. From above, $x \rightarrow^{\text{red}} v$ and thus $w \not\rightarrow^{\text{red}} x$ holds for all vertices x not in B_1 , and so $x \rightarrow^{\text{red}} w$ for all $x \notin B_1$. Since $N(w) \leqslant N(v)$ by the choice of v, there must be a vertex $u \in B_1$ such that $u \rightarrow^m v$ and $u \not\rightarrow^m w$, and it follows that w < u. Thus $u \rightarrow^{\text{red}} v$, and there must be some vertex x not in B_1 such that $u \rightarrow^{\text{red}} x$. But since $x \rightarrow^{\text{red}} w$ this implies $u \rightarrow^{\text{red}} w$, a contradiction. Thus v is the required vertex.

Recall that T_3 denotes the three-element three-coloured tournament mentioned earlier. No tournament of the sort described in Theorem 3 can contain T_3 .

PROBLEM. Let T be a tournament whose edges are coloured with three colours and which does not contain T_3 . Must T contain a vertex v such that for every other vertex x of T there is a monochromatic path from x to v?

References

- 1. V. CHVÁTAL AND L. LOVÁSZ, "Every Directed Graph Has a Semi-Kernel," Hypergraph Seminar, Lecture Notes in Mathematics, No. 411, p. 175, 1972.
- 2. H. G. LANDAU, On dominance relations and the structure of animal societies, III: The condition for a score structure, Bull. Math. Biophys. 15 (1953), 143-148.