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Let G be a directed graph whose edges are coloured with two colours. Call a set 
S of vertices of G independent if no two vertices of S are connected by a 
monochromatic directed path. We prove that if G contains no monochromatic 
infinite outward path, then there is an independent set S of vertices of G such that, 
for every vertex x not in S, there is a monochromatic directed path from x to a 
vertex of S. In the event that G is infinite, the proof uses Zorn’s lemma. The last 
part of the paper is concerned with the case when G is a tournament. 

In this paper G will denote a directed graph, possibly infinite, .possibly 
with multiple edges. A directed path, or simply a path, is a (finite or infinite) 
sequence x, x2x3 -. - of distinct vertices of G such that there is a.directed edge 
from xi to xi+ r for each i. If the sequence x1x2x3 - -. is infinite we call the 
path an inJnite outward path. Let the edges of G be coloured with two 
colours. A set S of vertices of G is called independent if no two vertices of S 
are connected by a monochromatic directed path. 

The following is our main result. It arose from consideration of an 
unpublished problem of I. Rival and the first author. 

THEOREM 1. Let G be a directed graph whose edges are coloured with 
two colours, such that G contains no monochromatic infinite outward path. 
Then there is an independent set S of vertices of G such that, for every vertex 
x not in S, there is a monochromatic path from x to a vertex of S. 

Proof. Let the two colours be red and blue. We first introduce some 
notation. For distinct vertices x, y of G, xjred y will mean that there is a 
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directed path from x to y, all of whose edges are coloured red. If S is a set of 
vertices of G and x is a vertex of G, x +red S (S +red x) will mean that 
x --+red s (s --bred x) for some s E S. The negation of, for instance, x -+red s will 
be denoted x +tred s. Similarly we define, e.g., ~+~‘“~y and x +mono y, the 
latter meaning that there is a monochromatic path from x to y. 

For sets S, T of vertices of G, put S < T if for all s E S there is a t E T 
such that either s = t, or s +b’ue t and t +P~‘“~ s. In particular, S c T implies 
S ,< T. It is easy to see that the collection of all independent sets of vertices 
of G is partially ordered by <. 

Let .Y be the family of all nonempty independent sets S of vertices of G 
such that S +red y implies y _tmono S for all vertices y of G. Note that 9 is 
nonempty; there is a vertex u such that u -+red y implies y dred u for all y 
(since otherwise we can construct an infinite outward red path), whence 
(v} E 9. 

We claim that (9, <) has maximal elements. To see this, let Q be a chain 
in (27, <), and define 

S”= sEUQ:LSEQsuchthatsETwhenever TE9and T>S 
I 

Pm consists of all vertices of G that belong to every member of Q from 
some point on.) Let S E Q and s E S. If s Q! P, there is S, E ‘3 such that 
S, > S and s 6? S,. Thus there must be s’ E S, such that sjblue s’ and 
s, +b’ue s. If s, & S”O, then there is S, E Q such that S, > S, and s, @ S2. 
Thus there must be s2 E S, such that s, _tblue s, and s2 +P~‘“~ s,. It follows 
that s +b’ue s2 and s2 +b’“e s. Now if s, 6 S” we may continue, but, since G 
has no infinite outward blue path, this procedure must eventually terminate. 
That is, we obtain some S, E S and s, E S, such that s +b’“e s,, s, ~LI~‘“~ s, 
and s, E S”. We have proven that SW is nonempty and that S”’ > S for all 
S E $57. To show S” is independent, let s, t E Sm, and suppose without loss 
of generality that S, T E Q are such that s E S, s E U whenever U E Q and 
U > S, t E T, and S < T. Then s E T, and since T is independent s and t 
cannot be connected by a monochromatic path. Thus Sm is independent. 
Finally, to show S* E 9 let s +red y for s E S” and y a vertex of G. There 
is S E Q such that s E S, and from the definition of 9 there is t E S such 
that JJ+~‘“’ t. If t E S”, then we are done. Suppose t 65 S”, so that in 
particular t # s. Then y bred t, since S is independent and s -+red y; thus 
Y+ b’ue t, and since S” > S there is t* E SW such that t -+b’ue P. Hence 
y -+b’ue S”, showing that SW E 9. We have proven that any chain in 9’ has 
an upper bound in 9, and so, by Zorn’s lemma, (9, <) contains maximal 
elements. 

Let S be a maximal element of (9, <); we claim that S is the set we seek. 
Suppose to the contrary that there is a vertex x not in S such that x+mono S. 
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Since G has no infinite outward red path, we may choose x so that y +red x 
for each vertex y not in S satisfying y frmono S and x -+red y. Also note that, 
by the definition of 9, S ++red x. 

Let T= {t E S 1 t ftblue x), so that (if Tf S) S - T+b’ue x. Then TV {x} 
is independent and TV {x) > S. By the maximality of S, there is a vertex y 
such that TV {x} +red y and y +mo”o TV {x). Clearly, y & S. If T-+red y, 
then S +red y, and it ,follows from the definition of 9 that y +mo”o S - T. 
But this is impossible; y +‘ed S - T because T jred y and S is independent, 
and y ++b’“e S - T because S - T-+b’“e x and y pblue x. Hence we must have 
x -Pred y. Now y ftred S because xfrred S, and y ftblue S because 
s - j”-+“‘“e x and y pblue TV {x). Also y +red x, and this contradicts the 
choice of x. Thus S satisfies the conditions of the theorem. I 

We point out a special case. 

COROLLARY 2. Let T be a finite tournament whose edges are coloured 
with two colours. Then there is a vertex v of T such that for every other 
vertex x of T there is a monochromatic path from x to v. 

If the edges of the tournament are not coloured (or all coloured the same), 
then this result is fairly well known. In fact, every finite tournament T 
contains a vertex v such that for every other vertex x of T there is a directed 
path of length at most two from x to v (e.g., [2]; see [l] for an extension to 
directed graphs in general). On the other hand, no such bounding of path 
lengths is possible in Corollary 2. For example, consider the tournament with 
vertices (t,, t, ,..., t,,} and coloured directed edges as follows: 

Ctip ti+l) coloured red for lgign-1 

Ctj, ti) coloured blue for j > i + 1. 

Then t, is the only vertex satisfying the conclusion of Corollary 2; moreover, 
the only monochromatic directed path from t, to t, passes through all the 
other vertices. 

Interestingly, if we use more than two colours the corollary is false. A 
simple counterexample is the three-element tournament (a, b, c} with directed 
edges (a, b), (b, c), and (c, a), all coloured differently (for future reference, 
we call this edge-coloured tournament T3). It is not hard to add vertices to 
this tournament to construct arbitrarily large finite counterexamples. 

Now consider the tournament with vertices 

a,,a,,a,,b,,b,,b,,c,,c,,c, 
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and coloured directed edges 

(a,,%)* (b,~M (Cl,%) coloured red, 

(a*, %h (b*, b3), cc*, CJ coloured blue, 

(a3,a,), (b3, WY (c,, cd coloured green, 

(ai 3 bj) coloured red for all ’ ’ &J, 

(bi 1 Cj) coloured blue for all ’ ’ t,J, 

Cci 9 aj> coloured green for all i, j. 

This is a tournament whose edges are coloured with three colours and for 
which no pair of vertices satisfies the conclusion of Corollary 2. More 
precisely, there is no set S of exactly two vertices such that for every other 
vertex u there is a monochromatic path from v to a vertex of S. For example, 
S = (a,, b,} does not work because there is no monochromatic path from b, 
to either a, or b,. The following question (due also to Erdiis) is still open. 

PROBLEM. For each n, is there a (least) positive integer f(n) so that 
every finite tournament whose edges are coloured with n colours contains a 
set S off(n) vertices with the property that for every vertex u not in S there 
is a monochromatic path from u to a vertex of S? In particular, isf(3) = 3? 

Corollary 2, of course, just says that f(2) = 1. 
Under certain circumstances Corollary 2 may still hold for tournaments 

whose edges are coloured with three colours. For instance, if the tournament 
is transitive (i.e., acyclic), Corollary 2 will hold no matter how many colours 
are used. Our final theorem gives a less trivial example. 

THEOREM 3. Let T be a tournament whose edges are coloured with three 
colours, and whose vertices can be partitioned into disjoint blocks such that 

(i) two vertices in different blocks are always connected by a red 
edge; 

(ii) two vertices in the same block are always connected by a blue or a 
green edge. 

Then there is a vertex v of T such that for every other vertex x of T there is 
a monochromatic path from x to v. 

Proof: Let the blocks of T be B,, B, ,..., B,. We first define a partial 
order on T consisting simply of a linear order on each block. The order on 
block Bi is determined as follows. The edges of Bi are two-coloured, so by 
Corollary 2 we may choose a vertex vi of Bi such that x -+mono vi for all 
x E Bj - {vi }. Then Bi - {v, } is still a tournament whose edges are two- 
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coloured, so we may choose a vertex u2 of Bi - {u, } such that x +mono v2 for 
all xEBi- (u1,u2}. Put 2)* <v,. By continuing this process we construct a 
linear order on each Bi such that if u and w  are vertices of Bi with 2) < w, 
then there is a monochromatic path in Bi from u to w. 

For vertices x and u of T let us write x -+“’ u if 

(i) x and u are in different blocks of T and x jred u, or 

(ii) x and u are in the same block of T and x < U, or 

(iii) x and u are in the same block of T, u < x, and x jred u. 

Note that x +m u implies x jmono u, but the converse need not hold. For each 
u, let N(u) denote the number of vertices x for which x --+“’ u. Choose a 
vertex u for which N(u) is as large as possible, say u E B,. We will show 
that u satisfies the conditions of the theorem. 

First, suppose there is a vertex w  not in B, such that w  +mono u. Then 
u ,red w  (via a single edge), and moreover x+red w  for all vertices x such 
that X-+‘~~ u. Since N(w) <N(u) by the choice of u, there must be a vertex 
u’ E B, such that u’ < u and u’ ++Ied w, and we may choose u’ so that 
use ,red w for all u” E B, satisfying u’ < u” < u. Thus w  +red u’. But now 
u -+red u’, and x +red u’ whenever x--+‘~~ u. Also, for all u” E B, satisfying 
u’ < u” ( u we have u”+~~~ w  and so u” -red u’. It follows that 
N(u’) > N(u), contradicting the choice of u. 

Now suppose w++“““” u for some vertex w  E B,, w  # u. Then u < w  (so 
u --tm w) and w  +‘ed u. From above, x jred u and thus w  pred x holds for all 
vertices x not in B, , and so x _tred w  for all x @ B, . Since N(w) < N(u) by 
the choice of u, there must be a vertex u E B, such that u -+“’ u and u fr”’ w, 
and it follows that w  < u. Thus u jred u, and there must be some vertex x not 
in B, such that u dred x. But since x+red w  this implies u -+red w, a 
contradiction. Thus u is the required vertex. I 

Recall that T3 denotes the three-element three-coloured tournament 
mentioned earlier. No tournament of the sort described in Theorem 3 can 
contain T3. 

PROBLEM. Let T be a tournament whose edges are coloured with three 
colours and which does not contain T3. Must T contain a vertex u such that 
for every other vertex x of T there is a monochromatic path from x to u? 
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