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Traditional liquefaction hazard maps are useful tools for preliminary engineering site assessment and
policy development. However, these maps should not be used for site-specific liquefaction hazard as-
sessment. Simplified probabilistic liquefaction analysis procedures can be used instead to perform site-
specific liquefaction hazard assessment, but these procedures rely on probabilistic reference parameter
maps that are not yet familiar to most engineering and geological practitioners. As a result, some pro-
fessionals are questioning the differences between traditional liquefaction hazard maps and the new
probabilistic reference parameter maps. This paper clarifies the differences between these two types of
maps, and shows how each of these maps complements the other. New probabilistic reference parameter
maps for liquefaction triggering and lateral spread displacement are developed and presented for San
Diego, California, and simplified probabilistic equations necessary to use the reference parameter maps
are summarized. An example map-based liquefaction triggering and lateral spread displacement analysis
is performed for a representative site near San Diego Bay. Results of the analysis demonstrate that the
probabilistic assessment confirms and augments the information conveyed by the traditional liquefac-
tion hazard map.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Regional mapping of liquefaction hazard (e.g., liquefaction
triggering, liquefaction potential index, lateral spread displace-
ment, free-field post-liquefaction settlement) and/or susceptibility
has been performed by many researchers during the past 40 years.
Beginning with the work of Youd and Hoose [1] and Youd and
Perkins [2], most of these researchers began incorporating a geo-
logical approach in mapping liquefaction hazard because certain
types of surficial geology and their age have been observed to
correlate well to observed liquefaction susceptibility, and surficial
geologic maps are typically available for most locations in the
United States, as well as many locations throughout the world. As a
result of these efforts, liquefaction susceptibility, triggering, and
lateral spread displacement maps have become a useful pre-
liminary assessment tool to assist owners, engineers, planners,
policy-makers, and risk analysts in making informed decisions
regarding their sites, and are now often used as a regulatory re-
source [3].

Despite the usefulness of regional liquefaction hazard maps for
Ltd. This is an open access article u

ke).
preliminary assessment of liquefaction hazards, these maps are
not intended to be used for site-specific liquefaction hazard as-
sessment for engineering design. Site-specific assessment of such
hazards, including liquefaction triggering and lateral spread dis-
placement, requires subsurface, site geometry, and seismic loading
information pertaining to the site of interest. Recent research has
suggested that a probabilistic approach to site-specific liquefaction
hazard assessment (termed “probabilistic liquefaction hazard
analysis” by Holzer [4]) produces more consistent estimates of li-
quefaction hazards across different seismic environments than
conventional approaches [5–7]. To make the probabilistic ap-
proach available to a larger number of engineering practitioners,
researchers have developed simplified probabilistic liquefaction
triggering and lateral spread displacement analysis procedures [8–
11]. These simplified probabilistic procedures require the devel-
opment and use of hazard-targeted reference parameter maps for
liquefaction triggering and lateral spread displacement. The values
obtained from these reference parameter maps are subsequently
corrected for site-specific geotechnical and topographical data to
closely approximate the results that would be computed with a
full probabilistic procedure at the return period(s) of interest.

With the introduction of simplified probabilistic liquefaction
analysis procedures and corresponding reference parameter maps,
some practitioners are beginning to question the differences
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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between these reference parameter maps and traditional lique-
faction hazard maps, particularly those who are not yet familiar or
comfortable with the simplified probabilistic approach. For ex-
ample, a common question that is asked of the authors by en-
gineering and geology practitioners is whether the new reference
parameter maps are intended to supersede or replace existing li-
quefaction hazard maps. This question demonstrates a funda-
mental misunderstanding of what the probabilistic reference
parameter maps represent and how they are different from tra-
ditional liquefaction hazard maps.

This paper explores the differences between traditional lique-
faction hazard maps and probabilistic reference parameter maps,
and demonstrates how they are not intended to compete with one
another, but rather complement and complete one another. For this
demonstration, existing liquefaction hazard maps and new prob-
abilistic reference parameter maps (at return periods of 475 and
2475 years) for a seismically active region (San Diego, California)
are presented and compared. Simplified probabilistic procedures
necessary for using the new reference parameter maps are pre-
sented. A demonstrative liquefaction triggering and lateral spread
displacement assessment is performed for a representative site
near San Diego Bay. Through this assessment, engineers will ob-
serve how traditional liquefaction hazard maps and probabilistic
reference parameter maps can be used together to provide im-
proved understanding of the liquefaction hazards at a given site,
which will aid owners, designers, planners, and stake-holders in
making informed and objective design decisions. While the
probabilistic reference parameter maps presented in this paper are
applicable specifically to the City of San Diego, the approach pre-
sented by the paper is applicable to any location for which both
traditional liquefaction hazard/susceptibility maps and probabil-
istic reference parameter maps are available to engineers.

While this paper specifically focuses on the liquefaction ha-
zards of triggering and lateral spreading, other hazards including
post-liquefaction settlement, loss of shear strength, and increased
lateral earth pressures are also important considerations that must
be taken into account by engineers. As advances in dynamic soil
mechanics and probabilistic earthquake engineering lead to
greater understanding and improved predictive capabilities of
these phenomena, simplified assessment methods and probabil-
istic reference parameter maps will eventually be developed for
these additional hazards through future research.
2. Liquefaction hazard mapping

Current methods for mapping liquefaction hazards generally
rely heavily upon correlations with mapped surficial geologic units
[1,2]. This type of mapping uses criteria that relate surface geology
and depositional age to liquefaction susceptibility (i.e., the “geo-
logical approach” [4]). If a particular liquefaction map considers
seismic loading in addition to geologic susceptibility correlations,
then the map likely estimates liquefaction triggering hazard [12].

To quantify and map the regional potential for triggering and
subsequent effects, researchers have also considered available
subsurface geotechnical information as well as estimates of re-
gional ground motions (i.e., the “geotechnical approach;” Holzer
2008). Some researchers [13–16] have incorporated available
geotechnical data directly with a simplified liquefaction triggering
model [17–21], but the variability of triggering potential with
depth requires simplifying assumptions to quantify and represent
the three-dimensional phenomenon on a two-dimensional map.
The most common assumption that is applied is to map only the
results from the “critical layer,” or the soil layer with the lowest
computed factor of safety against liquefaction. Other researchers
have avoided this problem by quantifying liquefaction triggering
hazard with a different metric such as the liquefaction potential
index (LPI) [22–25] or the liquefaction risk index (LRI) [26,27], both
of which integrate the liquefaction triggering potential over depth
to generate a single liquefaction hazard value that is easier to map,
but more challenging for some engineers to interpret. Regardless
of the metric used to quantify liquefaction triggering hazard,
geostatistics such as kriging are required with the geotechnical
approach to estimate geotechnical properties and corresponding
liquefaction hazards at locations where no data are available
[14,16,28].

In addition to liquefaction triggering potential, other re-
searchers [2,16,28–31] have considered lateral spread potential to
develop regional liquefaction ground deformation maps. These
maps typically require the additional consideration of regional
topography to estimate regional horizontal ground displacements.

Liquefaction triggering and deformation hazard maps are ty-
pically developed using a single ground motion scenario. This
scenario may be defined in terms of a single seismic source, with a
constant magnitude and variable source-to-site distance [28] or in
terms of probabilistic ground motions corresponding to some
single hazard level or return period [14]. For the latter case, in
which probabilistic ground motions are used, it is important to
clarify that the stated hazard level or return period associated with
most liquefaction hazard maps corresponds to the ground motions
used to develop the map, but not necessarily to the mapped li-
quefaction hazard itself. Additionally, some studies [e.g., 14, 25]
have considered more than one probabilistic ground motion in the
development of liquefaction hazard maps. These types of maps
will be addressed in Section 3 below.

Because liquefaction hazard maps are usually developed by the
regional characterization of geologically mapped units based on
coarsely spaced field data, they should not be used for site-specific
liquefaction hazard evaluation and engineering design [32]. To
clarify this point, most liquefaction hazard maps explicitly state
their appropriate use and limitations. For example, the geologic
hazard and faults maps provided by the City of San Diego [33]
explicitly state that “[the] maps do not furnish site specific in-
formation and should be used only as a guide when evaluating
risk. [The maps] are intended to be an indicator of what to expect
at your site and provide general geologic hazard information.”
Regardless, information provided by liquefaction hazard maps can
still be quite valuable to an engineer performing a site-specific
liquefaction hazard evaluation. Because liquefaction hazard maps
are typically developed from correlations with surficial geologic
units, they can help the engineer to see “the bigger picture” as it
relates to the geologic depositional environment of the site, and to
understand why liquefaction hazard possibly exists. Combining
this geologic perspective with site-specific geotechnical data in-
creases the engineer's overall knowledge and understanding of the
site, and can help facilitate risk communication to owners, plan-
ners, policy-makers, and citizens.
3. Probabilistic analysis methods and reference parameter
maps

Site-specific liquefaction triggering and lateral spread hazard
assessment using empirical prediction models requires the char-
acterization of seismic loading through the use of the peak ground
surface acceleration, amax, earthquake moment magnitude, M, and
source-to-site distance, R to represent the design earthquake. The
process of selecting these values is relatively straight-forward
when analyzing the liquefaction hazard from a single seismic
source. However, when analyzing liquefaction hazard from mul-
tiple possible seismic sources, the selection of these values be-
comes more complicated. Seismic hazard in such environments is



K.W. Franke et al. / Soil Dynamics and Earthquake Engineering 90 (2016) 240–249242
commonly characterized with probabilistic seismic hazard analysis
(PSHA), which produces a range of possible (M, R) combinations
for each return period of amax. Additionally, more recent research
[34,35] has demonstrated the importance of considering un-
certainty from the local site response in the PSHA when devel-
oping the seismic hazard curve for amax.

If using probabilistic ground motions to characterize seismic
loading, then liquefaction triggering and lateral spread displace-
ment are commonly evaluated at a single return period with one
( M R, ) combination assigned to the corresponding probabilistic
value of amax. However, liquefaction can also be caused by weaker
ground motions that occur more frequently and/or by stronger
ground motions that occur more rarely than those associated with
the design return period. Despite the many possible (M, R, amax)
combinations produced by a PSHA, engineers are faced with the
challenge of selecting a single combination that accurately and
sufficiently represents the seismic loading at the targeted hazard
level. Conventional approaches to selecting these values rely upon
the deaggregation results from the PSHA for amax at a targeted
return period (termed the “pseudo-probabilistic approach” by
Rathe and Saygili [6]). Engineers select either the mean or modal
values of M and/or R from the deaggregation, often assuming that
their computed liquefaction hazards correspond to the same ha-
zard level or return period as amax. However, many researchers
have shown that this assumption is incorrect unless there is zero
uncertainty in the response parameter, and that the actual hazard
level or return period of the response can vary substantially [5–8].

Potential biases introduced into the liquefaction hazard as-
sessment through the improper and/or incomplete characteriza-
tion of probabilistic seismic loading can be reduced through the
more complete consideration of the seismic loading in a prob-
abilistic liquefaction hazard analysis (PLHA) [36]. For example,
consider the probabilistic framework introduced by the Pacific
Earthquake Engineering Research Center (PEER) to advance per-
formance-based earthquake engineering design [37–39]. Previous
researchers have used this probabilistic framework or others that
were similar to evaluate liquefaction triggering potential
[5,8,10,40–43], post-liquefaction free-field settlement [44,45],
seismic slope stability [6,46,47], lateral spread displacement [7,11],
and pile foundation response [48–51].

Unfortunately, the completion of a PLHA is relatively complex
and requires multiple probabilistic computations, which can sig-
nificantly increase project costs. As a result, the approach is rarely
applied in routine engineering practice today. Researchers have
attempted to address this problem by developing or modifying
existing specialized computational tools for probabilistic lique-
faction triggering and lateral spread assessment. These computa-
tional tools include LS Displacement Tool [51,52]; WSliq [44,53]; EZ-
FRISK [54]; and PBLiquefY [55]. However, the availability of these
tools has not been sufficient for many professionals, who routinely
Fig. 1. (a) Liquefaction triggering and (b) lateral spread displacement reference soil profi
from Ulmer and Franke [10] and Ekstrom and Franke [11], respectively).
need to perform and/or validate their calculations in a rapid and
efficient manner. To address this challenge, researchers developed
simplified probabilistic procedures for liquefaction triggering [8–
10] and lateral spread displacement [11]. Simplified probabilistic
procedures for other hazards such as post-liquefaction free-field
settlement and seismic slope displacement are currently in de-
velopment. These procedures were modeled after the approach
taken by the U.S. Geological Survey (USGS) for mapping prob-
abilistic ground motions across the United States using a uniform,
reference “bedrock” condition [56].

3.1. Liquefaction and lateral spread reference parameter maps

Simplified probabilistic liquefaction triggering and lateral
spread procedures require the use of reference parameter maps
that provide uniform hazard estimates of liquefaction-related
parameters corresponding to a reference soil profile or soil sub-
layer. Consider the two soil profiles presented in Fig. 1. The soil
profile in Fig. 1(a) presents a reference soil sublayer at a depth of
6 m in saturated sand. The soil profile in Fig. 1(b) presents a re-
ference ground slope soil profile [57] with a zone of liquefiable soil
that is 3.0 m thick. Using the reference soil layer shown in Fig. 1(a),
Ulmer and Franke [10] demonstrated that a probabilistic lique-
faction triggering procedure [5,43] could be applied with the
Boulanger and Idriss [58] probabilistic liquefaction triggering
model across a grid of geographic points to produce and map
probabilistic contours of the median magnitude- and stress-cor-
rected cyclic stress ratio for the reference sublayer at a 6-meter

depth, CSR
ref

at the return period or hazard level of interest. Si-
milarly, using the ground slope soil profile shown in Fig. 1(b),
Ekstrom and Franke [11] demonstrated that a probabilistic lateral
spread displacement procedure [7,59] could be applied with the
Youd et al. [57] empirical lateral spread displacement model to
produce and map probabilistic contours of the log-transformed
median lateral spread displacement corresponding to the re-

ference soil profile, ( )Dlog H

ref
at the return period or hazard level

of interest.

Probabilistic reference parameter maps for CSR
ref

were termed
liquefaction loading reference parameter maps by Ulmer and Franke

[10], and reference parameter maps for ( )Dlog H

ref
were termed

lateral spread reference parameter maps by Ekstrom and Franke
[11]. Using liquefaction loading reference parameter maps and
lateral spread reference parameter maps, engineers can obtain

reference values of CSR
ref

and ( )Dlog H

ref
for their sites corre-

sponding to the return period(s) or hazard level(s) of interest.
These reference values can subsequently be corrected for site-
specific geotechnical and topographical information to calculate
site-specific, uniform hazard estimates of liquefaction factor of
les used to develop probabilistic reference parameter maps (adapted and modified
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safety, FSLiq with depth and lateral spread displacement at the
ground surface, DH at the return period of interest.

It is important to clarify that the consideration of seismic
loading in the development of probabilistic reference parameter

maps like those for ( )CSR %
ref

and ( )Dlog H

ref
do not rely upon a

single scenario earthquake assumption. Every geographic point
that is analyzed in the development of a reference parameter map
considers a wide range of possible ground motion scenarios across
a wide range of hazard levels or return periods. Therefore, ground
motions that are both larger than and smaller than those asso-
ciated with the targeted hazard level are considered, along with
their corresponding likelihoods. Such an approach does not in-
corporate the pseudo-probabilistic assumption by assuming that
the hazard level associated with the incorporated ground motion
is the same as the resulting computed liquefaction triggering po-
tential and/or lateral spread displacement, but instead computes
the return periods associated with liquefaction triggering and/or
lateral spread displacement themselves.
4. Clarifying the differences between liquefaction hazard maps
and probabilistic reference parameter maps

4.1. Differences in purpose

Traditional liquefaction hazard maps are intended to provide a
preliminary indication of potential liquefaction hazards on a re-
gional scale. While these maps are intended to be used as a stand-
alone tool without any geotechnical information regarding the
site, the information they provide is too coarse and unreliable to
negate the need for a local liquefaction hazard assessment. Prob-
abilistic reference parameter maps are intended to be used for the
site-specific assessment of liquefaction triggering and its effects.
However, the information provided by probabilistic reference
parameter maps is essentially useless without site-specific geo-
technical information to accompany it. The reference parameter
maps therefore serve as a proxy for the probabilistic seismic
loading affecting liquefaction and its effects. Additionally, these
maps greatly simplify the process of developing probabilistic li-
quefaction triggering and lateral spread displacement values by
eliminating the need for the engineer to perform numerous
iterative probabilistic computations.

4.2. Differences in seismic loading characterization

Traditional liquefaction hazard maps characterize seismic
loading with ground motions computed from a deterministic
scenario earthquake or from a PSHA at a single hazard level or
return period. Maps that incorporate probabilistic ground motions
from multiple return periods frequently apply the pseudo-prob-
abilistic assumption. Probabilistic reference parameter maps
characterize seismic loading with probabilistic ground motions
across all hazard levels or return periods. Reference parameter
maps do not apply the pseudo-probabilistic assumption, but are
developed through the repeated convolution of the ground motion
seismic hazard curves with selected liquefaction fragility re-
lationships to produce reference liquefaction hazard curves at each
mapped grid point. Therefore, the reference parameter maps
provide a more complete consideration of the probabilistic ground
motions affecting liquefaction hazard.

4.3. Differences in hazard level definition

Unless a liquefaction hazard map was developed through the
convolution of seismic hazard curves with a series of liquefaction
fragility curves, then the hazard level or return period reported on
a traditional liquefaction hazard map corresponds to the hazard of
the causative ground motion, not necessarily liquefaction itself.
The return period or hazard level reported on a probabilistic re-
ference parameter map does not correspond to the causative
ground motion, but corresponds to liquefaction itself. When used
with site-specific correction factors, a mapped reference para-
meter value allows characterization of the actual liquefaction or
lateral spreading hazard at the targeted return period.

4.4. Differences in vertical variation of liquefaction hazard

Traditional liquefaction hazard maps are two-dimensional re-
presentations of a three-dimensional hazard. As such, assumptions
must be made regarding the variability of liquefaction with depth
to provide a two-dimensional quantification of liquefaction hazard
for mapping. Alternatively, a cumulative liquefaction-related da-
mage measure such as LPI can be used to account for the variation
of liquefaction with depth. Probabilistic reference parameter maps
do not need to account for vertical variations in liquefaction, but
they enable engineers to evaluate liquefaction and effects with
depth if site-specific geotechnical and topographic information is
available.

4.5. The maps are complementary

Traditional liquefaction hazard maps and probabilistic reference
parameter maps are two completely different types of maps that
serve different purposes. Comparing them is akin to comparing
“apples to oranges.” However, like apples and oranges, probabilistic
reference parameter maps and traditional liquefaction hazard maps
are complementary to one another because each performs a func-
tion that the other is unable to perform. Liquefaction hazard maps
provide preliminary, regional-scale information to the engineer re-
garding potential liquefaction hazards before any geotechnical site
information is available. This type of information can help the en-
gineer adjust the scope of the site investigation to obtain the ne-
cessary information for a thorough site-specific liquefaction as-
sessment [32]. Probabilistic reference parameter maps, when cou-
pled with site-specific geotechnical information, provide localized,
hazard-targeted assessment and quantification of liquefaction trig-
gering and/or its effects. If used appropriately, both traditional li-
quefaction hazard maps and probabilistic reference parameter maps
can be used together to help engineers and decision-makers un-
derstand and quantify liquefaction hazards at a given site in an
objective and a consistent manner.
5. Demonstrative analysis in san diego, california

5.1. Liquefaction hazard map for downtown san diego

To demonstrate how liquefaction hazard maps and probabilistic
reference parameter maps can be used together by engineers, an
example calculation for a representative site near San Diego Bay,
California will be performed. San Diego was selected for this ex-
ample because of the significant liquefaction triggering potential
that exists at locations along San Diego Bay and because of the
availability of traditional liquefaction hazard maps, which were
developed by the County of San Diego.

The County of San Diego has produced a map of liquefaction
hazard for the county as part of the Multi-jurisdictional Hazard
Mitigation Plan [60]. A portion of this map focusing on downtown
San Diego is presented in Fig. 2. This map was developed using
probabilistic peak ground accelerations (2% probability of ex-
ceedance in 50 years) from the 2002 USGS update of the National



Fig. 2. Liquefaction hazard map of downtown San Diego (adapted from County of San Diego [60]). The star shown on the map represents the location of the representative
site.
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Seismic Hazard Maps [61], the Scenario Earthquake Shake Map for
Rose Canyon fault from the California Integrated Seismic Network
(CISN), existing liquefaction areas from local maps, and soil clas-
sification from the National Earthquake Hazards Reduction Pro-
gram (NEHRP). For the purpose of this example, the reader should
focus on three particular aspects of the map: (1) the areas where
Quaternary alluvial (i.e., susceptible) sediments and a shallow
groundwater table are known to exist (labeled as “Liquefaction
Layers” in the map legend, and represented by red cross-hatching);
(2) the areas where probabilistic ground motions (as computed by
Frankel et al. [61]) were mapped between 0.15 g and 0.5 g at a
hazard level of 2% probability of exceedance in 50 years (labeled as
“Low Liquefaction Risk” in the map legend, and represented by
pale yellow coloring on the map); and (3) the areas where prob-
abilistic ground motions were mapped between 0.51 g and 1.60 g
at a hazard level of 2% probability of exceedance in 50 years (la-
beled as “High Liquefaction Risk” in the map legend, and re-
presented by orange coloring on the map.) The descriptors “Low”

and “High” associated with liquefaction risk are therefore tied di-
rectly to the amplitude of the probabilistic ground motions. Ad-
ditional features on the map including faults, roads, and streams
are described in the map legend, and may be of interest to the
reader, but are not necessary for this example problem. Note that
the star shown on the map represents the location of the re-
presentative site for this example.

5.2. Probabilistic reference parameter maps for downtown san diego

Liquefaction loading parameter maps and lateral spread re-
ference parameter maps corresponding to return periods of 475
and 2475 years were developed for downtown San Diego, Cali-
fornia using PBLiquefY [55] and EZ-FRISK [54] respectively, and are
presented in Figs. 3 and 4. USGS probabilistic ground motions
developed from the 2008 update of the National Seismic Hazard
Maps [56] were used with the full probabilistic procedures [5,7] to
create these maps. These maps can be used with site-specific
geotechnical information and the site correction factors presented
in Appendix A (for liquefaction triggering) and Appendix B (for
lateral spread displacement) to develop hazard-targeted (i.e., re-
turn periods of 475 and 2475 years) estimates of FSLiq and DH for
any mapped location in downtown San Diego and mapped sur-
rounding areas.

5.3. Representative site and soil profile

Table 1 summarizes a soil profile (to a depth of 17.5 m) and was
developed from an actual soil boring performed in the San Diego
Bay area. For this example, the soil boring was assumed to be lo-
cated adjacent to San Diego Bay at a representative site marked by
the black star in Fig. 2 through 4. The soil profile generally consists
of 1.5 m of unsaturated hydraulic fill, underlain by 10 m of satu-
rated, medium-dense to very dense silty sand (i.e.,
( ) = − +N 10 501 60

blows/0.3 m). Depth to groundwater is 1.5 m. An
average shear wave velocity of 273 m/s was measured in the upper
30 m at the site, corresponding to an IBC Site Class D [62]. Prob-
abilistic mean peak ground acceleration estimates of 0.179 g and
0.427 g were obtained from the 2008 USGS interactive deag-
gregation (http://geohazards.usgs.gov/deaggint/2008/, =V 760s,30
m/sec), corresponding to ground motion return periods of 475 and
2,475 years, respectively. Using Table 1613.3.3(1) from the IBC [62],
Fpga values of 1.442 and 1.073 were interpolated for the ground
motion return periods of 475 and 2,475 years, respectively, for a
Site Class D. The deaggregation results produce mean moment
magnitudes of 6.61 and 6.76 corresponding to return periods of
475 and 2,475 years, respectively. Evaluation of Table 1 suggests
that =T 3.0site

15 meters (from the poorly-graded sand with silt at
depths between 4.5 and 7.5 m, shaded in gray), =F 7%site

15 , and
=D50 0.5site

15 mm (assumed for the example). A free-face site geo-
metry with =W 10%site will be assumed for the example.

5.4. Map-based analysis and results

Evaluation of the liquefaction hazard map in Fig. 2 [60] shows
that the representative site is located in an area with potential
liquefiable layers, denoted by the red cross-hatching on the map.

http://geohazards.usgs.gov/deaggint/2008/


Fig. 4. Probabilistic lateral spread displacement reference parameter maps showing ( )Dlog H
ref

for San Diego, California at return periods of (a) 475 years and (b) 2475 years.
For use with the Youd et al. [57] lateral spreading model. The star shown on the maps represents the location of the representative example site near San Diego Bay.

Fig. 3. Probabilistic liquefaction loading reference parameter maps showing ( )CSR %
ref

for San Diego, California at return periods of (a) 475 years and (b) 2475 years. For use
with the Boulanger and Idriss [58] liquefaction triggering model with Idriss and Boulanger (2008, 2010) magnitude scaling factor. The star shown on the maps represents the
location of the representative example site near San Diego Bay.
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Table 1
Soil profile for the representative San Diego Bay site.

Depth, z (m) Soil Type Thickness (m) ( )N1 60
(blows/0.3 m) Fines (%) Unit Weight (kN/m3) ( )N

cs1 60,
1 (blows/0.3 m)

0.1 Hydraulic Fill 0.5 12 3 18.70 12.0
0.6 Hydraulic Fill 1.0 20 4 18.70 20.0
1.5 Poorly Graded Sand with Silt 0.5 28 11 18.85 33.6
2.1 Poorly Graded Sand with Silt 1.0 35 12 18.85 37.1
3 Silty Sand 1.5 36 15 19.55 39.3
4.6 Poorly Graded Sand with Silt 1.5 13 8 18.85 13.4
6.1 Poorly Graded Sand with Silt 1.5 14 6 18.85 14.0
7.6 Silty Sand 1.5 36 18 19.55 40.1
9.1 Silty Sand 1.5 43 20 19.55 47.5
10.7 Silty Sand 1.5 50þ 17 19.55 54þ
12.2 Silty Sand 1.5 50þ 23 19.55 55þ
13.7 Silty Sand 1.5 50þ 24 19.55 55þ
15.2 Silty Sand 1.5 50þ 22 19.55 55þ

Computed using Idriss and Boulanger [20,21]
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However, according to the hazard map, the site is located in an
area denoted as “Low Liquefaction Risk” due to probabilistic peak
ground accelerations (2% probability of exceedance in 50 years)
less than 0.5 g. Nevertheless, because the site-specific geotechnical
data (i.e., Table 1) suggests that the site may have soil layers that
are susceptible to liquefaction, a site-specific liquefaction trigger-
ing and lateral spread displacement assessment will be performed.

According to the liquefaction loading parameter maps pre-
sented in Fig. 3, the representative site is mapped with probabil-

istic ( )CSR %
ref

values of 19.1% and 43.2% at return periods of 475
years and 2475 years, respectively. Table 2 demonstrates how
these reference values are used with the correction equations
summarized in Appendix A to compute probabilistic estimates of
FSLiq with depth. Numbers inside the parentheses correspond to
the return period of 2475 years. Note that Δ =CSR 0MSF because the
liquefaction loading parameter maps were developed with the
Idriss and Boulanger [20,21] version of the MSF. Based on the
simplified probabilistic assessment, the FSL for the poorly-graded
sand with silt at depths of 4.5–7.5 m (highlighted in gray) is pre-
dicted, on average, to drop below 0.75 every 475 years, and to drop
below 0.44 every 2475 years. For additional insight and for the
benefit of the reader, the return period of liquefaction (years) for
each soil layer was computed with the Kramer and Mayfield [5]
procedure (using the Boulanger and Idriss [58] probabilistic li-
quefaction triggering model for consistency with the simplified
probabilistic results), and is shown in Table 2. The return period of
liquefaction is defined as the average computed recurrence inter-
val of liquefaction triggering for that soil layer. The return period of
liquefaction for the soil layers at depths between 4.5 and 7.5 m
ranged between 232 years and 284 years. These return periods are
Table 2
Probabilistic liquefaction triggering results for the representative San Diego Bay site at

Depth, z
(m)

USCS (N1)60, cs
(blows/0.3 m)

Δ σCSR
(Eqn A2)

ΔCSRFpga (Eqn

A3) 475 (2475)

ΔCSRrd
(Eqn

A4) 475 (2475

1.5 SP-SM 33.6 �0.693 0.37 (0.07) 0.08 (0.07)
2.1 SP-SM 37.1 �0.532 0.37 (0.07) 0.07 (0.06)
3 SM 39.3 �0.399 0.37 (0.07) 0.05 (0.05)
4.6 SP-SM 13.4 �0.262 0.37 (0.07) 0.03 (0.03)
6.1 SP-SM 14.0 �0.196 0.37 (0.07) 0.00 (0.00)
7.6 SM 40.1 �0.174 0.37 (0.07) �0.03 (�0.03
9.1 SM 47.5 �0.147 0.37 (0.07) �0.07 (�0.07
10.7 SM 54 �0.125 0.37 (0.07) �0.11 (�0.10)
12.2 SM 54 �0.110 0.37 (0.07) �0.15 (�0.14)
13.7 SM 54 �0.098 0.37 (0.07) �0.19 (�0.18)
15.2 SM 54 �0.089 0.37 (0.07) �0.23 (�0.22

a Computed with Boulanger and Idriss [58], PL¼50%
b Computed with Kramer and Mayfield [5] procedure using the Boulanger and Idris
less than the return periods of 475 years and 2475 years that were
targeted in the engineering analysis, suggesting that the potential
for liquefaction triggering is unacceptably high at this re-
presentative site. The reader should also note how these lique-
faction return periods differ substantially from the return periods
of the input ground motions (i.e., 475 and 2475 years).

Using the lateral spread displacement reference parameter

maps presented in Fig. 4, ( )Dlog H

ref
values of �0.602 and 0.260

are obtained for the representative site, corresponding to return
periods of 475 and 2475 years, respectively. The representative site
is a free-face geometry case with =W 10%site

15 assumed for the
example. Using the values of =T 3.0site

15 meters, =F 7%site
15 , and

=D50 0.5site
15 mm (assumed), the correction equation presented in

Appendix B is used to compute the displacement correction factor
Δ =D 0.075H . With this factor, the site-specific probabilistic esti-
mates of median lateral spread displacement are computed as 0.30
m and 2.16 m for the return periods of 475 and 2475 years, re-
spectively. These values imply that at least 0.30 m of displacement
will occur at the representative site every 475 years on average,
and at least 2.16 m of displacement every 2475 years on average.
6. Conclusions and limitations

This paper clarified the differences between traditional liquefaction
hazard maps and probabilistic reference parameter maps, which are
used in simplified probabilistic liquefaction hazard assessments. Tra-
ditional liquefaction hazard maps are intended to convey stand-alone
information regarding regional liquefaction hazard, and are generally
the return periods of 475 and 2475 years.

)

Δ σCSRK (Eqn

A5)
CSR (Eqn A1)
475 (2475)

CRRa FSLiq (Eqn A7)

475 (2475)

Return Period of
Liquefactionb (years)

�0.206 0.121 (0.203) 40.6 42 (42) 410,000
�0.219 0.139 (0.233) 40.6 42 (42) 410,000
�0.164 0.166 (0.278) 40.6 42 (42) 410,000
0.006 0.219 (0.368) 0.163 0.75 (0.44) 284
0.026 0.232 (0.390) 0.168 0.73 (0.43) 232

) 0.023 0.229 (0.386) 40.6 42 (42) 410,000
) 0.068 0.238 (0.402) 40.6 42 (42) 410,000

0.112 0.244 (0.413) 40.6 42 (42) 410,000
0.149 0.247 (0.420) 40.6 42 (42) 410,000
0.184 0.249 (0.423) 40.6 42 (42) 410,000

) 0.216 0.249 (0.425) 40.6 42 (42) 410,000

s [58] model.
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developed using mapped surface geology. These maps are not in-
tended to be used in site-specific liquefaction hazard assessment, but
as a preliminary screening and zoning resource for engineers and
decision-makers. Conversely, probabilistic reference parameter maps
provide values of a reference liquefaction hazard or loading parameter
that corresponds to a specific reference soil profile, and are intended
to be used with site-specific geotechnical and topographical in-
formation to develop probabilistic liquefaction hazard estimates at
specific return periods. These reference parameter maps are not in-
tended to convey stand-alone information regarding the site. Tradi-
tional liquefaction hazard maps and probabilistic reference parameter
maps therefore perform very different, but complementary functions.

To demonstrate how traditional liquefaction hazard maps can be
used in conjunction with probabilistic reference parameter maps, a
liquefaction triggering and lateral spread displacement assessment
is performed for a representative site near San Diego Bay, California.
Liquefaction loading reference parameter maps and lateral spread
displacement reference parameter maps for San Diego are devel-
oped at return periods of 475 years (i.e., 10% probability of ex-
ceedance in 50 years) and 2475 years (i.e., 2% probability of ex-
ceedance in 50 years). Correction equations necessary to use the
reference parameter maps for the assessment of liquefaction trig-
gering and lateral spread displacement are summarized in the ap-
pendix. In the example, the liquefaction hazard map suggests that
the site might have liquefiable layers, but possibly low levels of
ground motions to induce liquefaction triggering. The subsequent
simplified probabilistic liquefaction triggering analysis shows that
liquefaction would likely trigger in a soil layers located between
4.5 and 7.5 m below the ground surface at both the return periods of
475 and 2475 years. A simplified probabilistic lateral spread dis-
placement assessment suggests displacements of 0.3 m and 2.16 m
for the return periods of 475 and 2475 years, respectively.

As noted by Mayfield et al. [8] and Franke et al. [9], the intent of
a simplified probabilistic procedure is to make possible for prac-
ticing engineers the realization of a PLHA on routine projects
without the need of lengthy probabilistic calculations. However,
probabilistic procedures, like all others, require thorough char-
acterization and careful interpretation of subsurface conditions for
proper evaluation of liquefaction hazards. A sophisticated prob-
abilistic analysis does not compensate for inadequate geotechnical
data or inaccurate subsurface interpretations.
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Appendix A. Site-specific correction equations for liquefaction
triggering

To compute uniform-hazard estimates of the median magnitude-
and stress-corrected cyclic stress ratio, =σ= ′CSR atm1M 7.5, v

mapped
reference values of CSR
ref

must be corrected for local soil conditions.
For convenience in interpolation, liquefaction loading maps typically

plot CSR
ref

as a percent (i.e., ( )CSR %
ref

). According to the Ulmer and
Franke [10], simplified probabilistic procedure that incorporates the
Boulanger and Idriss (2012) probabilistic liquefaction triggering
model, =σ= ′CSR atm1M 7.5, v

for a given soil layer i can be computed as:
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where (Δ )σCSR i, (Δ )CSRF ipga
, (Δ )CSRr id

, (Δ )CSRMSF i , and (Δ )
σ

CSRK i

are site-specific correction factors for soil stress, stress reduction,
magnitude scaling factor, and overburden pressure, respectively,
for soil layer i. If a liquefaction loading map was developed using
the reference soil sublayer shown in Fig. 1(a), then these correction
factors are given as:
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where σ( )v i is the total stress for soil layer i; σ( ′)v i is the effective
stress for soil layer i (in the same units as σ( ) )v i ; Fpga is the site-
specific site amplification factor for the peak ground acceleration
(PGA) corresponding to “bedrock” (i.e., =V 760s,30 m/sec) obtained
by seismic code, an empirical relationship (e.g., Stewart et al. [63]),
or a site response analysis; z is the soil depth below the ground
surface (in meters); M̄ is the mean deaggregated moment mag-
nitude of the PGA at the target return period or hazard level; and
pa is atmospheric pressure (in the same units as σ( ′) )v i .

The magnitude scaling correction factor for soil layer i,
(Δ )CSRMSF shown in Equation (A.1) depends upon which version of
the Boulanger and Idriss magnitude scaling factor the liquefaction
loading map was developed with. If the liquefaction loading map

and corresponding CSR
ref

values were developed with the Idriss
and Boulanger [20,21] recommended MSF, then the MSF remains
constant and is the same for both the reference soil layer and the
actual soil layer (i.e., = ( ) )MSF MSFref site

i . Therefore, if using the
Idriss and Boulanger [20,21] version of the MSF, (Δ ) =CSR 0MSF i .
However, if the liquefaction loading map was developed with the
updated MSF presented by Boulanger and Idriss [64], then
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≠ ( )MSF MSAref site
i, and (Δ )CSRMSF i is calculated as:
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Once ( )σ= ′=CSRM atm i7.5, 1v
is calculated for soil layer i using Equa-

tion (A.1), then the site-specific probabilistic FSLiq for soil layer i can
be computed with the median (i.e., =P 50%L ) cyclic resistance ra-
tio, CRR [58] as:
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It is important to clarify that the simplified probabilistic li-
quefaction triggering procedure summarized here does not ex-
plicitly account for uncertainty in the site amplification, but rather
just considers the median estimated site amplification factor as
specified by code or as computed with a site-specific site response
analysis or empirical model. Neglecting the uncertainty in site
amplification can potentially under-predict the actual liquefaction
triggering hazard. The reader is referred to Ulmer and Franke [10]
for additional discussion on this point and some possible solutions
to incorporate site amplification uncertainty into the simplified
probabilistic approach.

The simplified probabilistic liquefaction triggering procedure
summarized here incorporates in-situ SPT resistance to quantify
liquefaction triggering resistance. However, probabilistic liquefac-
tion triggering assessment could be performed using any other in-
situ site characterization method (e.g., cone penetration test (CPT)
and shear wave velocity testing) for which probabilistic liquefac-
tion triggering models are available. Therefore, similar simplified
probabilistic liquefaction triggering procedures could also be de-
veloped and validated for these other in-situ site characterization
methods through future research.
Appendix B. site-specific correction equations for lateral
spreading displacement

To develop site-specific, hazard-targeted estimates of lateral
spread displacement, uniform-hazard values of ( )Dlog H

ref from a
lateral spread reference parameter map can be corrected for site-
specific soil and topographic information [11]. If the lateral spread
reference parameter map was developed using the reference
ground slope soil profile shown in Fig. 1(b), then the site-specific,
uniform-hazard lateral spread displacement, DH

site can be computed
as:
Table B.1
Site-specific model coefficients for computing the adjustment factor, ΔDH .

Model b0
site b4

site b5
site

Ground-Slope �16.213 0 0.338
Free Face �16.713 0.592 0
⎛
⎝⎜

⎡⎣ ⎤⎦
⎞
⎠⎟= ( )

+Δ
D 10 B.1H

site D Dlog H
ref

H

( ) ( )
( )

( )

Δ = + + +

+ + − −

+ ( )

D b b W b S

T F

D

9.044 log log

0.540 log 3.413 log 100 0.795

log 50 0.1 B.2

H
site site site site site

site site

site

0 4 5

15 15

15

where b site
0 , bsite

4 , and bsite
5 represent model coefficients and are

presented in Table B.1; Wsite is the free-face ratio (in percent) and
is computed as the ratio of the vertical distance to the horizontal
distance from the site to the free-face toe; Ssite is the ground slope
of the site (in percent); Tsite

15 is the cumulative thickness of sus-
ceptible liquefiable soil with corrected SPT resistance ( ) <N 151 60

(in meters); Fsite
15 is the average fines content (in percent) for the

soil layers comprising Tsite
15 ; and D50site

15 is the mean grain size
diameter (in mm) of the soil layers comprising Tsite

15 .
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