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1. INTRODUCTION

Some years ago Rosenbloom [3] proved the following theorem which was
the first one giving a quantitative measure of the fix-points of entire functions.

THEOREM. Let p(2) = ay + a2 + a,2% + -+ + ap2* be a polynomial of
degree k > 2, and f be a transcendental entire function. Then

1
N =)
wf) —=
1:@0 0, ) =1 (1.1)
In this note we shall show that the above result (1.1) still holds when the
coefficients a; are replaced by meromorphic functions whose growth rates are
much smaller than the given function £, and that in (1.1), N(r, 1/p(f) — =)
can be replaced by N(r, 1/p(f) — 2). As a by-product of our arguments,
some known results have also been improved.
The methods employed here are Nevanlinna’s fundamental theorems for
meromorphic functions and a technique used by Hayman [1, pp. 68-73].
It is assumed that the reader is familiar with the fundamental concepts of
Nevanlinna’s theory of meromorphic functions and the symbols m(r, f),

N(r,f), N(r, ), T(r,[), etc. [1].

2. NoTatioNs AND PRELIMINARY LEMMAS

In what follows f will always be a meromorphic function which is not
constant in the plane, and S(r, f) will be any quantity satisfying

S(r, f) = o{T(, )} @
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as 7 — oo, possibly outside a set of r values of finite measure. Also throughout
this note we shall denote by a(z), a,(2),..., functions which are meromorphic
in the plane and satisfy

T{r, a(2)} = S(r, f) (2.2)

as 7 — o0.

DerFINITION. A differential polynomial p(f) is a polynomial in f and the
dertvatives of f with coefficients b(2) satisfying

m(r, b)) = S(r, ). 23)

A differential polynomial in f of degree at most 7 is denoted by p,( ). Here
we note that in {1, p. 68] a differential polynomial p( f) is defined as a poly-
nomial in f and its derivatives, with meromorphic functions a(z) as the coef-
ficients which satisfy conditions (2.2).

LemmMa 1 (Clunie [1, p. 68]). Suppose that f(z) is meromorphic and trans-
cendental in the plane and that

@) p(f) =) (2.4)
where p( f) and Q( f) are differential polynomials in f and the degree of Q(f) is
at most n. Then

mir, p(f)} = S0, f) 2.5)

as r — o0,

Remark. In the original statement the coefficients 5(z) in p( f) and Q(f)
are assumed to satisfy T'(r, b(z)) = S(r, f). It is clear that the same argument
does work when we only assume that m{r, b(2)} = S(r, f).

Lemma 2. Let p(f) be a differential polynomial in f. Suppose that the
coefficients a(z) tn p( f) satisfy T(r, a(z)) = S(r, f). Then

T(r, p(f)) = OMA{T(, )} + S(r. f)- (2.6)

Proof. First of all, we note that p( f) can have poles only at poles of f(2) or
the coefficients a,(2). Assume that the degree of p(f) is » and the highest
derivative of f occurring in p( f) is I. Then at a pole of f(2) of order &, f (¥)(2)
has a pole of order at most n(! + 1) k. Thus from the above observation and
Nevanlinna’s first fundamental theorem we have

N, p(f)) <n(l + D) N(r, ) + ZN{r, a,(2)}

Q2.7)
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Also by a result of Milloux (see [1, p. 55]) we have
1

m(r, p(f)) = O [X. mlr, f(2)) + Zmlr, aa)]

= OMAT(, f)} + S(r. f)-
The lemma follows from (2-7) and (2-8).

(2.8)

3. STATEMENTS AND THE PROOFs OF THE MAIN REsuLTs
THEOREM 1. Let f(2) be meromorphic and transcendental in the plane, and
let h(z) = f¥(2) + ay(2) fFY2) + - + a(2), k = 2. Assume that
h(z) — = 2 (f (2) — a(2))",

¢, a constant. Then

¥l v

—_——

i T(r, ) > 1. (3-1)
Proof. Set
Fz) = () + 2. (62)
Then .
£(z) = b(z) — & = F¥3) + ppofF), (3.3)

where p,_,(F) is a differential polynomial in F of degree <{ & — 2 with coef-
ficients b(2) satisfying
T(r, b(z)) = S(r, f). (34)
Differentiating (3.3) we obtain
£'(2) = RF*U(2) F' - Oy o(F). (3-5)
We now multiply (3.3) by g’/g and subtract (3.3) from (3.5), thus obtaining

Pp (P — k) — — ps)E 4 00 (P, (3.6)

By Lemma 2 we see that m(r, g'[g) = S(r, g) = S(r, F). Thus we may apply
Lemma 1 to both p( f) = Fg'lg — kF’ and p( f) = F(Fg'|g — kF’), deducing
that

m (r,F‘% —RF') = S(.f) 3.7
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and

m (r,F (F% - kF')) — S(r, F).

We cannot have Fg'jg — kF = 0, since this yields

FI gl
or
£(z) = c{F(=)},
which contradicts our hypothesis. Alternatively,
F% — kF’ = 0. (3.9)

Now from (3.2) we see that
T(r,f) = (1 + o(1)) T(r,F) = (1 -+ o(1)) [N(r, F) + m(r, F)] ~ (3.10)

as ¥ — o0, possibly outside a set of finite measure.
Combining (3.7) with (3.9) we deduce that

m(r, F) < m (r,F (F% —kF')) 4 m (r, _FQ"T)ITW) + o(1)

<S@F) | T (r,Fi — kF’) + O(1)
j, ’ y / (3.11)
— S, F) +m (r,FE ——kF) —|—N(r,F? — kF') + O(1)

— S(r,F) + S(r,F) + N (r,F-i'—’ — kF') + 0(1).

In view of the forms of p,_,(F) and Q;_o(F) and comparing the multiplici-
ties of the poles of F on both sides of (3.6), one can find that all the poles of
Fg'lg — kF’ come from the zeros of g, poles of f or the poles of all the
coefficients of g(z). Hence

N (r,F% — ) <N (r %) + S(r,F). (3.12)

Combining (3.12) with (3.11) and (3.10) we find

Tlr, ) < (1 + o(1)) NG, F) + (1 + o(1) N (1, =) + S, F)

(3.13)

Q= n|=—

— (1 + o) NG, f) + (1 + o) N (r,~) + S(r. /-
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It follows that
o1
T, f) -+ Strf) _ (1 + o(1)) N(r, E> + (1 + o()) N(r, f)
T(r,f) - T, ) ,

and the assertion (3.1) follows from this.
As an immediate consequence of Theorem 1 we have the following theo-
rem,

(3.14)

THEOREM 2. Let f(2) be meromorphic and transcendental in the plane, with
N(r, f) = o{T(r, f)} as r — 0. Assume that

h(z) = fH(z) + ay(2) f*H(2) 4 - + ay(3),

where the az) are meromorphic functions satisfying condition (2.2) and k is
an integer == 2. Assume that h(z) — z = (cf (2) — a())*. Then

= 1
fim N(r,—h—‘?_) > 1 (3.15)
AT '

In particular, if f is transcendental and entive and if all the coefficients a(2) in
h(z) are constants, then we obtain Rosenbloom’s theorem cited in the introduction.

If we say that a(2) is a k-ramified defect function of f(z) whenever
T(r, a(z)) = o{T(r, f)} as r — co such that all except finitely many of the
roots of the equation f(2) = a(z) have multiplicity at least %, then we have the
following theorem.

TueOREM 3. If f is a transcendental entire function, then there exists at
most one 3-ramified defect function of f(z).

Proof. Suppose that f has two 3-ramified defect functions a,(z) and a,(z).
Then by setting A(z) = (f(2) — a,(2)) (f(2) — ax(2)) + 2 in Theorem 2
we obtain from (3.15) that

N (r,——) + N (r,
fim ( f_alz“(j,f) ‘ f_“2)>1. (3.16)

On the other hand, since a,(2) and a,(z) are 3-ramified defect functions, we
have

— 1
N0
—_— f‘— a; 1
lrgg ———T(r,f) < T (3.17)

for £ =1, 2. This contradicts (3.16), and the theorem is thus proved.

409/41/2-4
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Remark. This result also follows from a result of Nevanlinna [1, p. 47].
Along similar lines we can obtain the following improved result [4].

THEOREM 4. Let f(z) be a transcendental meromorphic function with
N(r, f) = S(r, ). Let ¥(z) be a differential polynomial in f (in the sense that
the coefficients a(2) satisfy T(r, a(z)) = S(r, f). Suppose that

(=) = f"(2) + pu-o( f)
with n > 2. Then

8(c,‘l’)<l——’ll~ forc =0, 0.

Finally we remark that the argument used in proving Theorem 1, especially
inequality (3.13), reveals that we can obtain the theorem of Tumura—Clunie
[1, p. 68], if the condition

N(r.f) + N (r, %) = 8@, f)

is replaced by

and

N(r,%)g(lAe)T(r,f), [ >e>0

as 7 —> 00, possibly outside a set of # values of finite measure. From this we
can obtain the following theorem which is an improvement of Hayman’s

result [1, p. 74].

THEOREM 5. Suppose that f(2) is meromorphic and not constant in the
plane and that for somel > 2 and 1 > ¢ > 0,

NG, F) + N (r, %) +N (7, %) <(—¢ T(”%)

as r — o0, possibly outside a set of r values of finite measure. Then F(z) = e***?,
where a and b are constants.
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