A Remark on Rosenbloom's Paper "The Fix-Points of Entire Functions"

C. C. Yang
Mathematics Research Center, Naval Research Laboratory, Washington, DC 20390

Submitted by R. P. Boas

1. Introduction

Some years ago Rosenbloom [3] proved the following theorem which was the first one giving a quantitative measure of the fix-points of entire functions.

Theorem. Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{k} z^{k}$ be a polynomial of degree $k \geqslant 2$, and f be a transcendental entire function. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{p(f)-z}\right)}{T(r, f)} \geqslant 1 . \tag{1.1}
\end{equation*}
$$

In this note we shall show that the above result (1.1) still holds when the coefficients a_{i} are replaced by meromorphic functions whose growth rates are much smaller than the given function f, and that in (1.1), $N(r, 1 / p(f)-z)$ can be replaced by $\bar{N}(r, 1 / p(f)-z)$. As a by-product of our arguments, some known results have also been improved.
The methods employed here are Nevanlinna's fundamental theorems for meromorphic functions and a technique used by Hayman [1, pp. 68-73].
It is assumed that the reader is familiar with the fundamental concepts of Nevanlinna's theory of meromorphic functions and the symbols $m(r, f)$, $N(r, f), \bar{N}(r, f), T(r, f)$, etc. [1].

2. Notations and Preliminary Lemmas

In what follows f will always be a meromorphic function which is not constant in the plane, and $S(r, f)$ will be any quantity satisfying

$$
\begin{equation*}
S(r, f)=o\{T(r, f)\} \tag{2.1}
\end{equation*}
$$

313
as $r \rightarrow \infty$, possibly outside a set of r values of finite measure. Also throughout this note we shall denote by $a(z), a_{1}(z), \ldots$, functions which are meromorphic in the plane and satisfy

$$
\begin{equation*}
T\{r, a(z)\}=S(r, f) \tag{2.2}
\end{equation*}
$$

as $r \rightarrow \infty$.

Definition. A differential polynomial $p(f)$ is a polynomial in f and the derivatives of f with coefficients $b(z)$ satisfying

$$
\begin{equation*}
m(r, b(z))=S(r, f) \tag{2.3}
\end{equation*}
$$

A differential polynomial in f of degree at most n is denoted by $p_{n}(f)$. Here we note that in [1, p. 68] a differential polynomial $p(f)$ is defined as a polynomial in f and its derivatives, with meromorphic functions $a(z)$ as the coefficients which satisfy conditions (2.2).

Lemma 1 (Clunie [1, p. 68]). Suppose that $f(z)$ is meromorphic and transcendental in the plane and that

$$
\begin{equation*}
f^{n}(z) p(f)=Q(f) \tag{2.4}
\end{equation*}
$$

where $p(f)$ and $Q(f)$ are differential polynomials in f and the degree of $Q(f)$ is at most n. Then

$$
\begin{equation*}
m\{r, p(f)\}=S(r, f) \tag{2.5}
\end{equation*}
$$

as $r \rightarrow \infty$.
Remark. In the original statement the coefficients $b(z)$ in $p(f)$ and $Q(f)$ are assumed to satisfy $T(r, b(z))=S(r, f)$. It is clear that the same argument does work when we only assume that $m\{r, b(z)\}=S(r, f)$.

Lemma 2. Let $p(f)$ be a differential polynomial in f. Suppose that the coefficients $a(z)$ in $p(f)$ satisfy $T(r, a(z))=S(r, f)$. Then

$$
\begin{equation*}
T(r, p(f))=O(1)\{T(r, f)\}+S(r, f) \tag{2.6}
\end{equation*}
$$

Proof. First of all, we note that $p(f)$ can have poles only at poles of $f(z)$ or the coefficients $a_{i}(z)$. Assume that the degree of $p(f)$ is n and the highest derivative of f occurring in $p(f)$ is l. Then at a pole of $f(z)$ of order $k, f^{(b)}(z)$ has a pole of order at most $n(l+1) k$. Thus from the above observation and Nevanlinna's first fundamental theorem we have

$$
\begin{align*}
N(r, p(f)) & \leqslant n(l+1) N(r, f)+\Sigma N\left\{r, a_{i}(z)\right\} \tag{2.7}\\
& =O(1)\{T(r, f)\}+S(r, f)
\end{align*}
$$

Also by a result of Milloux (see [1, p. 55]) we have

$$
\begin{align*}
m(r, p(f)) & =O\left[\sum_{i=1}^{l} m\left(r, f^{(i)}(z)\right)+\Sigma m\left(r, a_{j}(z)\right)\right] \\
& =O(1)\{T(r, f)\}+S(r, f) \tag{2.8}
\end{align*}
$$

The lemma follows from (2-7) and (2-8).

3. Statements and the Proofs of the Main Results

Theorem 1. Let $f(z)$ be meromorphic and transcendental in the plane, and let $h(z)=f^{k}(z)+a_{1}(z) f^{k-1}(z)+\cdots+a_{k}(z), k \geqslant 2$. Assume that

$$
h(z)-z \not \equiv(c f(z)-a(z))^{k},
$$

c, a constant. Then

$$
\begin{equation*}
\overline{\lim }_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{h-z}\right)+N(r, f)}{T(r, f)} \geqslant 1 . \tag{3.1}
\end{equation*}
$$

Proof. Set

$$
\begin{equation*}
F(z)=f(z)+\frac{a_{1}(z)}{k} . \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
g(z)=h(z)-z=F^{k}(z)+p_{k-2}(F), \tag{3.3}
\end{equation*}
$$

where $p_{k-2}(F)$ is a differential polynomial in F of degree $\leqslant k-2$ with coefficients $b(z)$ satisfying

$$
\begin{equation*}
T(r, b(z))=S(r, f) \tag{3.4}
\end{equation*}
$$

Differentiating (3.3) we obtain

$$
\begin{equation*}
g^{\prime}(z)=k F^{k-1}(z) F^{\prime}+Q_{k-2}(F) \tag{3.5}
\end{equation*}
$$

We now multiply (3.3) by g^{\prime} / g and subtract (3.3) from (3.5), thus obtaining

$$
\begin{equation*}
F^{k-2} F\left(F \frac{g^{\prime}}{g}-k F^{\prime}\right)--p_{k-2}(F) \frac{g^{\prime}}{g}+Q_{k-2}(F) \tag{3.6}
\end{equation*}
$$

By Lemma 2 we see that $m\left(r, g^{\prime} \mid g\right)=S(r, g)=S(r, F)$. Thus we may apply Lemma 1 to both $p(f)=F g^{\prime} \mid g-k F^{\prime}$ and $p(f)=F\left(F g^{\prime} \mid g-k F^{\prime}\right)$, deducing that

$$
\begin{equation*}
m\left(r, F \frac{g^{\prime}}{g}-k F^{\prime}\right)=S(r, f) \tag{3.7}
\end{equation*}
$$

and

$$
m\left(r, F\left(F \frac{g^{\prime}}{g}-k F^{\prime}\right)\right)=S(r, F)
$$

We cannot have $F g^{\prime} / g-k F \equiv 0$, since this yields

$$
\begin{equation*}
k \frac{F^{\prime}}{F}=\frac{g^{\prime}}{g} \tag{3.8}
\end{equation*}
$$

or

$$
g(z)=c\{F(z)\}^{k}
$$

which contradicts our hypothesis. Alternatively,

$$
\begin{equation*}
F \frac{g^{\prime}}{g}-k F^{\prime} \not \equiv 0 \tag{3.9}
\end{equation*}
$$

Now from (3.2) we see that

$$
\begin{equation*}
T(r, f)=(1+o(1)) T(r, F)=(1+o(1))[N(r, F)+m(r, F)] \tag{3.10}
\end{equation*}
$$

as $r \rightarrow \infty$, possibly outside a set of finite measure.
Combining (3.7) with (3.9) we deduce that

$$
\begin{align*}
m(r, F) & \leqslant m\left(r, F\left(F \frac{g^{\prime}}{g}-k F^{\prime}\right)\right)+m\left(r, \frac{1}{F\left(g^{\prime} / g\right)-k F^{\prime}}\right)+O(1) \\
& \leqslant S(r, F)+T\left(r, F \frac{g^{\prime}}{g}-k F^{\prime}\right)+O(1) \tag{3.11}\\
& =S(r, F)+m\left(r, F \frac{g^{\prime}}{g}-k F^{\prime}\right)+N\left(r, F \frac{g^{\prime}}{g}-k F^{\prime}\right)+O(1) \\
& =S(r, F)+S(r, F)+N\left(r, F \frac{g^{\prime}}{g}-k F^{\prime}\right)+O(1)
\end{align*}
$$

In view of the forms of $p_{k-2}(F)$ and $Q_{k-2}(F)$ and comparing the multiplicities of the poles of F on both sides of (3.6), one can find that all the poles of $F g^{\prime} \mid g-k F^{\prime}$ come from the zeros of g, poles of f or the poles of all the coefficients of $g(z)$. Hence

$$
\begin{equation*}
N\left(r, F \frac{g^{\prime}}{g}-k F^{\prime}\right) \leqslant \bar{N}\left(r, \frac{1}{g}\right)+S(r, F) . \tag{3.12}
\end{equation*}
$$

Combining (3.12) with (3.11) and (3.10) we find

$$
\begin{align*}
T(r, f) & \leqslant(1+o(1)) N(r, F)+(1+o(1)) \bar{N}\left(r, \frac{1}{g}\right)+S(r, F) \tag{3.13}\\
& =(1+o(1)) N(r, f)+(1+o(1)) \bar{N}\left(r, \frac{1}{g}\right)+S(r, f) .
\end{align*}
$$

It follows that

$$
\begin{equation*}
\frac{T(r, f)+S(r, f)}{T(r, f)} \leqslant \frac{(1+o(1)) \bar{N}\left(r, \frac{1}{g}\right)+(1+o(1)) N(r, f)}{T(r, f)} \tag{3.14}
\end{equation*}
$$

and the assertion (3.1) follows from this.
As an immediate consequence of Theorem 1 we have the following theorem.

Theorem 2. Let $f(z)$ be meromorphic and transcendental in the plane, with $N(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$. Assume that

$$
h(z)=f^{k}(z)+a_{1}(z) f^{k-1}(z)+\cdots+a_{k}(z)
$$

where the $a_{i}(z)$ are meromorphic functions satisfying condition (2.2) and k is an integer $\geqslant 2$. Assume that $h(z)-z \not \equiv(c f(z)-a(z))^{k}$. Then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{h-z}\right)}{T(r, f)} \geqslant 1 . \tag{3.15}
\end{equation*}
$$

In particular, if f is transcendental and entive and if all the coefficients $a(z)$ in $h(z)$ are constants, then we obtain Rosenbloom's theorem cited in the introduction.

If we say that $a(z)$ is a k-ramified defect function of $f(z)$ whenever $T(r, a(z))=o\{T(r, f)\}$ as $r \rightarrow \infty$ such that all except finitely many of the roots of the equation $f(z)=a(z)$ have multiplicity at least k, then we have the following theorem.

Theorem 3. If f is a transcendental entire function, then there exists at most one 3-ramified defect function of $f(z)$.

Proof. Suppose that f has two 3-ramified defect functions $a_{1}(z)$ and $a_{2}(z)$. Then by setting $h(z)=\left(f(z)-a_{1}(z)\right)\left(f(z)-a_{2}(z)\right)+z$ in Theorem 2 we obtain from (3.15) that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a_{1}}\right)+\bar{N}\left(r, \frac{1}{f-a_{2}}\right)}{T(r, f)} \geqslant 1 \tag{3.16}
\end{equation*}
$$

On the other hand, since $a_{1}(z)$ and $a_{2}(z)$ are 3-ramified defect functions, we have

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a_{i}}\right)}{T(r, f)} \leqslant \frac{1}{3} \tag{3.17}
\end{equation*}
$$

for $i=1,2$. This contradicts (3.16), and the theorem is thus proved.

Remark. This result also follows from a result of Nevanlinna [1, p. 47]. Along similar lines we can obtain the following improved result [4].

Theorem 4. Let $f(z)$ be a transcendental meromorphic function with $N(r, f)=S(r, f)$. Let $\Psi(z)$ be a differential polynomial in f (in the sense that the coefficients $a(z)$ satisfy $T(r, a(z))=S(r, f)$. Suppose that

$$
\Psi(z)=f^{n}(z)+p_{n-2}(f)
$$

with $n \geqslant 2$. Then

$$
\delta(c, \Psi)<1-\frac{1}{n} \quad \text { for } c \neq 0, \infty
$$

Finally we remark that the argument used in proving Theorem 1, especially inequality (3.13), reveals that we can obtain the theorem of Tumura-Clunie [1, p. 68], if the condition

$$
N(r, f)+N\left(r, \frac{1}{g}\right)=S(r, f)
$$

is replaced by

$$
N(r, f)+N\left(r, \frac{1}{f}\right)=S(r, f)
$$

and

$$
\bar{N}\left(r, \frac{1}{g}\right) \leqslant(1-\epsilon) T(r, f), \quad 1>\epsilon>0
$$

as $r \rightarrow \infty$, possibly outside a set of r values of finite measure. From this we can obtain the following theorem which is an improvement of Hayman's result [1, p. 74].

Theorem 5. Suppose that $f(z)$ is meromorphic and not constant in the plane and that for some $l \geqslant 2$ and $1>\epsilon>0$,

$$
N(r, F)+N\left(r, \frac{1}{F}\right)+N\left(r, \frac{1}{F^{(l)}}\right) \leqslant(1-\epsilon) T\left(r, \frac{F^{\prime}}{F}\right)
$$

as $r \rightarrow \infty$, possibly outside a set of r values of finite measure. Then $F(z)=e^{a z+b}$, where a and b are constants.

References

1. W. K. Hayman, "Meromorphic Functions," Oxford University Press, London, 1964.
2. R. Nevanlinna, "Le théorème de Picard-Borel et la thorie des fonctions méromorphes, pp. 76-77, Paris, 1929.
3. P. C. Rosenbloom, "The Fix-Points of Entire Functions," Tome Suppl., pp. 186-192, Medd. Lunds Univ. Mat. Sem., 1952.
4. C. C. Yang, On deficiencies of differential polynomials, Math. Z. 116 (1970), 203.
