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Abstract 

Feam, D.R., Eigensolutions of boundary value problems using inverse iteration, Journal of Computational and 
Applied Mathematics 34 (1991) 201-209. 

Matrix eigenvalue problems arise when the differential operators in a system of ordinary or partial differential 
equations are replaced by finite-difference operators. We describe the use of the method of inverse iteration to 
solve such eigenvalue problems. The key to the success of this method is that it can take full advantage of the 
band structure of the matrix, resulting in a very considerable savings in storage and CPU-time compared with 

other matrix methods. For ordinary differential equations, the time taken is proportional to the number of grid 
points chosen. To illustrate the method, we solve the Orr-Sommerfeld problem, using both second- and 
fourth-order difference schemes. For a given accuracy of solution, the latter requires a similar CPU-time to 
shooting with orthonormalization. We show that the inverse iteration method has no trouble coping with very 

stiff problems. 

Keywordx Boundary value problems, eigenvalues, inverse iteration, stability problems, Orr-Sommerfeld equa- 
tion, stiff problems. 

1. Introduction 

Many problems in mathematical physics require the solution of an eigenvalue problem. For 
example, in linear stability calculations, the eigenvalue is the growth rate p of an instability. For 
some problems, p will be real (exchange of stabilities) but more generally p is complex; the 
imaginary part being the frequency of the instability. Often, we are interested in the solution 
with the largest Re( p); the most unstable mode. When p is complex, the use of any method, 
such as shooting, that finds only a single eigensolution leaves open the question: has the most 
unstable mode been found? To ensure that the mode with the largest Re( p) is identified, it is 
usually necessary to find all the eigenvalues of the system and pick out the required one. To do 
this, the governing ordinary or partial differential equations must be discretized (for example by 
using finite differences), giving a matrix eigenvalue problem. This can then be solved for all 
eigenvalues by methods based on, for example, the QR or LR algorithms (see [9]). The drawback 
of this approach is the limitation it places on numerical resolution. Methods that find all the 
eigenvalues require the full matrix to be stored and worked with. Storage is proportional to N2 
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and CPU-time of order N3 where N is the number of grid points (or equivalent) used in the 
discretization. For ordinary differential equations this may not be too restrictive, but for partial 
differential equations, the storage requirements place a severe limitation on numerical resolution. 

One approach to overcoming the problem is to start with a modest value of N and use a 
full-matrix method. This finds all the eigenvalues, so the required mode (for example, that with 
the largest Re( p)) can be identified. Since N is not large, the eigensolution found will not be an 
accurate solution of the original differential equation. To improve the accuracy, we must use a 
more efficient method that permits large values of N to be used. Such a method will typically 
only give a single eigenvaiue (and the corresponding eigenvector) and requires as an input 
parameter, an estimate of the required eigenvalue. The eigenvalue obtained from the full-matrix 
method at modest N is of course the estimate to use in the more efficient method at larger values 
of N. One example of a more efficient method is shooting, but this would require a recoding of 
the problem. An alternative is to use a method that uses the same matrix as before, but in a more 
efficient manner. Such a method is inverse iteration, (see, for example, [lo]). When discretized 
using finite differences, an ordinary or partial differential equation produces a banded matrix; all 
the entries in the matrix outside a band of width L, centred approximately on the leading 
diagonal, are zero. The method of inverse iteration can be coded to work only with the nonzero 
band, resulting in considerable savings in storage and CPU-time. The storage requirements are 
0( NL) and the CPU-time 0( NL2). For an ordinary differential equation, L is fixed, indepen- 
dent of N, so both storage and CPU-time are linear in the number of grid points. 

In this paper, we use the Orr-Sommerfeld problem (see, for example, [5]) to test the method of 
inverse iteration. Both second- and fourth-order difference schemes are used, and the results 
compared with those obtained by a shooting method with orthonormalization [2,4]. The Orr- 
Sommerfeld problem is a fourth-order ordinary differential equation. With second-order finite 
differences, the band width L = 5, and with fourth-order differences, L = 11. In Section 3 we 
show that, for a given accuracy of solution, the fourth-order difference scheme requires a much 
smaller number N of grid points than the second-order scheme. This more than compensates for 
the increased band width; the CPU-time required for a given accuracy being less using 
fourth-order differences. 

A direct comparison is made between inverse iteration using a fourth-order difference scheme 
and shooting using a fourth-order Runge-Kutta scheme. The two methods are very close in the 
time taken to find a solution of given accuracy. From the timing point of view, there is therefore 
little to choose between the two. There are two good reasons for choosing inverse iteration. 
Firstly, in cases where a full-matrix method has had to be used to find the most unstable mode, 
the coding required to generate the matrix from the differential equations has already been 
written. Only minor modifications are required to store only the nonzero band of the matrix. 
Secondly, and more importantly, inverse iteration can cope with stiff problems, without modifi- 
cation. In cases where standard shooting fails and techniques such as orthonormalization [2-41 
have to be incorporated, inverse iteration works well, provided only that sufficient grid points 
have been incorporated to resolve such localized features as boundary layers or critical layers. In 
Section 4 we solve the Orr-Sommerfeld problem for the stability of plane Poiseuille flow at high 
Reynolds number R and compare the results found using inverse iteration with those obtained 
by alternative methods. It is well known (see [5]) that solutions of the Orr-Sommerfeld problem 
contain a critical layer of width 0( Rp113). We show that inverse iteration has no trouble coping 
with Reynolds numbers as high as R = 109. 
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In Section 5 we discuss the application to partial differential equations and vectorization of 
the program. 

2. Application of the method 

Given a linear eigenvalue problem of the form 

L@=pG, (1) 

where L is a linear differential operator, replacing differential operators by difference operators 
transforms (1) into a matrix eigenvalue problem of the form 

& = P+. (2) 

If A is an N x N matrix, then (2) has eigenvalues pj and eigenvectors (p, satisfying 

A$aj=pj+,, j= l,..., N. (3) 

Given some guess \1, for the eigenvector and q for the eigenvalue, the inverse iteration scheme 
(see, for example, [lo]) 

J/(m)=(A-qI)-l@“-l), m=l,2,..., q(O) = #, (4) 

converges to the eigenvector C#B, whose eigenvalue p, is closest to q, i.e., the eigenvalue satisfying 

lpi--q1 < Ip,-41, j=l,..., i-l, i+l,..., N. (5) 

The rate of convergence depends on the relative magnitudes of 1 p, - q I and I pj - q I. If 
I pi - q I < 1 pj - q ( for all j # i, then scheme (4) converges rapidly to &. A good quess q for the 
required eigenvalue is therefore necessary for the efficient working of this method. On the other 
hand, the scheme is fairly insensitive to the guess $ for the eigenvector. If no good estimate for 
the eigenvector is available, then choosing \c, = (1, 1, 1, _ . . , l)T suffices. 

The technique can be easily extended to the generalized eigenvalue problem 

A+ = pB9, (6) 

when the iterative scheme (4) is replaced by 

$‘“‘= (A - qB)-‘B$‘“-“, m = 1, 2 ,..., G(O) = )j/ (7) 

The scheme (4) or (7) is terminated when two successive iterates #“’ and I,L(“-‘) are parallel to 
within some tolerance. The magnitude of 4”“) exceeds that of #(m-1) by a factor ( p, - q)-l 
since (A - qB)-‘B& = ( pi - q)-I$+. Hence, calculating the relative magnitude of J/““’ compared 
with @“-‘) gives the correction (pi - q) to the guess q for the eigenvalue. Thus, the method of 
inverse iteration gives successive iterative approximations to the required eigenvector. Only when 
the required accuracy has been reached, is the eigenvalue pi = q + ( p, - q) calculated. 

As discussed in Section 1, the matrices A and B are banded with all entries outside bands of 
widths L, and L, respectively equal to zero. Only the nonzero bands need to be stored and the 
scheme (7) can be rewritten as 

(A - qB)$‘“‘= B$‘“-“_ (8) 
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This can be solved using an LU decomposition of (A - 48). The LU decomposition only needs 
to be performed once (since the estimate q for the eigenvalue is not updated at each iteration) 
and no extra storage is required since L and U can be stored in the array originally occupied by 
A - qB. 

3. Second- and fourth-order difference schemes 

To illustrate the use of the method of inverse iteration we solve the Orr-Sommerfeld problem 
for the linear stability of the parallel shear flow U(z). The Orr-Sommerfeld equation (see [5]) 
may be written in the form 

[ - (icrR)-‘(D2 - a’)’ + U(D2 - a”) - U”] + = c(D2 - a2)+, 

where D denotes d/dz, (Y is the wavenumber in the direction of the flow, (YC is the frequency of 
the instability, and R is the Reynolds number which is a nondimensional measure of the flow 
speed. To permit comparisons with other work, we choose the plane Poiseuille flow U = 1 - z2, 
- 1 G z G 1, and look for solutions symmetric about the mid-layer z = 0. The equation (9) is 
therefore solved in the half-layer 0 G z < 1, subject to the boundary conditions 

D+=D3+=0 at z=O, +=D+=O at z=l. (IO) 

The interval [0, l] is divided into N equal subintervals and G(z) approximated by its values at 
the nodes: 

zi = ih, h = l/N, +;=+(‘i). (II) 

The equation (9) is evaluated at the N - 1 interior nodes zi, i = 1,. . . , N - 1. The highest 
derivative in (9) is D4. The finite-difference approximations for derivatives can be found, for 
example, in [l, Table 25.21. Using second-order central finite differences, we obtain N - 1 
equations for the N + 3 unknowns Gji, i = - 1, . . . , N + 1. The four unknowns +_i, &,, &, &+i 
can be eliminated using the boundary conditions (10). Central differences can be used except for 
D’$ = 0, where a forward difference is required to avoid including a further unknown G_~. 
Equation (9) has now been reduced to a matrix eigenvalue problem of the form (6), where A has 
band width 5 and B band width 3. 

For R = O(l), (9) is well behaved, and an accurate solution can be obtained using a modest 
number N of subintervals. When R is large, the highest derivatives only become important at the 
boundaries and in a critical layer of width O(aR)-‘/3 centred on U = c (see [5]). Thus the 
Orr-Sommerfeld problem at high Reynolds numbers represents a rigorous test of any numerical 
method. Provided that N is chosen sufficiently large to resolve the critical layer, inverse iteration 
works well. No special modifications are required at high Reynolds number. 

In Table 1 are listed some results for the case R = 10000, OL = 1. The solution, correct to five 
decimal places is c = 0.23753 + 0.00374 i [2]. The results in Table 1 demonstrate that inverse 
iteration easily copes with high Reynolds numbers, but the number of subintervals required to 
obtain an accurate solution is large. One reason for this is of course the need to resolve the 
critical layer, but in this example the critical layer has width 0( cllR)-‘13 = O(O.OS), so should be 
adequately resolved in all the results in Table 1. The slow convergence to the result as N is 
increased is because we have used a second-order difference scheme (relative error 0( Np2)). This 
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Table 1 
Some results for the Orr-Sommerfeld problem for plane Poiseuille flow with R = 10000 and a = 1; the initial guess for 
the eigenvalue was c = 0.23753 and NIT iterations were required to reach the required accuracy; the scheme was 
terminated when the largest entry of $“‘) - $m-‘) h as a magnitude of less than lo-‘; the vector Gem) is #“‘) 

normalized such that its entry with the largest magnitude is unity; the CPU-time taken was measured on an IBM 
370/168 

N C 

500 0.237505 + 0.003736 i 
1000 0.237521+ 0.003739 i 
2000 0.237525 + 0.003739 i 
4000 0.237526 + 0.003739 i 

NIT CPU-time (seconds) 

6 1.3 
6 2.3 
6 4.2 
6 7.8 

becomes inefficient when high accuracy is required because of the large values of N that need to 
be used. Techniques such as shooting typically use fourth-order schemes (relative error 0( Np4)), 
so for a fair comparison with shooting methods we repeat our calculations using fourth-order 
finite differences. 

The use of fourth-order differences is not quite so straightforward as second-order differences. 
Were we to evaluate (9) at the N - 1 interior nodes using central differences, we would obtain 
N - 1 equations in the N + 5 unknowns +;, i = -2,. . . , N + 2. The boundary conditions can 
determine only four of these, leaving two unknowns undetermined. The solution to this problem 
is to use forward differences when evaluating (9) at z = z1 and backward differences at z = zN_r. 
Forward and backward differences also need to be used for the boundary conditions (10). 
Results corresponding to those of Table 1 are shown in Table 2. The time required for a given 
value of N is greater for the fourth-order difference scheme because the band widths of the 
matrices are larger, A having band width 11. This increased time is more than compensated for 
by the greater accuracy of the fourth-order scheme. For a given accuracy of solution, the 
fourth-order scheme requires a much smaller value of N and has correspondingly smaller storage 
and CPU-time requirements. 

It is clear that the extra effort involved in using a fourth-order difference scheme is worthwile. 
We proceed to compare the results of the inverse iteration method with alternative methods of 
solving the Orr-Sommerfeld problem. 

Table 2 
As Table 1 but using a fourth-order difference scheme 

N C NIT CPU-time (seconds) 

200 0.237532 + 0.003746 i 6 1.1 
400 0.237527 + 0.003740 i 6 1.8 

600 0.237527 + 0.003740 i 6 2.5 

800 0.237527 + 0.003740 i 6 3.2 

1000 0.237526 + 0.003740 i 6 3.9 
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4. Comparison with alternative methods 

Detailed comparisons were carried out with the method of shooting with orthonormalization 
[2]. Orthonormalization is required because simple shooting fails for stiff problems, such as the 
Orr-Sommerfeld problem at high Reynolds numbers. Both methods use fourth-order difference 
schemes and take a time proportional to N, the number of subintervals, so they are directly 
comparable. For R = 106, (Y = 1 the solution of (9) is c = 0.06659252 - 0.01398327 i [2]. For both 
methods, we took the intial guess at the eigenvalue to be 0.0666 - 0.0140 i (see later) and the 
results are given in Tables 3 and 4. The calculations were performed on the same machine (an 
IBM 370/168), under (as near as possible) identical conditions. It can be seen that for 
comparable accuracy, and for the particular case solved, inverse iteration is marginally faster but 
requires a value of N approximately 1.5 times that required by shooting with orthonormalization. 
Since the calculations of Table 4 were performed, some rewriting of the inverse iteration code has 
led to savings of about 20% in time taken. Inverse iteration has greater storage requirements than 
orthonormalization but for ordinary differential equations this is not a serious restriction on 
modern computers. The two methods are therefore comparable in performance. For a problem 
suitable for solution using inverse iteration, the advantages discussed in Section 1 are good 
reasons for choosing inverse iteration. 

To give some idea of how far inverse iteration can be pushed, we compared results for 
R = 109, (Y = 1 with those of Davey [4] who uses both standard orthonormalization and an 
automatic orthonormalization method. Using N = 24000, we found c = 0.00656631 - 0.00166002 
i. Davey quotes 0.00656630 - 0.00166002 i, correct to four significant figures. The number of 
subintervals used is comparable. Davey tabulates values of the eigenfunction in his Table III. 
Our results match his to five significant figures except for the last few points close to z = 1 where 
the agreement is only to four decimal places, see Table 5. Davey [4] states that his solutions for 
the eigenvalue are correct to four significant figures. Presuming that the eigenfunction is to the 
same accuracy, our results agree to the accuracy calculated. Davey [4] claims that his method has 
been used “on a very stiff Orr-Sommerfeld problem to calculate eigenfunctions which no other 
method has been able to produce”. Inverse iteration has reproduced these results. 

This comparison emphasizes the power of the inverse iteration method. It can cope with very 
stiff problems without modification, only requiring a sufficient number of subintervals to resolve 
all features of the eigenfunction. It is interesting to note that the LU decomposition has been 
performed on matrices of up to 24000 rows without their being any evidence of problems caused 
by rounding errors. 

Table 3 
Results for the Orr-Sommerfeld problem with R = 106, a = 1; the method used was shooting with orthonormalization 
and the calculations were carried out by A. Davey; the initial guess for the eigenvalue was c = 0.0666 -0.0140 i and 
the error tabulated is the magnitude of the difference from c = 0.06659252 - 0.01398327 i; the CPU-time was measured 
on an IBM 370/168 

N C Error CPU-time 

800 0.06659223 - 0.01398184 i 146.10-’ 3.0 
900 0.06659211- 0.01398246 i 91.10-s 3.4 

1000 0.06659221- 0.01398269 i 66.10-s 3.8 
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Table 4 

As Table 3 but using inverse iteration with fourth-order differences; for a given value of N, inverse iteration has a 

larger error than shooting; the values of N (N = 1350, 1500) have been chosen to give errors comparable with those for 

N = 900, 1000 in Table 3 

N c Error CPU-time NIT 

1000 0.06659520-0.01398211 i 292.10-* 2.5 3 
1350 0.06659336 - 0.01398293 i 91.10-s 3.2 3 

1500 0.06659308 - 0.01398305 i 60.10-* 3.6 3 

One criticism that could be made of the calculations presented above for the inverse iteration 
method is that the estimates used for the eigenvalues are very close to the required eigenvalues. 
This is the case because we have chosen our estimates to be the same as those used by Davey. 
This leaves open the question of how well does inverse iteration work when the estimate is much 
poorer. How far the estimates can be from the eigenvalue and still converge can be judged from 
the discussion of Section 2. The method always converges to the eigenvalue closest to the 
estimate, so how accurate an estimate has to be depends on the distribution of eigenvalues. For 
the solution in Table 4 we repeated our calculation for different estimates, see Table 6. As can be 
seen the method can still work well even when the estimate is poor. When the number of inverse 
iterations becomes large, the strategy of performing the LU decomposition once and calculating 
the eigenvalue at the end of the many iterations becomes inefficient. Performing some number of 
iterations, updating the estimate for the eigenvalue (which requires performing the LU decom- 

Table 5 

Selected values of the eigenfunction for a = 1, R = 109, for comparison with [4, Table III] 

Z Gr +, 

0 1 0 

0.90 0.479061 0.001681 

0.91 0.463503 0.001738 

0.92 0.447431 0.001797 

0.93 0.430794 0.001862 

0.94 0.413527 0.001932 

0.95 0.395547 0.002011 

0.96 0.376731 0.002102 

0.97 0.356894 0.002212 

0.98 0.335707 0.002359 

0.99 0.312404 0.002616 

0.991 0.309883 0.002658 

0.992 0.307324 0.002709 

0.993 0.304603 0.002863 

0.994 0.301605 0.002170 

0.995 0.302994 0.001768 

0.996 0.302934 0.018106 

0.997 0.261233 0.043260 

0.998 0.171716 0.029008 

0.999 0.066728 - 0.005589 

1 0 0 
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Table 6 
As Table 4 but using N = 1500 for all calculations; the solution for c is as in Table 4; here we tabulate the initial guess 
for c and the number of iterations required to converge to this solution; the calculations were performed on an IBM 
3090/150E. 

Estimate for c CPU-time NIT 

0.06 - 0.01 i 1.14 11 
0.03 4.28 63 
0.09 3.60 52 
0.0 + 0.1 i 5.90 89 

position again), then proceeding with inverse iterations would result in a smaller number of 
iterations being required. The trade-off point between the extra LU decomposition and the 
reduced number of iterations will depend on the system being solved. 

5. Conclusions 

We have shown how using the method of inverse iteration to solve the matrix eigenvalue 
problems that result from discretizing boundary value problems compares favourably with 
alternative methods of solving such problems. Inverse iteration works well even with very stiff 
problems. Other examples of the application of inverse iteration to problems with critical layers 
and boundary layers can be found in [6,7]. 

The principle reason for the performance of the method described here is its ability to make 
full use of the banded structure of the matrix. For ordinary differential equations (or systems of 
ODES) the band width is fixed, independent of the number N of subintervals. The storage and 
time requirements are then proportional to N. For low-order systems, the band width is small 
and no benefit can be derived from vectorizing the LU decompostion code. This is because the 
recursive nature of the algorithm means that vectorization can only be performed on the 
innermost loop which runs over the band width. For the Orr-Sommerfeld problem, this is only 
11, and calculations on an IBM 3090/150E-VF were some 20% slower in vector than in scalar 
because of the small loop counts. For higher-order ordinary differential equations (that give 
matrices with larger band width) there may be a small benefit from using vectorized code. The 
main benefit from vectorization comes when the method is applied to partial differential 
equations. For these the band width is dependent on the numerical truncation. The main 
limitation on the resolution is typically the storage available rather than the CPU-time required. 
This is particularly true when the benefits of vectorization are used. On a problem of magnetic 
field stability (see [S]), vectorized code ran 2+ to 3 times faster than scalar with 60-70% of 
CPU-time being in the vector facility on an IBM 3090/150E-VF. 
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