
Journal of Computational and Applied Mathematics 34 (1991) 201-209
North-Holland

201

Eigensolutions of boundary value problems
using inverse iteration

David R. Fearn
Department of Mathematics, University of Glasgow, University Gardens, Glasgow, United Kingdom G12 SQ W

Received 6 April 1990

Abstract

Feam, D.R., Eigensolutions of boundary value problems using inverse iteration, Journal of Computational and
Applied Mathematics 34 (1991) 201-209.

Matrix eigenvalue problems arise when the differential operators in a system of ordinary or partial differential
equations are replaced by finite-difference operators. We describe the use of the method of inverse iteration to
solve such eigenvalue problems. The key to the success of this method is that it can take full advantage of the
band structure of the matrix, resulting in a very considerable savings in storage and CPU-time compared with

other matrix methods. For ordinary differential equations, the time taken is proportional to the number of grid
points chosen. To illustrate the method, we solve the Orr-Sommerfeld problem, using both second- and
fourth-order difference schemes. For a given accuracy of solution, the latter requires a similar CPU-time to
shooting with orthonormalization. We show that the inverse iteration method has no trouble coping with very

stiff problems.

Keywordx Boundary value problems, eigenvalues, inverse iteration, stability problems, Orr-Sommerfeld equa-
tion, stiff problems.

1. Introduction

Many problems in mathematical physics require the solution of an eigenvalue problem. For
example, in linear stability calculations, the eigenvalue is the growth rate p of an instability. For
some problems, p will be real (exchange of stabilities) but more generally p is complex; the
imaginary part being the frequency of the instability. Often, we are interested in the solution
with the largest Re(p); the most unstable mode. When p is complex, the use of any method,
such as shooting, that finds only a single eigensolution leaves open the question: has the most
unstable mode been found? To ensure that the mode with the largest Re(p) is identified, it is
usually necessary to find all the eigenvalues of the system and pick out the required one. To do
this, the governing ordinary or partial differential equations must be discretized (for example by
using finite differences), giving a matrix eigenvalue problem. This can then be solved for all
eigenvalues by methods based on, for example, the QR or LR algorithms (see [9]). The drawback
of this approach is the limitation it places on numerical resolution. Methods that find all the
eigenvalues require the full matrix to be stored and worked with. Storage is proportional to N2

0377-0427/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82547086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

202 D. R. Feat-n / Eigensolutions of B VPs using inverse iteration

and CPU-time of order N3 where N is the number of grid points (or equivalent) used in the
discretization. For ordinary differential equations this may not be too restrictive, but for partial
differential equations, the storage requirements place a severe limitation on numerical resolution.

One approach to overcoming the problem is to start with a modest value of N and use a
full-matrix method. This finds all the eigenvalues, so the required mode (for example, that with
the largest Re(p)) can be identified. Since N is not large, the eigensolution found will not be an
accurate solution of the original differential equation. To improve the accuracy, we must use a
more efficient method that permits large values of N to be used. Such a method will typically
only give a single eigenvaiue (and the corresponding eigenvector) and requires as an input
parameter, an estimate of the required eigenvalue. The eigenvalue obtained from the full-matrix
method at modest N is of course the estimate to use in the more efficient method at larger values
of N. One example of a more efficient method is shooting, but this would require a recoding of
the problem. An alternative is to use a method that uses the same matrix as before, but in a more
efficient manner. Such a method is inverse iteration, (see, for example, [lo]). When discretized
using finite differences, an ordinary or partial differential equation produces a banded matrix; all
the entries in the matrix outside a band of width L, centred approximately on the leading
diagonal, are zero. The method of inverse iteration can be coded to work only with the nonzero
band, resulting in considerable savings in storage and CPU-time. The storage requirements are
0(NL) and the CPU-time 0(NL2). For an ordinary differential equation, L is fixed, indepen-
dent of N, so both storage and CPU-time are linear in the number of grid points.

In this paper, we use the Orr-Sommerfeld problem (see, for example, [5]) to test the method of
inverse iteration. Both second- and fourth-order difference schemes are used, and the results
compared with those obtained by a shooting method with orthonormalization [2,4]. The Orr-
Sommerfeld problem is a fourth-order ordinary differential equation. With second-order finite
differences, the band width L = 5, and with fourth-order differences, L = 11. In Section 3 we
show that, for a given accuracy of solution, the fourth-order difference scheme requires a much
smaller number N of grid points than the second-order scheme. This more than compensates for
the increased band width; the CPU-time required for a given accuracy being less using
fourth-order differences.

A direct comparison is made between inverse iteration using a fourth-order difference scheme
and shooting using a fourth-order Runge-Kutta scheme. The two methods are very close in the
time taken to find a solution of given accuracy. From the timing point of view, there is therefore
little to choose between the two. There are two good reasons for choosing inverse iteration.
Firstly, in cases where a full-matrix method has had to be used to find the most unstable mode,
the coding required to generate the matrix from the differential equations has already been
written. Only minor modifications are required to store only the nonzero band of the matrix.
Secondly, and more importantly, inverse iteration can cope with stiff problems, without modifi-
cation. In cases where standard shooting fails and techniques such as orthonormalization [2-41
have to be incorporated, inverse iteration works well, provided only that sufficient grid points
have been incorporated to resolve such localized features as boundary layers or critical layers. In
Section 4 we solve the Orr-Sommerfeld problem for the stability of plane Poiseuille flow at high
Reynolds number R and compare the results found using inverse iteration with those obtained
by alternative methods. It is well known (see [5]) that solutions of the Orr-Sommerfeld problem
contain a critical layer of width 0(Rp113). We show that inverse iteration has no trouble coping
with Reynolds numbers as high as R = 109.

D.R. Fearn / Eigensolutions of BVPs using inverse iteration 203

In Section 5 we discuss the application to partial differential equations and vectorization of
the program.

2. Application of the method

Given a linear eigenvalue problem of the form

L@=pG, (1)

where L is a linear differential operator, replacing differential operators by difference operators
transforms (1) into a matrix eigenvalue problem of the form

& = P+. (2)

If A is an N x N matrix, then (2) has eigenvalues pj and eigenvectors (p, satisfying

A$aj=pj+,, j= l,..., N. (3)

Given some guess \1, for the eigenvector and q for the eigenvalue, the inverse iteration scheme
(see, for example, [lo])

J/(m)=(A-qI)-l@“-l), m=l,2,..., q(O) = #, (4)

converges to the eigenvector C#B, whose eigenvalue p, is closest to q, i.e., the eigenvalue satisfying

lpi--q1 < Ip,-41, j=l,..., i-l, i+l,..., N. (5)

The rate of convergence depends on the relative magnitudes of 1 p, - q I and I pj - q I. If
I pi - q I < 1 pj - q (for all j # i, then scheme (4) converges rapidly to &. A good quess q for the
required eigenvalue is therefore necessary for the efficient working of this method. On the other
hand, the scheme is fairly insensitive to the guess $ for the eigenvector. If no good estimate for
the eigenvector is available, then choosing \c, = (1, 1, 1, _ . . , l)T suffices.

The technique can be easily extended to the generalized eigenvalue problem

A+ = pB9, (6)

when the iterative scheme (4) is replaced by

$‘“‘= (A - qB)-‘B$‘“-“, m = 1, 2 ,..., G(O) =)j/ (7)

The scheme (4) or (7) is terminated when two successive iterates #“’ and I,L(“-‘) are parallel to
within some tolerance. The magnitude of 4”“) exceeds that of #(m-1) by a factor (p, - q)-l
since (A - qB)-‘B& = (pi - q)-I$+. Hence, calculating the relative magnitude of J/““’ compared
with @“-‘) gives the correction (pi - q) to the guess q for the eigenvalue. Thus, the method of
inverse iteration gives successive iterative approximations to the required eigenvector. Only when
the required accuracy has been reached, is the eigenvalue pi = q + (p, - q) calculated.

As discussed in Section 1, the matrices A and B are banded with all entries outside bands of
widths L, and L, respectively equal to zero. Only the nonzero bands need to be stored and the
scheme (7) can be rewritten as

(A - qB)$‘“‘= B$‘“-“_ (8)

204 D. R. Fearn / Eigensolutions of B VPs using inverse iteration

This can be solved using an LU decomposition of (A - 48). The LU decomposition only needs
to be performed once (since the estimate q for the eigenvalue is not updated at each iteration)
and no extra storage is required since L and U can be stored in the array originally occupied by
A - qB.

3. Second- and fourth-order difference schemes

To illustrate the use of the method of inverse iteration we solve the Orr-Sommerfeld problem
for the linear stability of the parallel shear flow U(z). The Orr-Sommerfeld equation (see [5])
may be written in the form

[- (icrR)-‘(D2 - a’)’ + U(D2 - a”) - U”] + = c(D2 - a2)+,

where D denotes d/dz, (Y is the wavenumber in the direction of the flow, (YC is the frequency of
the instability, and R is the Reynolds number which is a nondimensional measure of the flow
speed. To permit comparisons with other work, we choose the plane Poiseuille flow U = 1 - z2,
- 1 G z G 1, and look for solutions symmetric about the mid-layer z = 0. The equation (9) is
therefore solved in the half-layer 0 G z < 1, subject to the boundary conditions

D+=D3+=0 at z=O, +=D+=O at z=l. (IO)

The interval [0, l] is divided into N equal subintervals and G(z) approximated by its values at
the nodes:

zi = ih, h = l/N, +;=+(‘i). (II)

The equation (9) is evaluated at the N - 1 interior nodes zi, i = 1,. . . , N - 1. The highest
derivative in (9) is D4. The finite-difference approximations for derivatives can be found, for
example, in [l, Table 25.21. Using second-order central finite differences, we obtain N - 1
equations for the N + 3 unknowns Gji, i = - 1, . . . , N + 1. The four unknowns +_i, &,, &, &+i
can be eliminated using the boundary conditions (10). Central differences can be used except for
D’$ = 0, where a forward difference is required to avoid including a further unknown G_~.
Equation (9) has now been reduced to a matrix eigenvalue problem of the form (6), where A has
band width 5 and B band width 3.

For R = O(l), (9) is well behaved, and an accurate solution can be obtained using a modest
number N of subintervals. When R is large, the highest derivatives only become important at the
boundaries and in a critical layer of width O(aR)-‘/3 centred on U = c (see [5]). Thus the
Orr-Sommerfeld problem at high Reynolds numbers represents a rigorous test of any numerical
method. Provided that N is chosen sufficiently large to resolve the critical layer, inverse iteration
works well. No special modifications are required at high Reynolds number.

In Table 1 are listed some results for the case R = 10000, OL = 1. The solution, correct to five
decimal places is c = 0.23753 + 0.00374 i [2]. The results in Table 1 demonstrate that inverse
iteration easily copes with high Reynolds numbers, but the number of subintervals required to
obtain an accurate solution is large. One reason for this is of course the need to resolve the
critical layer, but in this example the critical layer has width 0(cllR)-‘13 = O(O.OS), so should be
adequately resolved in all the results in Table 1. The slow convergence to the result as N is
increased is because we have used a second-order difference scheme (relative error 0(Np2)). This

D. R. Fearn / Eigensolutions of B VPs using inverse iteration 205

Table 1
Some results for the Orr-Sommerfeld problem for plane Poiseuille flow with R = 10000 and a = 1; the initial guess for
the eigenvalue was c = 0.23753 and NIT iterations were required to reach the required accuracy; the scheme was
terminated when the largest entry of $“‘) - $m-‘) h as a magnitude of less than lo-‘; the vector Gem) is #“‘)

normalized such that its entry with the largest magnitude is unity; the CPU-time taken was measured on an IBM
370/168

N C

500 0.237505 + 0.003736 i
1000 0.237521+ 0.003739 i
2000 0.237525 + 0.003739 i
4000 0.237526 + 0.003739 i

NIT CPU-time (seconds)

6 1.3
6 2.3
6 4.2
6 7.8

becomes inefficient when high accuracy is required because of the large values of N that need to
be used. Techniques such as shooting typically use fourth-order schemes (relative error 0(Np4)),
so for a fair comparison with shooting methods we repeat our calculations using fourth-order
finite differences.

The use of fourth-order differences is not quite so straightforward as second-order differences.
Were we to evaluate (9) at the N - 1 interior nodes using central differences, we would obtain
N - 1 equations in the N + 5 unknowns +;, i = -2,. . . , N + 2. The boundary conditions can
determine only four of these, leaving two unknowns undetermined. The solution to this problem
is to use forward differences when evaluating (9) at z = z1 and backward differences at z = zN_r.
Forward and backward differences also need to be used for the boundary conditions (10).
Results corresponding to those of Table 1 are shown in Table 2. The time required for a given
value of N is greater for the fourth-order difference scheme because the band widths of the
matrices are larger, A having band width 11. This increased time is more than compensated for
by the greater accuracy of the fourth-order scheme. For a given accuracy of solution, the
fourth-order scheme requires a much smaller value of N and has correspondingly smaller storage
and CPU-time requirements.

It is clear that the extra effort involved in using a fourth-order difference scheme is worthwile.
We proceed to compare the results of the inverse iteration method with alternative methods of
solving the Orr-Sommerfeld problem.

Table 2
As Table 1 but using a fourth-order difference scheme

N C NIT CPU-time (seconds)

200 0.237532 + 0.003746 i 6 1.1
400 0.237527 + 0.003740 i 6 1.8

600 0.237527 + 0.003740 i 6 2.5

800 0.237527 + 0.003740 i 6 3.2

1000 0.237526 + 0.003740 i 6 3.9

206 D. R. Feat-n / Eigensolutions of B VPs using inverse iteration

4. Comparison with alternative methods

Detailed comparisons were carried out with the method of shooting with orthonormalization
[2]. Orthonormalization is required because simple shooting fails for stiff problems, such as the
Orr-Sommerfeld problem at high Reynolds numbers. Both methods use fourth-order difference
schemes and take a time proportional to N, the number of subintervals, so they are directly
comparable. For R = 106, (Y = 1 the solution of (9) is c = 0.06659252 - 0.01398327 i [2]. For both
methods, we took the intial guess at the eigenvalue to be 0.0666 - 0.0140 i (see later) and the
results are given in Tables 3 and 4. The calculations were performed on the same machine (an
IBM 370/168), under (as near as possible) identical conditions. It can be seen that for
comparable accuracy, and for the particular case solved, inverse iteration is marginally faster but
requires a value of N approximately 1.5 times that required by shooting with orthonormalization.
Since the calculations of Table 4 were performed, some rewriting of the inverse iteration code has
led to savings of about 20% in time taken. Inverse iteration has greater storage requirements than
orthonormalization but for ordinary differential equations this is not a serious restriction on
modern computers. The two methods are therefore comparable in performance. For a problem
suitable for solution using inverse iteration, the advantages discussed in Section 1 are good
reasons for choosing inverse iteration.

To give some idea of how far inverse iteration can be pushed, we compared results for
R = 109, (Y = 1 with those of Davey [4] who uses both standard orthonormalization and an
automatic orthonormalization method. Using N = 24000, we found c = 0.00656631 - 0.00166002
i. Davey quotes 0.00656630 - 0.00166002 i, correct to four significant figures. The number of
subintervals used is comparable. Davey tabulates values of the eigenfunction in his Table III.
Our results match his to five significant figures except for the last few points close to z = 1 where
the agreement is only to four decimal places, see Table 5. Davey [4] states that his solutions for
the eigenvalue are correct to four significant figures. Presuming that the eigenfunction is to the
same accuracy, our results agree to the accuracy calculated. Davey [4] claims that his method has
been used “on a very stiff Orr-Sommerfeld problem to calculate eigenfunctions which no other
method has been able to produce”. Inverse iteration has reproduced these results.

This comparison emphasizes the power of the inverse iteration method. It can cope with very
stiff problems without modification, only requiring a sufficient number of subintervals to resolve
all features of the eigenfunction. It is interesting to note that the LU decomposition has been
performed on matrices of up to 24000 rows without their being any evidence of problems caused
by rounding errors.

Table 3
Results for the Orr-Sommerfeld problem with R = 106, a = 1; the method used was shooting with orthonormalization
and the calculations were carried out by A. Davey; the initial guess for the eigenvalue was c = 0.0666 -0.0140 i and
the error tabulated is the magnitude of the difference from c = 0.06659252 - 0.01398327 i; the CPU-time was measured
on an IBM 370/168

N C Error CPU-time

800 0.06659223 - 0.01398184 i 146.10-’ 3.0
900 0.06659211- 0.01398246 i 91.10-s 3.4

1000 0.06659221- 0.01398269 i 66.10-s 3.8

D. R. Fearn / Eigensolutions of B VPs using inverse iteration 207

Table 4

As Table 3 but using inverse iteration with fourth-order differences; for a given value of N, inverse iteration has a

larger error than shooting; the values of N (N = 1350, 1500) have been chosen to give errors comparable with those for

N = 900, 1000 in Table 3

N c Error CPU-time NIT

1000 0.06659520-0.01398211 i 292.10-* 2.5 3
1350 0.06659336 - 0.01398293 i 91.10-s 3.2 3

1500 0.06659308 - 0.01398305 i 60.10-* 3.6 3

One criticism that could be made of the calculations presented above for the inverse iteration
method is that the estimates used for the eigenvalues are very close to the required eigenvalues.
This is the case because we have chosen our estimates to be the same as those used by Davey.
This leaves open the question of how well does inverse iteration work when the estimate is much
poorer. How far the estimates can be from the eigenvalue and still converge can be judged from
the discussion of Section 2. The method always converges to the eigenvalue closest to the
estimate, so how accurate an estimate has to be depends on the distribution of eigenvalues. For
the solution in Table 4 we repeated our calculation for different estimates, see Table 6. As can be
seen the method can still work well even when the estimate is poor. When the number of inverse
iterations becomes large, the strategy of performing the LU decomposition once and calculating
the eigenvalue at the end of the many iterations becomes inefficient. Performing some number of
iterations, updating the estimate for the eigenvalue (which requires performing the LU decom-

Table 5

Selected values of the eigenfunction for a = 1, R = 109, for comparison with [4, Table III]

Z Gr +,

0 1 0

0.90 0.479061 0.001681

0.91 0.463503 0.001738

0.92 0.447431 0.001797

0.93 0.430794 0.001862

0.94 0.413527 0.001932

0.95 0.395547 0.002011

0.96 0.376731 0.002102

0.97 0.356894 0.002212

0.98 0.335707 0.002359

0.99 0.312404 0.002616

0.991 0.309883 0.002658

0.992 0.307324 0.002709

0.993 0.304603 0.002863

0.994 0.301605 0.002170

0.995 0.302994 0.001768

0.996 0.302934 0.018106

0.997 0.261233 0.043260

0.998 0.171716 0.029008

0.999 0.066728 - 0.005589

1 0 0

208 D.R. Feat-n / Eigensolutions of BVPs using inverse iteration

Table 6
As Table 4 but using N = 1500 for all calculations; the solution for c is as in Table 4; here we tabulate the initial guess
for c and the number of iterations required to converge to this solution; the calculations were performed on an IBM
3090/150E.

Estimate for c CPU-time NIT

0.06 - 0.01 i 1.14 11
0.03 4.28 63
0.09 3.60 52
0.0 + 0.1 i 5.90 89

position again), then proceeding with inverse iterations would result in a smaller number of
iterations being required. The trade-off point between the extra LU decomposition and the
reduced number of iterations will depend on the system being solved.

5. Conclusions

We have shown how using the method of inverse iteration to solve the matrix eigenvalue
problems that result from discretizing boundary value problems compares favourably with
alternative methods of solving such problems. Inverse iteration works well even with very stiff
problems. Other examples of the application of inverse iteration to problems with critical layers
and boundary layers can be found in [6,7].

The principle reason for the performance of the method described here is its ability to make
full use of the banded structure of the matrix. For ordinary differential equations (or systems of
ODES) the band width is fixed, independent of the number N of subintervals. The storage and
time requirements are then proportional to N. For low-order systems, the band width is small
and no benefit can be derived from vectorizing the LU decompostion code. This is because the
recursive nature of the algorithm means that vectorization can only be performed on the
innermost loop which runs over the band width. For the Orr-Sommerfeld problem, this is only
11, and calculations on an IBM 3090/150E-VF were some 20% slower in vector than in scalar
because of the small loop counts. For higher-order ordinary differential equations (that give
matrices with larger band width) there may be a small benefit from using vectorized code. The
main benefit from vectorization comes when the method is applied to partial differential
equations. For these the band width is dependent on the numerical truncation. The main
limitation on the resolution is typically the storage available rather than the CPU-time required.
This is particularly true when the benefits of vectorization are used. On a problem of magnetic
field stability (see [S]), vectorized code ran 2+ to 3 times faster than scalar with 60-70% of
CPU-time being in the vector facility on an IBM 3090/150E-VF.

Acknowledgements

I would particularly like to thank Dr A. Davey for many discussions about this work and for
his performing the calculations of Table 3. The inverse iteration program is based on one written

D.R. Fearn / Eigensolutions of BVPs using inverse iteration 209

by Dr G.O. Roberts. The original calculations were performed on the IBM 370/168 of the
University of Newcastle-upon-Tyne. The most recent calculations have used the IBM

3090/150E-VF supplied to the University of Glasgow by IBM as part of the Kelvin Project.
Thanks are due to John Hague of IBM for vectorizing the inverse iteration subroutines.

References

[l] M. Abramowitz and LA. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
[2] A. Davey, A simple numerical method for solving Orr-Sommerfeld problems, Quart. J. Mech. Appl. Math. 26

(1973) 40-411.
[3] A. Davey, On the removal of the singularities from the Ricatti method, J. Comput. Phys. 30 (1979) 137-144.
[4] A. Davey, An automatic orthonormalisation method for solving stiff boundary-value problems, J. Comput. Phys.

51 (1983) 343-356.
[5] P.G. Drazin and W.H. Reid, Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 1981).
[6] D.R. Feam, Hydromagnetic waves in a differentially rotating annulus I. A test of local stability analysis, Geophys.

Astrophys. Fiuid Dynamics 25 (1983) 65-75.
[7] D.R. Feam, Hydromagnetic waves in a differentially rotating annulus II. Resistive instabilities, Geophys.

Astrophys. Fluid Dynamics 30 (1984) 227-239.
[8] D.R. Fearn and M.R.E. Proctor, Hydromagnetic waves in a differentially rotating sphere, J. Fluid Mech. 128

(1983) l-20.
[9] G. Peters and J.H. Wilkinson, Eigenvectors of real and complex matrices by LR and QR-triangularisations, in:

J.H. Wilkinson and C. Reinsch, Eds., Handbook for Automatic Computation, Vof. 2, Linear Algebra (Springer,
Berlin, 1971) 370-395.

[lo] G. Peters and J.H. Wilkinson, The calculation of specified eigenvectors by inverse iteration, in: J.H. Wilkinson
and C. Reinsch, Eds., Handbook for Automatic Computation, Vof. 2, Linear Algebra (Springer, Berlin, 1971)
418-439.

