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Abstract

This note is devoted to Lagrange interpolation for continuous piecewise smooth functions. A new family of interpolatory
functions with explicit approximation error bounds is obtained. We apply the theory to the classical Lagrange interpolation.
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1. Introduction

High order linear interpolation procedures associated with large supports are affected by the presence of
singularities in the signal considered. These kinds of techniques produce the Gibbs-like phenomenon in the presence
of jump discontinuities [1–6]. However, we have not seen such problems for continuous functions. The goal of this
paper is to provide a simple, but rigorous, mathematical justification of this fact. We present a class of interpolatory
functions verifying certain approximation error bounds for continuous piecewise smooth functions. We apply this
study to the classical Lagrange interpolation [10] introduced just for smooth functions. For uniform bounds associated
with specific nodes, similar to those obtained when the nodes are the zeros of Chebyshev polynomials in Lagrange
interpolation of smooth functions, we refer the reader to [7–9,11,12]. However, these papers are of a technical nature.
Our goal is to provide a rigorous but simple justification.

2. Lagrange interpolation in the Newton form

Let f : [a, b] → R be a continuous function in a finite closed interval [a, b]. Let x0, x1, . . . , xn ∈ [a, b] (xi 6= x j ),
n ∈ N, be the interpolatory nodes. Let Pn

: [a, b] → R be the unique interpolatory polynomial of degree n associated
with the nodes x0, x1, . . . , xn and the function f . Then we can write the polynomial as

Pn(x) =

n∑
j=0

f [x0, . . . , x j ](x − x0) . . . (x − x j−1), x ∈ [a, b]. (1)
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This is the Newton form of the polynomial.
The constant coefficients f [x0, . . . , x j ], j = 0, . . . , n, are called j th-order divided differences associated with f .
Using the uniqueness of the polynomial we can prove the following proposition.

Proposition 1. For each permutation σ of the set {0, . . . , k}, we have

f [x0, . . . , xk] = f [xσ(0)
, . . . , xσ(k)

].

As a consequence we arrive at the principal property of the divided differences:

Proposition 2.

f [x0, . . . , xk] =
f [x1, . . . , xk] − f [x0, . . . , xk−1]

xk − x0
. (2)

Using expression (2) and considering the data of the following table:

x0 x1 x2 . . . xn

f0 f1 f2 . . . fn

the divided differences are obtained via the following scheme:

x0 f [x0]

↘

x1 f [x1] → f [x0, x1]

↘ ↘

x2 f [x2] → f [x1, x2] →

...
...

...

...
...

... ↘

xn f [xn] → f [xn−1, xn] → → f [x0, . . . , xn]

where f [x j ] = f (x j ), j = 0, . . . , n.
Error for Lagrange interpolation
Using the Rolle Theorem several times the following error formula holds.

Theorem 1. Let f : [a, b] → R be a continuous function in the finite interval [a, b] and n + 1 times differentiable in
(a, b). Let x0, . . . , xn be different points in [a, b] (xi 6= x j ) and let Pn(x) be the associated Lagrange interpolatory
polynomial of degree n. Then, for each x ∈ (a, b) there exists ξx such that

f (x) − Pn (x) =
f (n+1) (ξx )

(n + 1)!
(x − x0) · · · (x − xn) (3)

where

min(x, x0, . . . , xn) < ξx < max(x, x0, . . . , xn). (4)

For non-smooth functions is clear that we cannot use the above theorem. In the case of discontinuous functions,
the Gibbs-like phenomenon appears in practice. However, we do not have such problems for continuous functions.
The goal of this paper is to provide, following the ideas of the present section, a simple, but rigorous, mathematical
justification of this fact.
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3. Auxiliary family of continuous piecewise smooth functions

Let us consider a set of points

{y0, y1, . . . , ym}

of a given real interval (a, b), where the signal can be non-smooth.
For a fixed collection of increasing continuous functions

{γi : [a, b] ⊂ R → R}
m
i=0,

such that (γi )
′(x) ∈ R for all x ∈ (a, b) \ {yi } and (γi )

′(yi ) = +∞, we introduce the following space of continuous
functions:

Fγi ([a, b]) :=

{
f ∈ C([a, b])/∃℘γi ( f )(x) := lim

h→0

f (x + h) − f (x)

γi (x + h) − γi (x)
∀x ∈ (a, b)

}
.

An example of γi functions is

γi (x) =

{√
x − yi x ≥ yi

−
√

−x + yi otherwise.

Notice that this generalized derivative in the definition of Fγi ([a, b]) is linear and zero for constants and that these
spaces include the smooth functions. For these spaces we generalize some classical theorems.

Lemma 1. Let f, g ∈ Fγi ([a, b]); then f g ∈ Fγi (R) and

℘γi ( f g)(x) = f (x)℘γi (g)(x) + ℘γi ( f )(x)g(x).

Proposition 3 (Generalization of the Rolle Theorem). Let f ∈ Fγi ([a, b]). Let a, b be such that f (a) = f (b) = 0.
Then there exists ξ ∈ (a, b) such that ℘γi ( f )(ξ) = 0.

Proof. If f (x) = 0 for all x ∈ [a, b] then ℘γi ( f )(x) = 0 for all x ∈ (a, b).
Let ξ be such that f (ξ) := maxx∈[a,b] | f (x)|. Then, using that γi is an increasing function, we have

f (ξ + h) − f (ξ)

γi (ξ + h) − γi (ξ)
·

f (ξ − h) − f (ξ)

γi (ξ − h) − γi (ξ)
≤ 0

and from definition ℘γi ( f )(ξ) = 0. �

Definition 1. Define f (0)
γi := f , f (1)

γi := ℘γi ( f ), . . . , f (m)
γi := ℘γi ( f (m−1)

γi ), a function f ∈ Fm
γi

([a, b]) if and only if

there exists f (m−1)
γi ∈ Fγi ([a, b]), m ∈ N.

Let us define by induction the following generalized divided differences:

fγi [x j−1, x j ] :=
f (x j ) − f (x j−1)

γi (x j ) − γi (x j−1)

fγi [x j−p, . . . , x j−p+s] :=
fγi [x j−p+1, . . . , x j−p+s] − fγi [x j−p, . . . , x j−p+s−1]

γi (x j−p+s) − γi (x j−p)
0 ≤ p ≤ j, 0 ≤ s.

Proposition 4 (Generalized Lagrange Interpolation). Let f ∈ Fn+1
γi

([a, b]) and let x0, x1, . . . , xn be different points
in [a, b]. Then

f (x) − Pn
γi

(x) =
f (n+1)
γi (ξ)

(n + 1)!
(γi (x) − γi (x0)) . . . (γi (x) − γi (xn)), x ∈ (a, b)
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where

Pn
γi

(x) = f (x0) + fγi [x0, x1](γi (x) − γi (x0)) + · · ·

+ fγi [x0, x1, . . . , xn](γi (x) − γi (x0)) . . . (γi (x) − γi (xn−1))

and ξ ∈ (min{x, x0, x1, . . . , xn}, max{x, x0, x1, . . . , xn}).

Proof. Applying the above Generalized Rolle’s Theorem n + 1 times to the function

Ψ(t) = f (t) − Pn
γi

(t) +K
n∏

j=0

(γi (t) − γi (x j ))

where K is such that Ψ(x) = 0, and remarking that

(Pn
γi

)(n+1)(t) = 0

and (
n∏

j=0

(γi (t) − γi (x j ))

)(n+1)

(t) = (n + 1)!

the proposition holds. �

Application to the classical Lagrange interpolation
Let f ∈ Fn+1

γi
([a, b]), x ∈ (a, b) and let x0, x1, . . . , xn be different points in [a, b]. Then

f (x) − Pn(x) =
( fγi − Pn

γi
)(n+1)(ξ)

(n + 1)!
(γi (x) − γi (x0)) . . . (γi (x) − γi (xn))

where Pn(x) and Pn
γi

(x) are, respectively, the Lagrange polynomial and the polynomial defined in Proposition 4.
A final remark
If f ∈ C([a, b]) is sufficiently smooth at all points x ∈ (a, b) \ {y0, y1, . . . , ym} having finite lateral derivatives at

each yi , then taking

γ =

m∑
i=0

γi

and considering

Fγ ([a, b]) :=

{
f ∈ C([a, b])/∃℘( f )(x) := lim

h→0

f (x + h) − f (x)

γ (x + h) − γ (x)
, ∀x ∈ (a, b)

}
,

we will obtain that

f ∈ Fγ ([a, b]).

Acknowledgements

The first and second authors’ research was supported in part by the Spanish grants MTM2004-07114 and
00675/PI/04.

References

[1] J.H. Foster, F.B. Richards, The Gibbs phenomenon for piecewise-linear approximation, Amer. Math. Monthly. 98 (1) (1991) 47–49.
[2] D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput. Appl. Math. 128 (1–2) (2001) 83–131.
[3] D. Gottlieb, C.W. Shu, A. Solomonoff, H. Vandeven, On the Gibbs phenomenon. I. Recovering exponential accuracy from Fourier partial sum

of a nonperiodic analytic function. Orthogonal polynomials and numerical methods, J. Comput. Appl. Math. 43 (1-2) (1992) 81–98.
[4] D. Gottlieb, C.W. Shu, On the Gibbs phenomenon. III. Recovering exponential accuracy in a sub-interval from a spectral partial sum of a

piecewise analytic function, SIAM J. Numer. Anal. 33 (1) (1996) 280–290.



S. Amat et al. / Journal of Computational and Applied Mathematics 221 (2008) 47–51 51

[5] D. Gottlieb, C.W. Shu, On the Gibbs phenomenon. V. Recovering exponential accuracy from collocation point values of a piecewise analytic
function, Numer. Math. 71 (4) (1995) 511–526.

[6] D. Gottlieb, C.W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (4) (1997) 644–668.
[7] X. Li, On the Lagrange interpolation for a subset of Ck functions, Constr. Approx. 11 (3) (1995) 287–297.
[8] G. Mastroianni, J. Szabados, Jackson order of approximation by Lagrange interpolation, Rend. Circ. Mat. Palermo 2 (33) (1993) 375–386.
[9] G. Mastroianni, J. Szabados, Jackson order of approximation by Lagrange interpolation. II, Acta Math. Hungar. 69 (1–2) (1995) 73–82.

[10] J. Stoer, R. Burlirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
[11] S.P. Zhou, On approximation by Lagrange interpolating polynomials for a subset of the space of continuous functions, Colloq. Math. 75 (1)

(1998) 1–5.
[12] S.P. Zhou, L.Y. Zhu, Convergence of Lagrange interpolation polynomials for piecewise smooth functions, Acta Math. Hungar. 93 (1–2) (2001)

71–76.


	Lagrange interpolation for continuous piecewise smooth functions
	Introduction
	Lagrange interpolation in the Newton form
	Auxiliary family of continuous piecewise smooth functions
	Acknowledgements
	References


