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We uncover a contribution to the NLO/NLL threshold resummed total cross section for top quark pair
production at hadron colliders, which has not been taken into account in earlier literature. We derive
this contribution – the difference between the singlet and octet hard (matching) coefficients – in exact
analytic form. The numerical impact of our findings on the Sudakov resummed cross section turns out to
be large, and comparable in size to the current estimates for the theoretical uncertainty of the total cross
section. A rough estimate points toward a few percent decrease of the latter at the LHC.
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1. Introduction

Improving the theoretical accuracy of the total cross section for
top quark pair production is a major goal, given the importance
of top physics, the excellent data-taking ability of the Tevatron
and the imminent start of the LHC. Yet, relatively few theoretical
calculations for this observable have been done so far. The most
important input are the next to leading (NLO) numerical calcu-
lations of [1–3], where the NLO correction with accuracy better
than 1% was derived. The first analytic NLO calculation of this ob-
servable [4] confirmed these results and their estimates of the nu-
merical uncertainties. By demonstrating the appearance of a priori
unexpected analytic structures, that work also clarified why theo-
retical progress in top production was hampered for so long. While
work towards the derivation of the NNLO corrections to the total
top quark pair production cross section is underway [5–11] more
theoretical effort will be needed before the NNLO result becomes
available for phenomenological analysis.

In view of the lack of improved fixed order calculations in the
last ten years or so, the only other source of refinement in the the-
oretical predictions for the total top quark pair production cross
section was based on the so-called soft-gluon resummation [12–
17] (related phenomenological analyses can be found in [18–20]).
The basic idea behind the resummation approach is to utilize our
ability to predict certain logarithmic terms to all orders in the
strong coupling expansion to gain an insight of the behavior of
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the cross section at higher orders. That, in principle, implies better
control over the associated theoretical uncertainties.

Heavy flavor pair production at hadron colliders is a promi-
nent application of the global soft-gluon resummation program.
The reason is that at least four hard partons are involved in the un-
derlying scattering process. As it is well known (see, for example,
Ref. [21]) in the case of scattering of four or more colored par-
tons the color algebra is non-trivial. This, in turn, spoils the simple
exponentiation picture familiar from processes like Drell–Yan and
Deep Inelastic Scattering.

As was first established in Ref. [22], the one-loop soft anoma-
lous dimension matrix that controls the non-trivial soft-gluon cor-
relations in this process diagonalizes in the singlet/octet basis in
the kinematical configuration in question. This is a very impor-
tant result that is the basis for the simplified exponentiation of
the next-to-leading soft logarithms (NLL) in this process.

Utilizing the above results, the exponentiation formula for the
total inclusive top quark pair production at hadron colliders be-
yond the leading logs was given in Ref. [17]. The singlet/octet
diagonalization mentioned above implies that the soft function �

is just a sum � = �1 + �8 of two standard Sudakov-type expo-
nents, which separately describe the exponentiation of the singlet
(resp. octet) color channels. Each one of the two exponents is con-
trolled by its own set of anomalous dimensions

ln �i j,I(N) =
1∫

0

dz
zN−1 − 1

1 − z

( 4m2(1−z)2∫
μ2

dq2

q2
Aij

(
αs

(
q2))

+ Dij,I
(
αs

(
4m2(1 − z)2))). (1)
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The indices i j refer to the partons in the initial state: i j = (qq̄, gg),
I = 1,8 and N is the Mellin moment dual to the kinematical
variable ρ = 4m2/s (with s being the partonic invariant mass).
The Mellin transform is defined as f (N) = ∫ 1

0 ρN−1 f (ρ)dρ . The
anomalous dimensions Aij = Ai + A j describe soft-collinear initial
state radiation. They have a standard expansion in powers of the
running strong coupling, see e.g. Ref. [17], and are known in QCD
through three loops [23,24]. Contrary to Aij , the anomalous di-
mensions Dij,I control wide angle soft radiation and depend both
on the initial and final states. They are a priori unknown, but one
linear combination of Dij,1 and Dij,8 can be fixed from existing
results for the threshold expansion of the total cross-section [1,
2,4] at NLO. To fix uniquely both anomalous dimensions at the
same order of perturbative expansion, the authors of Ref. [17] used
heuristic arguments, namely, that the Sudakov exponent for the
color singlet channel is identical to the one known from processes
like Drell–Yan and Higgs production. With the help of an explicit
calculation, in this Letter we are able to directly confirm that as-
sumption through NLO/NLL.

Besides the soft Sudakov exponents �i j,I , color dependence is
also present in the so-called hard coefficients that we discuss next.
In the singlet/octet basis one expresses the Sudakov total cross-
section for top quark pair production at hadron colliders within
NLL accuracy as

σ TOT
i j (N) = σi j,1(N) + σi j,8(N), (2)

where the two terms are given by

σi j,I(N) = σ Born
i j,I (N)σ H

i j,I�i j,I(N). (3)

The hard coefficients σ H
i j,I are process dependent and once the

leading order correction σ Born
i j,I (N) has been factored out, they con-

tain only N-independent constant terms. The coefficients σ H
i j,I are

uniquely defined by the condition that in the limit N → ∞ the Su-
dakov exponents �i j,I(N) contain only powers of ln(N). As usual,
the hard coefficients are extracted from a fixed order calculation.
Their derivation through NLO is the main goal of this article.

In Eq. (3) we omitted contributions from Coulomb terms, i.e.
terms that in ρ-space behave as ∼ αn

s /βk , where β = √
1 − ρ is

the small velocity of the quark pair. The Coulomb terms represent
an effect distinct from the soft-gluon logs considered in this article.
These corrections have been analyzed in Refs. [17,25,26] with the
conclusion that they have an impact only in the immediate vicinity
of the threshold. We refer to these references for further details.

Next we explain the origin of the color index I in the hard func-
tions appearing in Eq. (3). The easiest way to see why it should be
present is to recall the basic factorization property of gauge am-
plitudes [27,28]. Keeping explicit only information about the color,
the factorization relation for any n-particle amplitude M reads

MI = J · S I J · H J . (4)

In the equation above S I J is the soft function mentioned above,
I, J are color indices and H is the so-called hard function, which is
finite. While the structure of the color diagonal jet function J and
the soft function S can be made quite transparent based on general
process-independent arguments [29–32], the form of the process
dependent hard function H J can only be obtained from a direct,
process specific calculation. The matrix structure in Eq. (4) natu-
rally translates into differential or fully integrated over the phase
space cross sections. An explicit example for that procedure can be
found in Ref. [33].

The color dependence of the hard coefficients σ H
i j,I was not

available to any of the previous studies of soft-gluon resumma-
tion for the total inclusive cross section in hadronic collisions. The
main goal of this article is to complete this gap in the literature by
deriving the exact coefficients from a dedicated fixed order calcula-
tion, thus allowing a consistent NLO/NLL calculation and soft-gluon
resummation for this observable. It is also a prerequisite for any
attempt for going beyond the current NLL accuracy level.

In the original Ref. [17] these coefficients were approximated
with the numerically known, color averaged coefficient taken from
the calculations of Refs. [1,2]. Such an approximation is formally
correct if one restricts oneself only to the resummation of the NLL
soft logs since, as far as the towers of logs are concerned, these
matching coefficients contribute starting from NNLL. On the other
side, such an approximate choice is also correct to NLO, since by
construction it reproduces the fixed order NLO results for the color
summed cross section in Eq. (2). Nevertheless, one expects that the
specific choice does have a numerical impact on the resummed
cross section. This is easy to see with the help of the following ar-
gument: the total Sudakov cross section is a linear combination of
two all-order exponents (see Eq. (2)) with coefficients proportional
to the hard coefficients σ H

i j,I . Therefore, a modification of the two
coefficients in such a way that their color-averaged contribution is
kept fixed, results in a change of the weight these two exponents
(singlet/octet) carry.

The effect of this modification should be much less pronounced
at the Tevatron compared to the LHC since there the main pro-
duction mechanism for top-pair production is through light quark
pair annihilation. It is known that for the qq̄ production through
NLO/NLL only color octet contributes, and in this case the hard co-
efficient has always been known with high accuracy.

One final comment regarding the hard coefficients σ H
gg,I . As was

established in Ref. [4] and also investigated in Ref. [26], the “con-
stant” term in the color averaged gg cross-section extracted from
[1] differs by around 7% from the exact value. It is reasonable to
suspect that this correction might be quite sizable. We detail our
findings in the next section.

2. Results

To derive the hard coefficients σ H
i j,I we follow the technique

described in Ref. [4]. The main idea is to work directly with cut
diagrams (as in the optical theorem) instead of performing ex-
plicit integrations over the phase space. Since cut diagrams are
very similar to normal Feynman integrals, it is possible to de-
rive integration-by-parts identities linking integrals with different
powers of the numerators and denominators. These can in turn
be solved for a relatively small set of masters. Using such a re-
duction, we can obtain a system of differential equations for the
master integrals themselves. The equations can be solved analyt-
ically, mostly in terms of harmonic polylogarithms. The only re-
quired modification with respect to our original publication [4]
consists in the need to insert suitable color projection operators
in order to separate the contributions where the heavy pair is in a
singlet/octet state. To this end we define the singlet state as

|1, i, j〉 = 1√
N

δi j|1〉, (5)

where i and j are the color indices of the quark and anti-quark
respectively. The projection onto the singlet state |1〉, can now be
performed with the help of the following simple modification of
the color generators adjacent to the top/anti-top lines from both
sides of the cut (see Fig. 1 for definition of the color indices)

T a1
i,k1

T a2
k2, j T

b1
l1,i T

b2
j,l2

−→ 1

Nc
T a1

i,k1
T a2

k2,i T
b1
l1, j T

b2
j,l2

. (6)

The remaining contribution is simply attributed to the color octet
state.
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Fig. 1. Color indices in a cut graph for top quark pair production, necessary to define
the color projection onto singlet/octet states Eq. (6). The dashed line represents the
cut through the top line with color index i, and the anti-top line with color index j.

It is interesting to note that the color separation is well defined
only in the vicinity of the threshold. Further away, both contri-
butions become separately divergent. This is not really surprising,
since the octet state will have a tendency to attract radiated glu-
ons and hadronize into a singlet. The necessity to combine both
singlet and octet contributions in order to obtain finite cross sec-
tions is only visible starting from O(β3), and does not affect our
discussion of soft-gluon effects.

Once the color separation has been accomplished, the result
needs to be expanded around threshold. The resulting expressions
(keeping also the Coulomb terms) read

σqq̄,1(β) = α3
s × O

(
β3), (7)

σqq̄,8(β) = σ Born
qq̄,8 (β)

{
1 + αs

π

[(
C F − C A

2

)
π2

2β
+ 8C F log2 β

+ (
C F (−16 + 24 log 2) − 2C A

)
logβ

+ C F

(
8 − π2

3
− 21 log 2 + 16 log2 2

)

+ C A

(
77

9
− π2

4
− 5 log 2

)
+ nl

(
−5

9
+ 2 log 2

3

)
− 8

9

+ log

(
μ2

m2

)(
−4C F log β + C F

(
5

2
− 4 log 2

)

+ 11

6
C A − nl + 1

3

)
+ O(β)

]
+ O

(
α2

s

)}
, (8)

σgg,1(β) = σ Born
gg,1 (β)

{
1 + αs

π

[
C F

π2

2β
+ 8C A log2 β

+ C A(−16 + 24 log 2) logβ + C F

(
−5 + π2

4

)

+ C A

(
17 − 7π2

12
− 24 log 2 + 16 log2 2

)

+ log

(
μ2

m2

)(
−4C A logβ + C A(4 − 4 log 2) − 1

3

)

+ O(β)

]
+ O

(
α2

s

)}
, (9)

σgg,8(β) = σ Born
gg,8 (β)

{
1 + αs

π

[(
C F − C A

2

)
π2

2β
+ 8C A log2 β

+ C A(−18 + 24 log 2) logβ + C F

(
−5 + π2

4

)

+ C A

(
21 − 17π2

24
− 26 log 2 + 16 log2 2

)

+ log

(
μ2

m2

)(
−4C A logβ + C A(4 − 4 log 2) − 1

3

)

+ O(β)

]
+ O

(
α2

s

)}
, (10)

where

σ Born
qq̄,1 (β) = 0, (11)

σ Born
qq̄,8 (β) = πα2

s

8m2

(N2
c − 1)

N2
c

β + O
(
β3), (12)

σ Born
gg,1 (β) = πα2

s

4m2

1

Nc(N2
c − 1)

β + O
(
β3), (13)

σ Born
gg,8 (β) = πα2

s

8m2

N2
c − 4

Nc(N2
c − 1)

β + O(β3). (14)

The coupling αs is the renormalized MS coupling evaluated at
scale μ2 and running with n f = nl + 1 active flavors. We follow
the definitions and conventions from Ref. [4]. The relation between
the coupling running with nl and nl + 1 flavors can also be found
there.

The results in Eqs. (7)–(10) are in agreement with the ones ex-
tracted in Ref. [26] from calculations of quarkonium production at
hadron colliders [34,35].

For applications to soft-gluon resummation the above results
are also needed in Mellin space. One can easily switch between the
two representations of the fixed order threshold expansion and the
relevant formulas can be found, for example, in Ref. [18]. To further
simplify the expressions, we have effectively absorbed the Euler
constant into the soft function by switching to a modified Mellin
moment N = N exp(γE). After performing the Mellin transforma-
tion we can extract the exact expressions for the hard coefficients
σ H

qq̄,I as defined in Eq. (3) by keeping only the non-log(N) terms.
The results read

σ H
qq̄,1 = O

(
α2

s

)
, (15)

σ H
qq̄,8 = 1 + αs

π

[
C F

(
−8 + 2π2

3
+ 3 log 2

)

+ C A

(
59

9
− π2

4
− 3 log 2

)

+ nl

(
−5

9
+ 2 log 2

3

)
− 8

9
+ log

(
μ2

m2

)(
−3

2
C F

+ 11

6
C A − nl + 1

3

)]
+ O

(
α2

s

)
, (16)

σ H
gg,1 = 1 + αs

π

[
C F

(
−5 + π2

4

)
+ C A

(
1 + 5π2

12

)

− 1

3
log

(
μ2

m2

)]
+ O

(
α2

s

)
, (17)

σ H
gg,8 = 1 + αs

π

[
C F

(
−5 + π2

4

)
+ C A

(
3 + 7π2

24

)

− 1

3
log

(
μ2

m2

)]
+ O

(
α2

s

)
. (18)

The coefficients equations (15)–(18) are the main result from
the present work. Due to the lack of a singlet contribution through
that order in perturbation theory (see however the discussion at
the end of Section 3), σ H

qq̄,8 coincides with the known expressions
for the color averaged cross section in the literature [1,2,4]. On the
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other hand, the coefficients for the gg reaction are new. They dis-
agree with the corresponding coefficients presented in Ref. [18].
Such disagreement is not surprising given the fact that the color
dependence of the hard coefficients has not been taken into ac-
count in the attempt made in that reference to exponentiate the
NNLL soft logs.

Next we comment on the properties of the results above. The
vanishing of the LO singlet contribution in the qq̄ is well known,
and is due to the fact that the LO reaction is mediated by an s-
channel gluon. Since the vanishing is not due to kinematics but
due to color effects, one expects that at higher orders this prop-
erty may no longer be true. At NLO the virtual corrections are
again zero due to the sandwiching of the one-loop amplitude with
the projected tree-level diagram. On the other hand, the square of
the one-gluon real emission diagrams is not identically zero. Our
direct calculation establishes that the color singlet contribution in
the qq̄ reaction at NLO is suppressed by a factor of β2 relative to
the color averaged tree-level contributions and is thus subleading.
Such leading behavior is due to the absence of Coulomb singulari-
ties and stronger suppression from the three-particle phase space.

A rather striking feature of the exact color coefficients is that
their color dependence is “standard”, i.e. they are simply polyno-
mials in C F , C A , etc. This is to be contrasted to the color aver-
aged coefficients used in the earlier literature where color factors
∼ 1/(N2

c − 2) appear.
It is very interesting to try to estimate the size of the numer-

ical effect of the new terms in the gg reaction derived here and
in Ref. [4]. To that end we calculate the hard corrections σ H

i j,I and
compare them to their counterparts from Ref. [17]. In the calcula-
tion we take Nc = 3, μ2 = m2 = m2

top, αs(n f = nl + 1) ≈ 0.108 and
we restore the dependence of γE as explained above. We get the
following results

σ
H(BCMN)
gg = 1 + αs

π
14.39 + O

(
α2

s

)
, (19)

σ
H(BCMN)
gg

∣∣
C3exact = 1 + αs

π
12.04 + O

(
α2

s

)
, (20)

σ H
gg,1 = 1 + αs

π
9.16 + O

(
α2

s

)
, (21)

σ H
gg,8 = 1 + αs

π
13.19 + O

(
α2

s

)
. (22)

The function σ
H(BCMN)
gg is defined as in Ref. [17]. The func-

tion σ
H(BCMN)
gg |C3exact has the same functional form as the one in

Eq. (19), but the value of the constant C3 has been modified from
C3 = 37.23 (as derived from Ref. [1] and as applied in Ref. [17]) to
its exact value C3 = 34.88 (as derived in Ref. [4]).

Dividing Eqs. (21), (22) by Eq. (19) and recalling Eq. (3), we see
that the effect of the color dependence in the hard coefficients is a
decrease of the singlet (resp. octet) Sudakov cross section by 12%
(resp. 3%) compared to the ones in Ref. [17].

This is a large effect. Indeed, the shifts we observe in the Su-
dakov factor are as large in size as the present conservative es-
timate [19] of the theoretical uncertainty of the total top pair
production cross section and are significantly larger than the total
cross section uncertainty estimate in Ref. [18]. A detailed phe-
nomenological investigation of the results derived here will require
a dedicated analysis.

It is also interesting to demonstrate the impact purely due to
the numerical uncertainty in the constant C3. To that end we con-
sider the shift with respect to the results in Ref. [17]. Dividing
Eq. (20) by Eq. (19) one can easily see that its effect is to decrease
the hard function σ H

gg (and thus the whole Sudakov cross section)
by 5%. This is also a very significant effect given that its origin is
pure numerics.
Another view of the impact of our results can be obtained by
looking at the cross section expanded to NNLO, similarly to what
has been done in [18]. Ignoring terms coming from Coulomb en-
hancement, and cutting the logarithmic expansion at log2 β (see
discussion in Section 3), the result presented in Eq. (21) of Ref. [18]
for the NNLO contribution reads

σ
(2)
gg = σ Born

gg (β)
(
4608 log4 β + 1894.9 log3 β

− 3.4811 log2 β + O(logβ)
)
, (23)

where the expansion parameter has been taken to be αs/(4π)

σgg(β) = σ Born
gg (β) + αs

4π
σ

(1)
gg +

(
αs

4π

)2

σ
(2)
gg + O

(
α3

s

)
. (24)

It turns out that the coefficient of log2 β exhibits an accidental
cancellation and is in fact given by

−14306.9505 + 384C3. (25)

Inserting the exact value of C3 derived in [4], the coefficient of
log2 β in Eq. (23) changes to

−912.35, (26)

i.e. the change of only 7% in the value of C3 results in a magnifi-
cation by a factor of about 260 of the coefficient of the quadratic
log of σgg(β) at NNLO.

3. Summary and implications beyond NLO/NLL

In this work we demonstrate that separate color singlet/color
octet hard (matching) coefficients need to be introduced in the
Sudakov total top quark pair production cross section. With the
help of a dedicated fixed order calculation we derive these coef-
ficients in analytic form. The difference between the hard coeffi-
cients for the two color states has not been considered in earlier
soft-gluon resummation literature. We estimate the effect of these
new contributions showing that they decrease the Sudakov total
cross section by 12% in the singlet and by 3% in the octet channel.
These shifts are large when compared to the current conservative
estimate of the uncertainty on the total top quark pair production
cross section.

The effect of these new contributions on the total top produc-
tion cross section will be somewhat reduced due to the subtraction
of the O(αs) contributions from the Sudakov cross section (see
Ref. [17] for detailed description of the NLO/NLL matching pro-
cedure). However, we have also demonstrated that the new cor-
rections modify the terms in the Sudakov cross section at order
O(α2

s ) by a large amount. Therefore, a few percent effect on the
total top production cross section at the LHC can easily be antic-
ipated. The exact size of the impact of our findings can only be
obtained from a detailed phenomenological analysis.

With the results derived here and in Ref. [4] the NLO/NLL
program for the total top quark pair production cross section at
hadron colliders is now completed. The precision requirements for
this crucial observable for the LHC program are very high and
mandate improved theoretical precision. In principle, to achieve
that one has to go beyond the current NLO/NLL level of accuracy.

Significant progress has already been made towards the direct
fixed order calculation of the top-pair production cross section at
NNLO [4–11]. In the near future, improvements can be expected
from the careful analysis of the new results reported here and
in Ref. [4]. The natural step beyond that is to try to promote the
resummation formalism to the NNLL level. We discuss in the fol-
lowing how this can be done. Before we proceed, we would like to
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make a comment concerning Ref. [18] where such an attempt has
already been made. The comparison with the direct exact calcula-
tion reported here shows that the one-loop hard coefficients used
in that reference are incorrect. Since this discrepancy starts at the
level of NLO/NLL it will clearly also affect their predictions for the
NNLL terms. For that reason we have excluded the single log terms
from our discussion around Eq. (23).

As we emphasized in our previous discussion, the basis [22]
of the threshold exponentiation for the top pair cross section is
the singlet/octet diagonalization of the soft anomalous dimension
matrix in this special kinematics. Therefore, the extension of the
resummation formalism to the NNLL level, requires to first verify if
the corresponding two-loop massive anomalous dimension diago-
nalizes in a similar manner. As of writing of this Letter there exists
no such an indication in the literature. In fact, the only known [36]
property of the two-loop massive anomalous dimension matrix is
that it should differ from the corresponding massless one (known
through two-loops from Refs. [31,37]) by terms vanishing in the
massless limit as powers of the mass. Clearly this information is
insufficient to determine its behavior near threshold.

The next open problem in the NNLL resummation program
would then be the derivation of the two-loop anomalous dimen-
sion Dij,8 appearing in Eq. (1). Arguments about its value are given
in Ref. [18]. In the present work, based on an NLO fixed order cal-
culation, we make no statement about it. That would be a subject
for future investigation.

The contributions from Coulomb singularities through two-
loops are known from other processes, and have been summarized
in Ref. [18].

Finally, we turn our attention to the hard coefficients σ H
i j,I from

Eq. (3). The complete set at NLO has been presented in this work.
The corresponding two-loop corrections can only be extracted from
a future two-loop calculation of the top-production cross-section
near threshold. Clearly, this is a very demanding task. Moreover,
there might be an a priori non-vanishing contribution from the
square of the one-loop virtual diagrams to σqq̄,1 starting from or-
der α4

s (due to Coulomb enhancements and weaker suppression
from the two-particle phase space). If indeed nonzero, it will con-
tribute to a tower of NNLL soft logs and might have a numerical
impact on the Tevatron predictions. Such a possibility has not been
investigated so far in the literature.

As a final comment we would like to point to our discussion
in Ref. [4], where we have argued about the rather limited phe-
nomenological value of truncating the all order exponentiation to
derive partial NNLO (or higher) terms. Specific examples can be
found in Fig. 3 of Ref. [38] and in Ref. [4].
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