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This paper is devoted to the numerical treatment of fractional differential equations. Based
on the Grünwald–Letnikov definition of fractional derivatives, finite difference schemes
for the approximation of the solution are discussed. The main properties of these explicit
and implicit methods concerning the stability, the convergence and the error behavior are
studied related to linear test equations. The asymptotic stability and the absolute stability
of these methods are proved. Error representations and estimates for the truncation,
propagation and global error are derived. Numerical experiments are given.
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1. Introduction

The subject of fractional calculus has gained considerable popularity and importance during the past three decades
mainly due to its attractive applications in numerous, seemingly diverse and wide spread fields of science and engineering.
Fractional differential equations (FDEs) have been used for mathematical modeling in potential fields, hydraulics of dams,
diffusion problems, waves in liquids and gases, in heat equations, especially modeling oil strata, and in Maxwell’s equation.
Modeling of diffusion in a specific type of porousmedium is one of themost significant applications of fractional derivatives.
The fractional calculus provides an excellent instrument for the description of memory and hereditary properties of various
materials and processes. Valuable monographs have been published on fractional calculus and applications (e.g., [1–7]).
Further theoretical results, applications and modeling for ordinary and partial FDEs were discussed (e.g., [8–10]).

Numerical methods must conserve these properties of FDEs, and various schemes were proposed (e.g., [11–22]). This
paper addresses the Grünwald–Letnikov approximation and follows the statement in the monography of Podlubny [6]. In
a sense the resulting scheme for FDEs of fractional order α is an extension of the Euler scheme for ordinary differential
equations and the given results reduce to that case if α = 1. Consider the initial value problem

y′(t) = f (y(t)), y(t0) = y0,

then the explicit or implicit Euler method scheme reads

yn+1 = yn + hf (yn) or + hf (yn+1).

Consider the initial value problem of an FDE

Dαy(t) = f (y(t)), y(t0) = y0,

where always the existence and uniqueness of a solution is assumed. Dαy(t) means the derivative of order α of the function
y(t). The exact definition of the Riemann–Liouville and Caputo derivative is given later. There is a small difference between

∗ Corresponding author.
E-mail addresses: rudolf.scherer@kit.edu (R. Scherer), shyamkalla@yahoo.com (S.L. Kalla), tyf@lsec.cc.ac.cn (Y.F. Tang), jfhuang@lsec.cc.ac.cn

(J.F. Huang).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.03.054

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82546931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.03.054
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:rudolf.scherer@kit.edu
mailto:shyamkalla@yahoo.com
mailto:tyf@lsec.cc.ac.cn
mailto:jfhuang@lsec.cc.ac.cn
http://dx.doi.org/10.1016/j.camwa.2011.03.054


R. Scherer et al. / Computers and Mathematics with Applications 62 (2011) 902–917 903

the Riemann–Liouville and the Caputo derivative. But the Caputo definition has advantages for initial value problems.
M. Caputo was the first to give application of fractional calculus to mechanics, especially to linear models of viscoelasticity
[23,24]. This paper mainly deals with FDEs using the Caputo operator of fractional order α with 0 < α < 1. And the Caputo
derivative is approximated by the Grünwald–Letnikov approach using finite differences of fractional order. In the case of
FDEs with inhomogeneous initial values, a correction term rα

n+1y0 has to be added. Then the Grünwald–Letnikov scheme
reads in the explicit and implicit cases as

yn+1 = cα
1 yn + cα

2 yn−1 + · · · + cα
n+1y0 + rα

n+1y0 + hα f (yn) or + hα f (yn+1).

The Grünwald–Letnikov method is proceeding iteratively but the sum in the scheme becomes longer and longer, which
reflects the memory effect. The coefficients cα

ν are recursively defined and show very smooth properties, e.g., they are
positive and show strong damping effect. Therefore, they imply smooth properties for the scheme, but the correction term
causes some perturbation. A discrete version of the Gronwall lemma applied in proofs is very useful. The properties of the
Grünwald–Letnikov approximation as a numerical scheme concerning the stability and error estimates related to linear
test equations are studied. Because of the long sum there arise discrepancies compared with the Euler method. One has to
distinguish between the individual schemes for computing yk and their behavior when h → 0 and k is fixed, and the scheme
for computing yn+1 at the point t = (n + 1)h and its behavior when h → 0 and n → ∞. The truncation error at the point
t = (n + 1)h satisfies O(h1+α). But the truncation error of the scheme in the first step tends to a constant when h → 0 in
the case of an inhomogeneous initial value and satisfies O(hα) in the case of a homogeneous initial value. The global error is
estimated by the sum of the truncation errors over all previous steps providedwith damping coefficients.We can expect the
order of convergence to be one. The maximum value of the global error over the whole grid is dominated by the truncation
error in the first step.

Interesting examples of FDEs using the Caputo definition, denoted by Dα
∗
, are the Bagley–Torvik equation [25,26], [6, pp.

224–231]

ay′′(t) + bD3/2
∗

y(t) + cy(t) = f (t), y(0) = y′(0) = 0,

a prototype of fractional differential equations, which can be reduced to a system of FDEs of order α = 1/2 with four
equations, and further, the test equation

Dα
∗
y(t) = λy(t), y(0) = y0,

and the fractional extension of the heat equation as a model for oil strata [27,8,28]

Dα
∗
u = c2

∂2u
∂z2

, 0 < r, z, t < ∞, 0 < α ≤ 1,

subject to nonstandard boundary conditions.
In Section 2,we present the definition of fractional derivatives in the sense of Riemann–Liouville and Caputo andmention

the Mittag-Leffler function. The definition of fractional derivatives due to Grünwald–Letnikov is also given. The fractional
order binomial coefficients and coefficients relevant for error representations are studied and monotony properties are
derived in Section 3. The behavior and properties of these coefficients are investigated and explained in tables. In Section 4,
the Grünwald–Letnikov scheme based on finite differences is discussed. In some sense it is an extension of the classical
explicit and implicit Euler methods. The paper mainly deals with FDEs using the Caputo operator of order α. In the case of
FDEs with inhomogeneous initial values, a correction term has to be added. The stability of the Grünwald–Letnikov scheme
is investigated in Section 5. The asymptotic stability and absolute stability are proved. If α → 1 the results reduce to those
of the classical Euler methods. Section 6 deals with the application of the Grünwald–Letnikov scheme to a test equation
and a detailed error analysis. The error coefficients are studied when the steps are increasing. The representation of the
propagation error emphasizes the stability of the Grünwald–Letnikov method caused by the strong damping factors in the
fractional binomial evaluation. The global error is estimated by the sum of the truncation error of the current step and all
previous steps, where again the damping effect of the fractional binomial coefficients is given. Numerical experiments are
given to illustrate the properties of the schemes in the last section.

2. Fractional derivatives

There exist different approaches to fractional derivatives [6]. For simplification we consider the interval [0, t] instead
of [a, t] and omit a = 0 as an index in the differential operator. Suppose that the function y(τ ) satisfies some smoothness
conditions in every finite interval (0, t) with t ≤ T . The Riemann–Liouville definition ( ≈1850) [6, p. 68] reads

Dα
Ry(t) =


1

Γ (m − α)

dm

dtm

∫ t

0

y(τ )

(t − τ)α+1−m
dτ m − 1 ≤ α < m

dmy(t)
dtm

α = m,

(2.1)
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and the Caputo definition (1967) [23,6, p. 79]

Dα
∗
y(t) =


1

Γ (m − α)

∫ t

0

y(m)(τ )

(t − τ)α+1−m
dτ m − 1 ≤ α < m

dmy(t)
dtm

α = m.

(2.2)

Later, the Grünwald–Letnikov definition (1867) based on finite differences is given which is equivalent to the Riemann–
Liouville definition. These approaches provide an interpolation between the derivatives of integer order m − 1 and m. The
two definitions (2.1) and (2.2) are not equivalent to each other, and their difference is expressed by

Dα
∗
y(t) = Dα

Ry(t) −

m−1−
ν=0

rα
ν (t)y(ν)(0), rα

ν (t) =
tν−α

Γ (ν + 1 − α)
. (2.3)

The Caputo operator Dα
∗
has advantages for differential equations with initial values. In the case of Riemann–Liouville and

Caputo derivatives, respectively, the initial values are usually given as

Dα−ν
R y(0) = bν and y(ν−1)(0) = bν for ν = 1, 2, . . . ,m, (2.4)

respectively, i.e., things become easier if the initial values are homogeneous. In this paper we prefer the Caputo operator
and concentrate on the casem = 1, i.e., 0 < α < 1. Then the correction term reads

Dα
∗
y(t) = Dα

Ry(t) − rα
0 (t)y0, rα

0 (t) =
t−α

Γ (1 − α)
. (2.5)

We mention the derivatives of the constant function y0(τ ) = 1, where

Dα
∗
y0(t) = 0 and Dα

Ry0(t) =
t−α

Γ (1 − α)
, (2.6)

and the derivatives of monomials y(τ ) = τ p (p > 0)

Dα
∗
tp = Dα

R t
p

=
Γ (p + 1)

Γ (p − α + 1)
tp−α, (2.7)

and give the following examples (with rounded numbers)

Dα
∗
t2 =

2
Γ (3 − α)

t2−α, D1/3
∗

t2 = 1.3t5/3, D1/2
∗

t2 = 1.5t3/2, D3/4
∗

t2 = 1.8t5/4.

For the representation of solutions of fractional differential equations the two-parametric Mittag-Leffler function is very
useful [6, p. 17]:

Eα,β(z) =

∞−
ν=0

zν

Γ (αν + β)
, α, β > 0, z ∈ C, Eα,1(z) = Eα(z), E1(z) = exp(z).

A direct definition of the fractional derivative Dαy(t) is based on finite differences of an equidistant grid in [0, t]. Assume
that the function y(τ ) satisfies some smoothness conditions in every finite interval (0, t), t ≤ T . Choosing the grid

0 = τ0 < τ1 < · · · < τn+1 = t = (n + 1)h with τk+1 − τk = h (2.8)

and using the notation of finite differences

1
hα

∆α
h y(t) =

1
hα


y(τn+1) −

n+1−
ν=1

cα
ν y(τn+1−ν)


, (2.9)

where

cα
ν = (−1)ν−1

α

ν


, (2.10)

the Grünwald–Letnikov definition reads [6, p. 48]

Dα
Ry(t) = lim

h→0

1
hα

∆α
h y(t). (2.11)

Lemma 2.1 (Order of Approximation [6, pp. 204–208]). Let the function y(τ ) be smooth in [0, T ]. Then the Grünwald–Letnikov
approximation satisfies for each 0 < t < T and a series of step sizes h with t

h ∈ N and t = (n + 1)h

Dα
Ry(t) =

1
hα

∆α
h y(t) + O(h) (h → 0). (2.12)
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Fig. 2.1. Mittag-Leffler function Eα,β (z).

In the case of α a positive integer, the well known finite backward differences are given. If α = 1, then the first order
finite difference 1

h (y(τn+1)− y(τn)) follows, if α = 2, then the second order finite difference 1
h2

(y(τn+1)−2y(τn)+ y(τn−1)),
and so on. It is emphasized that this definition is equivalent to the Riemann–Liouville definition (2.1) but in the case of the
Caputo operator the correction term from (2.3) has to be added. The Grünwald–Letnikov approach can be used without
correction term if the differential equations of the Caputo type have homogeneous initial values.

3. Fractional order binomial series

The binomial evaluation reads [29]

(1 − z)α = 1 −

∞−
ν=1

cα
ν z

ν, (3.1)

where α is any positive real number, z ∈ [0, 1] and cα
ν are the binomial coefficients defined in (2.10) and recursively

connected by

cα
ν =


1 −

α + 1
ν


cα
ν−1. (3.2)

In the classical case α is an integer and the sum is finite. The binomial coefficients, used in the Grünwald–Letnikov
definition, show interesting behavior. The first coefficient is cα

1 = α. For proving the results on stability and error estimates
(in Sections 5 and 6) we introduce the following coefficients for n ≥ 0 and µ ∈ N0:

γ α
µ,k =

Γ (µα + 1)
Γ (kα + 1)

, µ, k ∈ N0 ∪ {−1}, (3.3)

rα
n+1 = γ α

0,−1(n + 1)−α, (3.4)

Sα
µ,n+1 =

n+1−
ν=1

cα
ν (n + 1 − ν)µα, (3.5)

Lα
µ,n+1 = Sα

µ,n+1 + γ α
µ,µ−1n

(µ−1)α, (3.6)

L̂α
0,n+1 = Sα

0,n+1 + γ α
0,−1(n + 1)−α, (3.7)

L̂α
µ,n+1 =

µ−
k=1

γ α
µ,kS

α
k,n+1 + γ α

µ,0L̂
α
0,n+1, (3.8)

V α
µ,n+1 = (n + 1)µα

− Sα
µ,n+1 − γ α

µ,µ−1(n + 1)(µ−1)α (3.9)

Kα
µ,n+1 = (n + 1)µα

− Sα
µ,n+1 − γ α

µ,µ−1n
(µ−1)α, (3.10)

K̂α
µ,n+1 = (n + 1)µα

−

µ−
k=1

γ α
µ,kS

α
k,n+1 − γ α

µ,0L̂
α
0,n+1. (3.11)
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We are interested in the main case 0 < α < 1, but for larger values of α similar results can be deduced. The constants γ α
0,k

are important for error representations (6.4), (6.5). Using Stirling’s formula

γ α
0,µ ∼

1
√
2π

exp(µα + 1)
(µα + 1)µα+0.5

for µα → ∞, (3.12)

we notice that the coefficients γ α
0,µ rapidly tend to zero when µ → ∞ (see also Table 3.3).

Lemma 3.1. The coefficients V α
µ,n+1 given in (3.9) satisfy for µ ∈ N0

V α
µ,n+1 = O(h1−(µ−1)α) for h → 0 (n → ∞). (3.13)

Lemma 3.2. Assume that 0 < α < 1, then all the coefficients cα
ν defined in (2.10) are positive and show the behavior

cα
ν = O


1

ν1+α


(ν → ∞). (3.14)

Further, the coefficients from (2.10), (3.4) and (3.5) satisfy for n ≥ 1 the properties

0 < cα
n+1 < cα

n < · · · < cα
1 = α, (3.15)

α = Sα
0,1 < · · · < Sα

0,n < Sα
0,n+1 < 1, (3.16)

0 < rα
n+1 < rα

n < · · · < rα
1 =

1
Γ (1 − α)

. (3.17)

Lemma 3.3. Assume that 0 < α < 1, then the coefficients given in (3.10) and (3.11) satisfy for h → 0 (n → ∞) the asymptotic
properties

Kα
µ,n+1 = O(h1−(µ−1)α) for µ ∈ N, (3.18)

K̂α
µ,n+1 = O(h1−(µ−1)α) for µ ∈ N0. (3.19)

Proof. Lemma 3.1: Consider the functions y(τ ) = 1 and y(τ ) = τµα and insert them into (2.12) using (2.6), (2.7) and
t = (n + 1)h, then it follows for µ ∈ N0 and for h → 0 (n → ∞)

γ α
µ,µ−1(n + 1)(µ−1)αh(µ−1)α

= h(µ−1)α (n + 1)µα
− Sα

µ,n+1h
µα

+ O(h), (3.20)

and therefore with (3.9) the result is deduced.
Lemma 3.2: The cα

ν from (2.10) are positive, because the binomial product


α

ν


=

1
ν!

α(α − 1) · · · (α − ν + 1) consists of
one positive term and ν − 1 negative terms, compensated by (−1)ν−1. The recurrence relation (3.2) implies (3.15). Using

cα
ν =

(−1)
Γ (−α)

Γ (ν − α)

Γ (ν + 1)
(3.21)

and [5, p. 20]

lim
ν→∞


ν1+α Γ (ν − α)

Γ (ν + 1)


= 1, (3.22)

the result (3.14) is deduced. The Cauchy ratio test shows that setting z = 1 in (3.1) is allowed, which leads to 1 =
∑

∞

ν=1 c
α
ν .

This implies α ≤ Sα
0,n+1 ≤ 1 for each n ≥ 0, and with cα

ν > 0 the monotony (3.16). Property (3.17) is clear from definition
(3.5).

Lemma 3.3: First, regarding (3.9) and (3.10) we derive the representation

Kα
µ,n+1 = V α

µ,n+1 + γ α
µ,µ−1


(n + 1)(µ−1)α

− n(µ−1)α , (3.23)

where the first and the second part in the last line satisfy O(h1−(µ−1)α). The first part is given by Lemma 3.1. If µ = 1, the
second part disappears. For µ ≥ 2 the sequence

(n + 1)(µ−1)α
− n(µ−1)α (n + 1)1−(µ−1)α (3.24)

for n ≥ 0 is bounded. Using the abbreviation x = (µ − 1)α, we have for n → ∞
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Table 3.1
Values of cα

ν for α = 0.8 and α = 0.5.

ν 1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20

α = 0.8 0.80 0.08 0.031 0.018 0.011 0.0079 0.0059 0.0045 0.0036 0.0030 0.0026 0.0021 0.0016 0.0012 0.0010 0.0008
α = 0.5 0.50 0.13 0.063 0.039 0.027 0.021 0.016 0.013 0.011 0.009 0.008 0.007 0.006 0.005 0.004 0.003

Table 3.2
Values of Sα

0,n+1 for α = 0.8 and α = 0.5.

n 0 1 2 3 4 5 6 7 8 9 14

α = 0.8 0.80 0.88 0.91 0.93 0.94 0.95 0.95 0.96 0.96 0.97 0.98
α = 0.5 0.50 0.63 0.69 0.73 0.75 0.77 0.79 0.80 0.81 0.82 0.86

Table 3.3
Values of γ α

0,k for α = 0.8 and α = 0.5.

k 1 2 3 4 5 6 7 8

α = 0.8 1.07 0.70 0.34 0.13 0.04 0.01 0.0007 0.00003
α = 0.5 1.13 1.00 0.75 0.50 0.30 0.17 0.04 0.008

Table 3.4
Values of (−1)K̂α

0,n+1 for α = 0.8 and α = 0.5.

n 0 1 2 3 4 5 6 7 8

α = 0.8 0.0178 0.0051 0.0025 0.0015 0.0010 0.0007 0.0005 0.0004 0.0003
α = 0.5 0.0642 0.0239 0.0132 0.0087 0.0062 0.0047 0.0038 0.0031 0.0026

(n + 1)x − nx

(n + 1)x−1
=

nx


1 +
1
n

x
− 1


(n + 1)x−1

=

nx

1 +

x
n +

x(x−1)
2n2

+ O


1
n3


− 1


(n + 1)x−1

(3.25)

=
xnx−1

+
1
2x(x − 1)nx−2

+ O(nx−3)

(n + 1)x−1
≤ x. (3.26)

Second, (3.9) and (3.11) are regarded. If µ = 0, then K̂α
0,n+1 = V α

0,n+1 and V α
0,n+1 satisfies O(h1+α). If µ > 0, after each term

of the sum in (3.11) we complement

γ α
µ+1−k,µ−k


−(n + 1)(µ−k)α

+ (n + 1)(µ−k)α (3.27)

to get the terms V α
µ+1−k,n+1. Therefore, the representation follows

K̂α
µ,n+1 =

µ−
k=1

γ α
µ,µ+1−kV

α
µ+1−k,n+1 + γ α

µ,0K̂
α
0,n+1, (3.28)

and from Lemma 3.1 the second result of Lemma 3.3 is given. �

In the limit case α → 1, the first coefficients in (3.10) and (3.11) become zero, i.e.,

K̂ 1
0,n+1 = K̂ 1

1,n+1 = K 1
1,n+1 = 0. (3.29)

In Tables 3.1–3.4, used in Sections 5 and 6, some values of the coefficients cα
ν , γ α

0,k, S
α
0,n+1 and K̂α

0,n+1 are presented, where
the coefficients K̂α

0,n+1 are negative:

4. The Grünwald–Letnikov approximation

We are interested in fractional differential equations using the Caputo operator Dα
∗
. The Caputo definition is equivalent

to the Riemann–Liouville and in the case of a homogeneous initial value also to the Grünwald–Letnikov definition. But in
the case of an inhomogeneous initial value the correction term (2.5) is needed. Consider the fractional differential equation
using the Caputo operator

Dα
∗
y(t) = f (y(t)), y(τ0) = y0 (0 < α < 1) (4.1)

and assume that there exists a unique solution y = y(τ ) in the interval [0, T ]. Both cases, the homogeneous and inhomoge-
neous initial values, are considered. For the discretization an equidistant grid is chosen
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0 = τ0 < τ1 < · · · < τN+1 = T with τk+1 − τk = h (4.2)
and let yk denote the approximation of the true solution y(τk). The Grünwald–Letnikov approximation (2.9) is applied to
the left-hand side of (4.1) with respect to τn+1 = (n + 1)h including the correction term (2.5) and the right-hand side is
approximated by f (yn) or f (yn+1). Then the explicit or implicit Grünwald–Letnikov method reads

yn+1 −

n+1−
ν=1

cα
ν yn+1−ν − rα

n+1y0 = hα f (yn) or = hα f (yn+1), (4.3)

where
rα
n+1 = hαrα

0 (τn+1) = γ α
0,−1(n + 1)−α. (4.4)

The correction term rα
n+1y0 tends to zero when n → ∞, and it is zero if Eq. (4.1) with homogeneous initial value y0 = 0 is

considered. In a sense it is an extension of the Euler method to fractional differential equations. If α → 1, then the classical
explicit or implicit Euler method yn+1 − yn = hf (yn) resp. yn+1 − yn = hf (yn+1) is given. Compared with linear multi-
step methods, the sum of divided differences becomes longer and longer. For multistep methods the condition ρ(1) = 0 of
the characteristic polynomial is necessary to reach order one of consistency. For the Grünwald–Letnikov method (4.3) the
following result holds (see (3.11) and (3.19))

ρ(1) = K̂α
0,n+1, (4.5)

where K̂α
0,n+1 = O(h1+α) when h → 0 (n → ∞).

Now the problem is to implement the Grünwald–Letnikov method. When the explicit or implicit method is applied
to (4.1) we get the numerical solution {yn+1}n=0,1,...,N approximating the true solution y(τ ) in the grid points (4.2) in the
iterative way

yn+1 =

n+1−
ν=1

cα
ν yn+1−ν + rα

n+1y0 + hα f (yn) or = hα f (yn+1). (4.6)

The result of Lemma 2.1 about order one of approximation relates to the case where the true values y(τn+1−ν) are used on
the right-hand side of the scheme. In this case we refer later to the truncation error of the method. But we are interested in
the global error which is the sum of the truncation and the propagation error. The global error is estimated by the sum over
the truncation errors in all the previous steps with damping factors. Computing the first approximations y1, y2, . . . with a
short sum, the error is relatively high and is propagated. Therefore it is necessary to create an efficient run-up method for
the starting values to improve the Grünwald–Letnikov scheme. In the case of a homogeneous initial value the situation is
better. In Section 6 the relevant error estimates are studied in more detail.

For the investigation of the stability properties of the Grünwald–Letnikov scheme (4.3) a special form of the discrete
Gronwall lemma [30, p. 14], which can be proved by induction, is very useful.

Lemma 4.1. Assume that {ξn}, {ρn} and {ηn} are nonnegative sequences and

ξn = ρn +

n−1−
k=0

ηkξk for n ≥ 0. (4.7)

Then it holds that

ξn = ρn +

n−1−
k=0

ρkηk

n−1∏
j=k+1

(1 + ηj) for n ≥ 0. (4.8)

This lemma and the following corollary are also valid in the case when Eqs. (4.7), (4.8) and (4.10) are replaced by
inequalities. If it is applied to the Grünwald–Letnikov scheme, then from (4.3) with h = 0 we have

yn+1 =

n+1−
ν=1

cα
ν yn+1−ν + rα

n+1y0 for n ≥ 0. (4.9)

Corollary 4.1. The sequence {yn} from (4.9) satisfies for n ≥ 0 the following relations

|yn+1| =

n+1−
ν=1

rα
ν c

α
n+1−ν

n∏
j=ν+1

(1 + cα
n+1−j) + rα

n+1|y0|, (4.10)

|yn+1| ≤ exp(1)
n+1−
ν=1

cα
ν r

α
n+1−ν + rα

n+1|y0|, (4.11)

|yn+1| ≤ exp(1) + rα
n+1|y0|. (4.12)
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Proof. Since cα
ν and rα

n+1 are positive, the values yn+1 remain positive if y0 > 0, and negative if y0 < 0. Therefore, in Eq. (4.9)
the values yν can be replaced by their absolute values |yν |. Set ξn = |yn|, ρn = rα

n |y0|, ηn = cα
n , which satisfy the assumption

of Lemma 4.1, then the result (4.10) follows.
Regarding (3.5), (3.16) and (3.17), especially rα

ν ≤ 1, the product in (4.10) is estimated by

n∏
j=ν+1

(1 + cα
n+1−j) ≤

n∏
j=0

(1 + cα
n+1−j) ≤ exp(Sα

0,n+1) ≤ exp(1) (4.13)

and the sum by

n+1−
ν=1

rα
ν c

α
n+1−ν ≤ Sα

0,n+1 ≤ 1, (4.14)

which proves the result (4.11) and (4.12). �

5. Stability investigation

We begin with the asymptotic stability. Consider the finite difference equation

yn+1 =

n+1−
ν=1

βνyn+1−ν, n ≥ 0, (5.1)

with arbitrary initial value y0 and solution {yn}n≥0. The finite difference equation is called stable if there exists a constant K
such that

|yn| ≤ K for all n ≥ 0. (5.2)

When the Grünwald–Letnikov scheme (4.3) is applied to Dα
Ry(t) = 0 or Dα

∗
y(t) = 0 (the case when h → 0) with initial

value y(τ0) = y0 for any y0 and 0 < α < 1, then the finite difference (5.1) follows with βν = cα
ν (0 ≤ ν ≤ n) and

βn+1 = cα
n+1 + rα

n+1, where the correction term rα
n+1y0 is necessary in the Caputo case. The Grünwald–Letnikov scheme (4.3)

is called asymptotically stable, if there exists a constant K such that condition (5.2) holds for any arbitrary initial value y0.

Theorem 5.1. The explicit and implicit Grünwald–Letnikov methods (4.3) are asymptotically stable.

Proof. Using properties (3.15)–(3.17) from Lemma 3.2, the asymptotic stability will be deduced. In the Riemann–Liouville
case, where yn+1 =

∑n+1
ν=1 c

α
ν yn+1−ν (without correction term), it yields immediately

|yn+1| ≤ Sα
0,n+1|y0| ≤ |y0|. (5.3)

In the Caputo case, where yn+1 =
∑n+1

ν=1 c
α
ν yn+1−ν + rα

n+1y0 (with correction term), from Corollary 4.1 and (3.17) it follows

|yn+1| ≤ exp(1) + rα
n+1|y0| ≤ exp(1) + |y0|, (5.4)

and therefore the asymptotic stability. �

The absolute stability behavior of methods is investigated when they are applied to convenient test equations, where
0 < α < 1. The following fractional differential equations are proposed and the true solutions are given using the Mittag-
Leffler function:

Dα
Ry(t) = λy(t), Dα−1

R y(t)|0 = b1 (5.5)

y(t) = b1tα−1Eα,α(λtα) = b1tα−1
∞−

ν=1

(λtα)ν

Γ (αν + α)

Dα
∗
y(t) = λy(t), y(0) = y0 (5.6)

y(t) = y0Eα(λtα) = y0
∞−

ν=0

γ α
0,ν(λt

α)ν

Dα
∗
y(t) = λ(y(t) + v0), y(0) = 0 (5.7)

y(t) = −v0 + v0Eα(λtα) = v0

∞−
ν=1

γ α
0,ν(λt

α)ν .

Concerning stability λ < 0 is assumed and concerning error discussion both cases λ < 0 and λ > 0 are considered. We
concentrate on the inhomogeneous Caputo type test equation (5.6), where the solution y(t) satisfies themonotony condition
(see Fig. 2.1)
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|y(t + δ)| ≤ |y(t)| ≤ |y(0)| for all t and δ > 0. (5.8)

The question, whether the numerical solution {yn}n≥0 can preserve this property |yn+1| ≤ |yn| for n ≥ 0, is difficult to
answer, because of the correction term. Therefore correspondingly to the asymptotic stability we demand the boundedness
of the solution.

Definition 5.1. The Grünwald–Letnikov method is called absolute stable for step size h, if applied to the test equation (5.6)
with λ < 0 there exists a constant K such that condition (5.2) holds for any arbitrary initial value y0.

Theorem 5.2. The Grünwald–Letnikov method is absolute stable in the explicit case if the step size h satisfies

|α + λhα
| ≤ α, (5.9)

and in the implicit case without any step size restriction.

Proof. The application of the Grünwald–Letnikov method (4.3) to the test equation (5.6) yields

yn+1 = (α + λhα) yn +

n+1−
ν=2

cα
ν yn+1−ν + rα

n+1y0, (5.10)

yn+1 = (1 − λhα)−1


n+1−
ν=1

cα
ν yn+1−ν + rα

n+1y0


, (5.11)

in the explicit and implicit cases, respectively. In the explicit case the step size condition (5.9) is assumed, and in the implicit
case |1 − λhα

|
−1

≤ 1 is satisfied without any step size restriction. Therefore in both cases the estimate follows

|yn+1| ≤

n+1−
ν=1

cα
ν |yn+1−ν | + rα

n+1|y0|, (5.12)

and further, using Corollary 4.1 with the inequality in (4.8) the condition (5.2). �

Remarks. In the case of the homogeneous test equation (5.7) the same behavior is given for the shifted solution w(t) =

y(t)+v0 and the same stability property can be proved for the shifted approximation wn = yn +v0. The application of (4.3)
delivers the same equations as (5.10) and (5.11), where the yν are replaced by wν and rα

n+1y0 by (1 − Sα
0,n+1)v0. Under the

same assumption as in Theorem 5.2 we derive from the modified equations (5.10) and (5.11)

|wn+1| ≤

n+1−
ν=2

cα
ν |wn+1−ν | + (1 − Sα

0,n+1)v0 (5.13)

and prove by induction |wn+1| ≤ |w0| = v0.

In the case of the test equation (5.5) but with the initial condition y(0) = y0, where the true solution is not known, the
result of Theorem 5.2 also holds. Namely for Riemann–Liouville the correction term rα

n+1y0 is canceled in (5.10)–(5.12), and
again the boundedness of the approximate solution follows by induction.

If α = 1 in (5.9), then the condition for the absolute stability of the explicit Euler method follows. Regarding λ < 0 the
restriction (5.9) is equivalent to |λ|hα

≤ 2α, which remembers the rule of thumb |λ|h ≤ 1 in the classical case. Consider
λ = −100: If α = 1 then h ≤ 0.02, if α = 0.8 then h ≤ 0.005, and if α = 0.5 then h ≤ 0.0001.

6. Error analysis

We consider the explicit and implicit Grünwald–Letnikov method (5.10) and (5.11) applied to the test equation (5.6) for
arbitrary λ and derive asymptotic error representations, where the rule of thumb

|λ|hα < 1 (6.1)

is used. Inserting the true values y(τν) into the right-hand side of (5.10) and (5.11), it is denoted by

ŷn+1 = (α + λhα) y(τn) +

n+1−
ν=2

cα
ν y(τn+1−ν) + rα

n+1y0, (6.2)

ŷn+1 = (1 − λhα)−1


n+1−
ν=1

cα
ν y(τn+1−ν) + rα

n+1y0


, (6.3)

and therefore the truncation error by qn+1 = y(τn+1) − ŷn+1 and the propagation error by pn+1 = ŷn+1 − yn+1. The global
error en+1 = y(τn+1) − yn+1 is split into truncation error and propagation error, i.e., en+1 = qn+1 + pn+1.



R. Scherer et al. / Computers and Mathematics with Applications 62 (2011) 902–917 911

Theorem 6.1. The explicit and implicit Grünwald–Letnikov methods are applied to (5.6) assuming condition (6.1). Then the
truncation error satisfies the asymptotic expansion

qn+1 = y0


K̂α
0,n+1 +

∞−
µ=1

γ α
0,µK

α
µ,n+1λ

µhµα


(6.4)

in the explicit case and

qn+1 = y0
∞−

µ=0

γ α
0,µK̂

α
µ,n+1λ

µhµα (6.5)

in the implicit case, where the coefficients γ α
0,µ, Kα

µ,n+1 and K̂α
µ,n+1 are already given in (3.3), (3.10) and (3.11).

Proof. The true values y(τν) in (6.2) and (6.3) are expanded using the representation of the Mittag-Leffler function Eα(λτ α
ν )

from (5.6)

ŷn+1 = y0(α + λhα)

∞−
k=0

γ α
0,kn

kα(λhα)k + y0
n+1−
ν=2

cα
ν

∞−
k=0

γ α
0,k(n + 1 − ν)kα(λhα)k + y0rα

n+1, (6.6)

ŷn+1 = y0(1 − λhα)−1


n+1−
ν=1

cα
ν

∞−
k=0

γ α
0,k(n + 1 − ν)kα(λhα)k + rα

n+1


. (6.7)

Expanding (1 − λhα)−1
= 1 + λhα

+ · · · and arranging the terms by power of λhα , the evaluation reads in the explicit and
implicit cases

ŷn+1 = y0

L̂α
0,n+1 + γ α

0,1L
α
1,n+1λh

α
+ γ α

0,2L
α
2,n+1(λh

α)2 + · · ·


(6.8)

and

ŷn+1 = y0

L̂α
0,n+1 + γ α

0,1L̂
α
1,n+1λh

α
+ γ α

0,2L̂
α
2,n+1(λh

α)2 + · · ·


, (6.9)

respectively. Compare it with the expansion of the true solution

y(τn+1) = y0

1 + γ α

0,1(n + 1)αλhα
+ γ α

0,2(n + 1)2α(λhα)2 + · · ·

, (6.10)

then using the error coefficients Kα
µ,n+1 and K̂α

µ,n+1 from (3.10) and (3.11) the results (6.4) and (6.5) follow. �

Corollary 6.1. The explicit and implicit Grünwald–Letnikov method are applied to (5.7) assuming condition (6.1). Then the
truncation error satisfies the asymptotic expansion (6.4) and (6.5), respectively, where the first term K̂α

0,n+1 is canceled and y0
is replaced by v0.
Proof. The sameway is pursued as in the previous proof: Replace in (6.2), (6.3), (6.6) and (6.7) the last term rα

n+1y0 by λhαv0.
In (6.6) and (6.7) replace y0 by v0 and let the expansion of theMittag-Leffler function begin with k = 1. Then the expansions
of ŷn+1 and y(τn+1) are deduced as in (6.9) and (6.10), where y0 is replaced by v0 and the first terms without a power of λhα

are canceled. �

Remarks. Concerning the expansion of the truncation error (6.4) and (6.5) we emphasize the following. The behavior of the
individual schemes for computing yk is shown when h → 0 (and k is fixed). The behavior of the scheme for computing yn+1

at the point t = (n+1)h is shownwhen h → 0 (n → ∞). The error coefficients Kα
µ,n+1 and K̂α

µ,n+1 depend on n+1 =
t
h , and

therefore on h. In Lemma 3.3 it is proved that the coefficients Kα
µ,n+1 and K̂α

µ,n+1 satisfy O(h1−(µ−1)α) when h → 0 (n → ∞)

for µ ≥ 0. Therefore, each term of the expansion satisfies O(h1+α). Using
∑

∞

µ=0 γ α
0,µ ≤

4
α
the truncation error itself satisfies

qn+1 = O(h1+α) (h → 0). (6.11)

Further, regarding (3.12) and Table 3.3 we notice that the coefficients γ α
0,µ rapidly tend to zero when µ → ∞. The

assumption of condition (6.1) can be released.

Now let us consider the individual scheme for computing the value yk, where k is fixed. From (6.4) and (6.5) when h → 0
it follows that qk → y0K̂α

0,k in the case of an inhomogeneous initial value. The coefficient K̂α
0,n+1, which dominates the

truncation error, is independent of h and has a negative value. Thus for special values of h there can arise some extinction
with negative and positive values in the expansion. Further, we do not have consistency in the case of an inhomogeneous
initial value. From Table 3.1 we know for α = 0.8 the values K̂α

0,1 = −0.0178, K̂α
0,2 = −0.0051, K̂α

0,3 = −0.0015, which
express the size of the truncation error of the Grünwald–Letnikov scheme (4.3) in the first three steps. Therefore, we can
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assume that the error q1 in the first step is the largest one. In the case of a homogeneous initial value (Corollary 6.1) the
situation concerning the truncation error in the individual steps is better. The main error terms depend on h and satisfy
O(hα).

In the limit case α → 1, where the Euler method results, the first error coefficients in (6.4) and (6.5) become zero
(see (3.29)).

Now the discussion of the propagation error pn+1 = ŷn+1 − yn+1 and the global error en+1 = qn+1 + pn+1 is pursued.

Theorem 6.2. The explicit and implicit Grünwald–Letnikov methods are applied to the test equation (5.6), where for λ < 0 in
the explicit case the stability condition (5.9) is assumed. Then the propagation error satisfies for λ < 0

|pn+1| ≤

n+1−
ν=1

cα
ν |en+1−ν | (6.12)

and for λ > 0

|pn+1| ≤ (cα
1 + λhα)|en| +

n+1−
ν=2

cα
ν |en+1−ν |, (6.13)

|pn+1| ≤ (1 − λhα)−1
n+1−
ν=1

cα
ν |en+1−ν |. (6.14)

Proof. Comparing (5.10), (5.11) with (6.2), (6.3) the propagation error of the explicit and implicit method satisfies

pn+1 = (α + λhα)en +

n+1−
ν=2

cα
ν en+1−ν, (6.15)

pn+1 = (1 − λhα)−1
n+1−
ν=1

cα
ν en+1−ν, (6.16)

respectively, which implies the estimates (6.12)–(6.14). �

Remarks. The result (6.12) accentuates the stability of the Grünwald–Letnikov method caused by the strong damping
factors cα

ν in the fractional binomial evaluation. The additional terms in (6.13), (6.14) reflect the behavior for λ > 0. Further,
the errors in the past are more and more damped, which means that the Grünwald–Letnikov sum can be truncated. This is
called short-memory effect [6, p. 203].

Theorem 6.3. The explicit and implicit Grünwald–Letnikov methods are applied to the test equation (5.6), where if λ < 0 in the
explicit case the stability condition (5.9) is assumed. Then the global error satisfies

|en+1| ≤ C
n−

ν=1

cα
ν |qn+1−ν | + |qn+1|, (6.17)

where
C ≤ exp(1). (6.18)

If λ > 0 in (5.6), then (6.17) holds, where in the explicit and implicit cases, respectively,

C ≤ exp(1 + λhα), (6.19)

C ≤ (1 − λhα)−1 exp((1 − λhα)−1). (6.20)

Proof. Regarding |en+1| ≤ |pn+1| + |qn+1| and using the results (6.12)–(6.14) on the propagation error |pn+1|, the following
estimates of the global error follow

λ < 0 : |en+1| ≤

n−
ν=1

cα
ν |en+1−ν | + |qn+1|, (6.21)

λ > 0 : |en+1| ≤ (cα
1 + λhα)|en| +

n−
ν=2

cα
ν |en+1−ν | + |qn+1|, (6.22)

λ > 0 : |en+1| ≤ (1 − λhα)−1
n−

ν=1

cα
ν |en+1−ν | + |qn+1|. (6.23)

Using Corollary 4.1, especially (4.11), the result of Theorem 6.3 is deduced. �
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Fig. 7.1. Explicit method for h = 0.5.

Remarks. The global error is estimated by the sum of the truncation error of the current step and all other previous steps
provided with the strong damping coefficients cα

ν . In (6.17) we have on the one hand qn+1, cα
1 qn and on the other hand

cα
n−1q2, c

α
n q1 and know that qn+1 = O(h1+α) and cα

n+1 = O(h1+α) for h → 0, n → ∞ (see (6.11) and Lemma 3.2). In the
intermediate terms cα

ν qn+1−ν both effects have influence. Regarding (3.14), (6.11), (n + 1)h = t and ν(n + 1 − ν) ≥ n it
follows that

cα
ν qn+1−ν = O


h1+α


(h → 0, n → ∞). (6.24)

The estimate (6.17) includes n + 1 such terms, therefore the asymptotic behavior of

n−
ν=1


1

ν(n + 1 − ν)

1+α

(6.25)

has to be studied in detail. The order of convergence is expected to be one, in accordance with Lemma 2.1.

When the Grünwald–Letnikov scheme is applied to the test equation (5.7) with homogeneous initial value, the first term
in the expansion (6.4) and (6.5) of the truncation error is canceled, which yields qk = O(hα) for each k. Making the step size
smaller the error in the first steps will become smaller. If possible, a problem with inhomogeneous initial value should be
transformed into a problem with homogeneous initial value.

Further, the maximal value of the global error over all steps eM = maxν |eν | is in the size of the truncation error |q1|
in the first step. Therefore it is necessary to construct improved approximations yk in the first few steps by extrapolation
techniques or by using other methods to improve the accuracy of the method. The construction of such a run-up method
for the Grünwald–Letnikov scheme is not yet completely solved.

7. Numerical experiments

Numerical experiments for the test equation (5.6) are presented, where the values λ = −4, y0 = 0.5, α = 0.8
and α = 0.5, respectively, and the interval [0, 1] are chosen. The explicit and implicit Grünwald–Letnikov methods are
applied with different step sizes h and figures of the true and numerical solutions are given. The stability condition (5.9) or
|λ|hα

≤ 2α implies that the explicit method is absolute stable, if the step size satisfies h ≤ 0.318 in the case of α = 0.8,
and h ≤ 0.0625 in the case of α = 0.5. The global error eν = y(τν) − yν is calculated after the first step eA = |e1|, at the
end eB = |eN+1|, where (N + 1)h = 1, and as the maximum over all steps eM = max{|eν |, 1 ≤ ν ≤ N + 1}. The results are
given in tables. The abbreviation E − k denotes 10 to the power −k.
(1) The case α = 0.8.
The explicit method is unstable for h = 0.5. The global errors for different h are given:
(2) The case α = 0.5.
The explicit method is unstable for h = 0.1. The global errors for different h are given:
These experiments verify the theoretical results. The error eA after the first step is equal to the truncation error |q1|, where
the first term K̂α

0,1 in the expansion (6.4) and (6.5) is independent of h and y0|K̂α
0,1| is given as 8.9E−3 and 3.2E−2 in the case

of α = 0.8 and α = 0.5, respectively (see Table 3.4). Therefore eA tends to these values when h → 0, but not monotonically,
because in (6.4) and (6.5) there can arise some extinction with negative and positive values. The maximum value of the
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Fig. 7.2. Implicit method for h = 0.5.

Fig. 7.3. Explicit method for h = 0.05.

Fig. 7.4. Explicit method for h = 0.001.
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Fig. 7.5. Explicit method for h = 0.1.

Fig. 7.6. Implicit method for h = 0.1.

Fig. 7.7. Explicit method for h = 0.05.
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Fig. 7.8. Explicit method for h = 0.001.

Table 7.1
Explicit method.

h 0.1 0.05 0.02 0.01 0.005 0.001 0.0001

eA 7.4E−2 1.7E−2 5.5E−3 9.2E−3 9.9E−3 9.4E−3 9.0E−3
eM 7.4E−2 2.1E−2 5.5E−3 9.2E−3 9.9E−3 1.0E−2 9.7E−3
eB 4.5E−3 2.3E−3 8.7E−4 3.8E−4 1.4E−4 3.4E−5 4.9E−5

Table 7.2
Implicit method.

h 0.1 0.05 0.02 0.01 0.005 0.001 0.0001

eA 4.5E−2 2.9E−2 1.7E−2 1.3E−2 1.1E−2 9.4E−3 9.0E−3
eM 4.5E−2 2.9E−2 1.8E−2 1.3E−2 1.1E−2 1.0E−2 9.7E−2
eB 5.2E−3 2.6E−3 1.1E−3 6.1E−4 3.5E−4 1.3E−4 5.9E−5

Table 7.3
Explicit method.

h 0.05 0.02 0.01 0.005 0.001 0.0001

eA 1.4E−1 4.3E−2 3.3E−3 1.7E−2 3.3E−2 3.4E−2
eM 1.4E−1 4.3E−2 3.4E−3 1.7E−2 3.3E−2 3.4E−2
eB 1.1E−3 3.8E−4 1.5E−4 4.4E−5 1.6E−5 1.1E−5

Table 7.4
Implicit method.

h 0.1 0.05 0.02 0.01 0.005 0.001

eA 5.3E−2 5.2E−2 4.8E−2 4.5E−2 4.2E−2 3.6E−2
eM 5.3E−2 5.2E−2 4.8E−2 4.5E−2 4.2E−2 3.6E−2
eB 3.6E−3 1.9E−3 8.2E−4 4.5E−4 2.6E−4 7.6E−5

global error eM is in the size of eA. Further, we observe that the method is convergent. The values of the implicit method
seem to be more smooth. Altogether, the Grünwald–Letnikov method is a very simple method which delivers qualitatively
right approximations. But it is necessary to construct better approximations in the first steps to improve the accuracy of
the method. Such a run-up method and further numerical experiments for a larger class of test equations are studied in a
forthcoming paper (Figs. 7.1–7.8, Tables 7.1–7.4).

8. Conclusions

In a sense the Grünwald–Letnikov method is an extension of the Euler method. The coefficients are fractional order
binomial coefficients, which are recursively defined and positive. The scheme proceeds iteratively but the sum becomes
longer and longer. The fractional binomial coefficients act as damping factors producing stability and good error behavior
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for the Grünwald–Letnikov method. A correction term is necessary in the case of an inhomogeneous initial value, and this
term causes some perturbation. In the case of a homogeneous initial value the accuracy seems to be higher than that for the
case of a inhomogeneous initial value. The numerical experiments confirm the stability and convergence properties as well
as the error estimates. The Grünwald–Letnikov method reproduces the qualitatively right behavior of the solution.
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