Shrinking integer lattices II

Robin J. Chapman

Department of Mathematics, University of Exeter, Exeter EX4 4QE, United Kingdom

Communicated by K.W. Gruenberg
Received 7 June 1991

Abstract

Given a sublattice \(\Lambda \) of rank \(k \), of the integer lattice \(\mathbb{Z}^k \) in Euclidean \(k \)-space, we ask the following question. What is the largest integer \(r \) such that there is a sublattice \(\Lambda' \) of \(\mathbb{Z}^r \) isometric to \(r^{-1/2} \Lambda \)? In this paper I give a complete solution if \(k \leq 7 \), and if \(k = 8 \), I determine \(r \) to within a factor of 2.

1. Introduction

This paper considers the following problem: Given a full sublattice \(\Lambda \) of the integer lattice \(\mathbb{Z}^k \) in Euclidean space, i.e. a sublattice of full rank \(k \), can we find a lattice \(\Lambda' \subseteq \mathbb{Z}^k \) which is similar to \(\Lambda \) and has a fundamental region of smaller volume? In particular, can we find the least such volume that the fundamental region of such a lattice can have?

This problem has been considered by Cremona and Landau [5] for \(k \leq 4 \) and by the present author [2] for \(k = 5 \). If the lattice \(\Lambda' \) is isometric to \(\lambda^{-1/2} \Lambda \), Cremona and Landau give an upper bound for the possible \(\lambda \) and show that it is attained for \(k \leq 4 \). In [2] the present author shows that the Cremona–Landau bound is attained when \(k = 5 \) but not for \(k = 6 \) or \(k \geq 8 \). In this paper, by using the theory of rational quadratic forms we obtain an improved bound for \(\lambda \) and prove that it is attained for \(k \leq 7 \) and that it is attained except possibly for a factor of 2 when \(k = 8 \). We use the classification of unimodular integral lattices in an essential way. Our methods, unlike the constructive approach of [2] and [5], are existential in character and the question of finding an algorithm to find the best \(\Lambda' \) for \(k > 5 \) remains open.
2. Preliminary results

Let \(\mathbb{R}^k \) be \(k \)-dimensional Euclidean space with the standard inner product \((x, y) \mapsto x \cdot y \). A linear transformation \(T : \mathbb{R}^k \to \mathbb{R}^k \) is a similarity with scale factor \(\mu > 0 \) if \(Tx \cdot Ty = \mu^2 x \cdot y \) for all \(x, y \in \mathbb{R}^k \). If \(T \) is represented by the matrix \(M \) with respect to the standard basis, this condition is equivalent to \(M'M = \mu^2 I \). A similarity with scale factor 1 is called an isometry.

Consider a full sublattice \(\Lambda \) of \(\mathbb{Z}^k \) and a similarity \(T \) of scale factor \(\mu \) with \(TA \subseteq \mathbb{Z}^k \). The elements of \(\Lambda \) span all of \(\mathbb{Q}^k \) over \(\mathbb{Q} \) and so we see that \(T(\mathbb{Q}^k) = T(\mathbb{Q}\Lambda) = \mathbb{Q}TA \subseteq \mathbb{Q}^k \). Hence \(T \) is represented by a matrix \(M \in M_k(\mathbb{Q}) \) and so \(\mu^2 \in \mathbb{Q} \). Also, if \(x, y \in \Lambda \), then \(Tx, Ty \in \mathbb{Z}^k \) and so \(\mu^2 x \cdot y = Tx \cdot Ty \in \mathbb{Z} \). This shows that \(\mu^2 \) is a rational number whose denominator divides \(x \cdot y \). In particular, if \(g = \gcd(\{x \cdot y \mid x, y \in \Lambda\}) \), then the denominator of \(\mu^2 \) divides \(g \) and in particular \(\mu^2 \geq 1/g \). We have thus proved the following:

Lemma 1. Let \(\Lambda \) be a full sublattice of \(\mathbb{Z}^k \) and \(T \) a similarity of \(\mathbb{R}^k \) of scale factor \(\mu \) with \(TA \subseteq \mathbb{Z}^k \). Then \(\mu^2 \) is a rational number whose denominator divides \(g \).

3. Rational quadratic forms

To find a better bound than \(\mu^2 \geq 1/g \) we use the theory of rational quadratic forms (see [7] for definitions and notation). Let \(M = (a_{ij}) \subseteq M_k(\mathbb{Q}) \) satisfy \(M'M = \mu^2 I \) with \(\mu > 0 \). Clearly \(M \) is nonsingular. We now introduce indeterminates \(X_1, X_2, \ldots, X_k \) and put \(Y_i = \sum_j a_{ij}X_j \). It immediately follows that \(\sum_i Y_i^2 = \mu^2 \sum_i X_i^2 \) and so the quadratic forms \(Q(X_1, X_2, \ldots, X_k) = X_1^2 + X_2^2 + \cdots + X_k^2 \) and \(\mu^2 Q \) are equivalent over \(\mathbb{Q} \). Using the theory of rational quadratic forms we can characterize all \(t \in \mathbb{Q} \) for which \(Q \) and \(tQ \) are equivalent over \(\mathbb{Q} \).

Proposition 2. Let \(t \in \mathbb{Q} \). Then \(Q \) is equivalent to \(tQ \) over \(\mathbb{Q} \) if and only if the following conditions hold:

(i) If \(k \) is odd, then \(t \) is the square of a nonzero rational.

(ii) If \(k \) is even but not divisible by 4, then \(t > 0 \) and \(\text{ord}_p(t) \) is even for all primes \(p \equiv 3 \pmod{4} \).

(iii) If \(4 \mid k \), then \(t > 0 \).

Proof. We use the Corollary to Theorem 9 in Chapter IV of [7]. This states that two rational quadratic forms are equivalent over \(\mathbb{Q} \) if and only if their ranks, signatures, discriminants and Hasse invariants at each prime are equal. In all cases as \(Q \) is positive definite \(tQ \) will have the same rank and signature as \(Q \) if and only if \(t > 0 \).
Now the discriminants are \(d(Q) = 1 \) and \(d(tQ) = t^k \). Note that these have to be interpreted as elements of \(\mathbb{Q}^*/\mathbb{Q}^{*2} \). If \(k \) is odd, then \(d(tQ) = t \) and this equals \(d(Q) \) modulo squares if and only if \(t \) is a square. Conversely, if \(t \) is a square, then \(Q \) and \(tQ \) are clearly equivalent over \(\mathbb{Q} \) and so (i) follows. If \(k \) is even, then \(d(tQ) = 1 \) and the discriminants are automatically equal.

Suppose then that \(k \) is even and \(t > 0 \). The Hasse invariants are
\[
\varepsilon_p(Q) = 1 \quad \text{and} \quad \varepsilon_p(tQ) = (t, t)^{k(k-1)/2}_p,
\]
where \((,)_p\) denotes the Hilbert symbol at the prime \(p \). If \(k \) is divisible by 4, then \(k(k-1)/2 \) is even and so \(\varepsilon_p(tQ) = 1 \) for all \(p \). Hence all the invariants of \(Q \) and \(tQ \) are equal and so \(Q \) and \(tQ \) are equivalent and (iii) follows.

If now \(k \equiv 2 \pmod{4} \), then \(k(k-1)/2 \) is odd and \(\varepsilon_p(tQ) = (t, t)_p \). By standard properties of the Hilbert symbol, \((t, t)_p = (-1, t)_p\). We now use Theorem 1 in Chapter III of [7] to evaluate \((t, t)_p\). If \(p \) is odd, the formula gives us
\[
(-1, t)_p = \left(-\frac{1}{p} \right)^{\text{ord}_p(t)}
\]
and so by quadratic reciprocity \(\varepsilon_p(tQ) = 1 \) if \(p = 1 \pmod{4} \) and \(\varepsilon_p(tQ) = (-1)^{\text{ord}_p(t)} \) if \(p = 3 \pmod{4} \). Hence if \(Q \) and \(tQ \) are equivalent, then \(\text{ord}_p(t) \) is even for all \(p = 3 \pmod{4} \). Conversely, if \(\text{ord}_p(t) \) is even for all \(p = 3 \pmod{4} \), then \((t, t)_p = 1 \) for all odd \(p \) and also \((t, t)_p = 1 \) for all \(p = 3 \pmod{4} \). Now the product formula (Theorem 3 in chapter III of [7]) gives us
\[
(t, t)_p \prod_{p \text{ prime}} (t, t)_p = 1
\]
so \(\varepsilon_2(tQ) = (t, t)_2 = 1 = \varepsilon_2(Q) \). Hence all the invariants of \(Q \) and \(tQ \) are equal and so \(Q \) and \(tQ \) are equivalent and (ii) is proved. \(\square \)

We thus define a rational number \(t \) to be admissible if \(Q \) is equivalent to \(tQ \) over \(\mathbb{Q} \). Note that admissibility of \(t \) depends on \(k \) as well as \(t \) and that \(t \) is admissible if and only if its numerator and denominator are. Hence we have proved the following:

Lemma 3. Let \(\Lambda \) be a full sublattice of \(\mathbb{Z}^k \) and \(T \) a similarity of \(\mathbb{R}^k \) of scale factor \(\mu \). Then \(\mu^2 \) is an admissible rational number whose denominator divides
\[
g = \gcd(\{x, y \mid x, y \in \Lambda\})
\]
In particular, \(\mu^2 \geq 1/h \), where \(h \) is the largest admissible integer dividing \(g \). \(\square \)

We can now state our main theorem.

Theorem 4. Let \(\Lambda \), \(g \) and \(h \) be as in the previous lemma. If \(k \leq 7 \), then there is a
similarity T of \mathbb{R}^k with scale factor μ such that $TA \subseteq \mathbb{Z}^k$ and $\mu^{-2} = h$. If $k = 8$, then there is such a T with $TA \subseteq \mathbb{Z}^k$ and $\mu^{-2} = h$ or (only if h is even) $\mu^{-2} = h/2$.

4. Proof of the main theorem

We attack the problem by working a prime at a time. Let q either be an admissible prime or the square of a prime and suppose $q | g$. We can embed Λ in a lattice Ω such that $\Lambda \subseteq \Omega \subseteq \mathbb{Z}^k$ and $q | x, y$ for all $x, y \in \Omega$ and Ω is maximal with respect to this condition. If we can prove Theorem 4 for this Ω, it will follow that there is a similarity T of scale factor $q^{-1/2}$ with $TA \subseteq \mathbb{Z}^k$.

Define a full sublattice Λ of \mathbb{Z}^k to be q-divisible if $q | x, y$ for all $x, y \in \Lambda$. Also define Λ to be maximal q-divisible if it is properly contained in no other q-divisible sublattice of \mathbb{Z}^k. If Λ is a full q-divisible sublattice of \mathbb{Z}^k, then, as the index $|\mathbb{Z}^k : \Lambda|$ is finite, there exists a maximal q-divisible lattice $\Omega \subseteq \mathbb{Z}^k$ with $\Lambda \subseteq \Omega$.

Theorem 5. Let q be an admissible prime number or the square of a prime number. Suppose $\Omega \subseteq \mathbb{Z}^k$ is a maximal q-divisible lattice. Then $|\mathbb{Z}^k : \Omega| = q^{k/2}$.

Proof. 1. claim that $\Omega \supseteq q\mathbb{Z}^k$. For $\Omega + q\mathbb{Z}^k$ is a q-divisible lattice containing Ω and so by maximality of Ω, $\Omega = \Omega + q\mathbb{Z}^k \supseteq q\mathbb{Z}^k$. Let $\tilde{\Omega}$ be the image of Ω in the quotient $\mathbb{Z}^k/q\mathbb{Z}^k$. As $\Omega \supseteq q\mathbb{Z}^k$ it follows that $|\mathbb{Z}^k : \Omega| = |\mathbb{Z}^k/q\mathbb{Z}^k : \tilde{\Omega}|$. Now the inner product on \mathbb{Z}^k induces a nonsingular pairing $\mathbb{Z}^k/q\mathbb{Z}^k \times \mathbb{Z}^k/q\mathbb{Z}^k \rightarrow \mathbb{Z}/q\mathbb{Z}$ which we shall also denote by the dot notation. The q-divisibility of Ω implies that $\tilde{\Omega} \cdot \tilde{\Omega} = 0$. Also if V is a subgroup of $\mathbb{Z}^k/q\mathbb{Z}^k$ which is isotropic in the sense that $V \cdot V = 0$, then $\Lambda = \{x \in \mathbb{Z}^k | \bar{x} \in V\}$ is a q-divisible lattice containing $q\mathbb{Z}^k$, where \bar{x} denotes the reduction of x modulo q. Hence $\tilde{\Lambda}$ is a maximal isotropic subgroup of $\mathbb{Z}^k/q\mathbb{Z}^k$ and it suffices to show that all such subgroups have index $q^{k/2}$, or equivalently have order $q^{k/2}$.

Case (i): $q = 2$. For 2 to be admissible k must be even. Let V be a maximal isotropic subgroup of $U = \mathbb{Z}^n/2\mathbb{Z}^k$, a vector space of dimension k over \mathbb{F}_2. If $v \in V$, then $v, v = 0$ and so an even number of the coordinates of v equal 1, and so $V \subseteq U^0 = \{u \in U | \sum u_i = 0\}$. Also by isotropy $V \subseteq V^\perp = \{u \in U | u \cdot V = 0\}$. Let $w \in U^0 \cap V^\perp \supseteq V$. As $w \in U^0$, w has an even number of coordinates equal to 1 and so $w \cdot w = 0$. Also as $w \in V^\perp$, $w \cdot v = 0$ for all $v \in V$. Hence the group $\langle w \rangle + V$ is isotropic and so by maximality $w \in V$. We conclude that $V = U^0 \cap V^\perp$. Now we count dimensions of vector spaces over \mathbb{F}_2. Note that every subgroup of U is an \mathbb{F}_2-vector space. Let d be the dimension of V over \mathbb{F}_2. As the inner product is nonsingular the dimension of V^\perp is $k - d$ and clearly the dimension of U^0 is $k - 1$. Hence $k - d \geq \dim_{\mathbb{F}_2}(U^0 \cap V^\perp) \geq k - d - 1$ and as $V = U^0 \cap V^\perp$, $k - d \geq d \geq k - d - 1$ and so $k \geq 2d \geq k - 1$ and as k is even we conclude that $d = k/2$. Hence $|V| = 2^{k/2}$ as required.
Case (ii): \(q \) is an odd prime. We use the theory of quadratic forms over a field of characteristic \(\neq 2 \), in particular that of the Witt ring. (For definitions and notation see [3].) Let \(U = \mathbb{Z}^k/p\mathbb{Z}^k \) and note that \(U \) and all of its subgroups are \(\mathbb{F}_q \)-vector spaces. The space \(U \) has the inner product derived from the quadratic form \(Q(u_1, u_2, \ldots, u_k) = u_1^2 + u_2^2 + \cdots + u_k^2 \). It suffices to show that every maximal isotropic subspace of \(U \) has dimension \(k/2 \). By Theorem 4 in Section 8.3 of [3] this follows if \(U \) is a direct sum of hyperbolic planes. But this is true if and only if \([U] = 0 \) in the Witt ring \(W(\mathbb{F}_q) \). Now \([U] = k\langle 1 \rangle \) and by the Corollary to Lemma 5.8 in Chapter 2 of [1], \(|W(\mathbb{F}_q)| = 4 \) and is noncyclic if \(q = 1 \) (mod \(4 \)). If \(q = 1 \) (mod \(4 \)), then, as \(q \) is admissible, \(k \) is even and \(k\langle 1 \rangle = 0 \), and if \(q = 3 \) (mod \(4 \)), then, as \(q \) is admissible, \(k \) is divisible by 4 and \(k\langle 1 \rangle = 0 \) again. This concludes the proof in this case.

Case (iii): \(q = p^2 \) with \(p \) prime. Let \(V \) be a maximal isotropic subgroup of \(U = \mathbb{Z}^k/p^i\mathbb{Z}^k \) and let \(W = V \cap p\mathbb{Z}^i/p^2\mathbb{Z}^k \). Now if we let \(V_1 \) be the image of \(V \) in \(\mathbb{Z}^k/p\mathbb{Z}^k \) and \(V_2 = \{ v \in \mathbb{Z}^k/p\mathbb{Z}^k \mid pv \in W \} \), then \(|V : W| = |V_1| \) and \(|W| = |V_2| \) and so \(|V| = |V_1||V_2| \). Now consider \(V_1 \) and \(V_2 \) as subspaces of the inner product space \(U' = \mathbb{Z}^k/p\mathbb{Z}^k \) over \(\mathbb{F}_p \). If \(x \in V_1 \) and \(y \in V_2 \), then \(x' \) and \(py \) are in \(V \), where \(x' \) is any lift of \(x \) to \(V \) and so \(x'.py = 0 \) in \(\mathbb{Z}/p^2\mathbb{Z} \) and \(x.y = 0 \) in \(\mathbb{F}_p \). Hence \(V_1 \), \(V_2 \) = 0 and so \(V_2 \subseteq V_1 \subseteq \{ u \in U' \mid u.V_1 = 0 \} \). Now I claim that \(V_2 = V_1^\perp \). If \(u \in V_1^\perp \), then consider \(pu \in U \). Trivially \(pu.pu = 0 \) and if \(x \in V \), then \(x.pu = p(x.u) = 0 \) because \(x.u = 0 \) in \(\mathbb{F}_p \) as the image of \(x \) in \(U' \) lies in \(V_1 \) and \(u \in V_1^\perp \). Clearly then \(\langle py \rangle + V \) is an isotropic subgroup of \(U \) containing \(V \) and so by maximality \(pu \in U \) and so \(u \in V_2 \) as required. Now as the inner product on \(U' \) is nonsingular, \(|V| = |V_1||V_2| = |V_1^\perp| = |U'| = p^k = q^{k/2} \) and the theorem is thus proved.

We recall that a rank \(k \) lattice \(\Lambda \) in \(\mathbb{R}^k \) is unimodular if it is integral, that is, \(x.y \in \mathbb{Z} \) for all \(x, y \in \Lambda \) and its fundamental region has volume 1. The integer lattice \(\mathbb{Z}^k \) is clearly a unimodular lattice which is odd, that is, it contains \(x \) with \(x.x \) an odd integer. Another important example is the \(E_8 \) root lattice

\[
E_8 = \left\{ (x_1, x_2, \ldots, x_8) \in \mathbb{Z}^8 \cup (\mathbb{Z} + 1/2)^8 \mid \sum_{i=1}^{8} x_i \in 2\mathbb{Z} \right\},
\]

which is an even unimodular lattice, that is, \(x.x \) is even for all \(x \in E_8 \). We have the classification theorem in dimensions \(k \leq 8 \):

Theorem 6. If \(\Lambda \) is a unimodular lattice in \(\mathbb{R}^k \) for \(k \leq 8 \), then there is an isometry \(T \) of \(\mathbb{R}^k \) such that \(TA = \mathbb{Z}^k \) if \(\Lambda \) is odd or \(TA = E_8 \) if \(\Lambda \) is even (and so \(k = 8 \)).

Proof. This is part of Theorem 106:13 in [6].

Theorem 5 has the following corollary:

Lemma 7. Let \(q \) be an admissible prime or the square of a prime. If \(\Omega \) is a
maximal q-divisible lattice, then the lattice $q^{-1/2} \Omega$ is unimodular. Also if q is odd then $q^{-1/2} \Omega$ is an odd unimodular lattice.

Proof. By Theorem 5, $|Z^k : A| = q^{k/2}$ and so the fundamental region of Ω has volume $q^{k/2}$. Hence the fundamental region of $q^{-1/2} \Omega$ has volume 1. As Ω is q-divisible, $x, y \in qZ$ for all $x, y \in \Omega$ and so $q^{-1/2} x, q^{-1/2} y \in \mathbb{Z}$ and $q^{-1/2} \Omega$ is integral. Hence the lattice $q^{-1/2} \Omega$ is unimodular.

If q is odd, then $x = (q, 0, 0, \ldots, 0) \in \Omega$ as $qZ^k \subseteq \Omega$. Now $y = q^{-1/2} x \in q^{-1/2} \Omega$ has $y \cdot y = q$ odd. Hence $q^{-1/2} \Omega$ is an odd unimodular lattice as claimed.

We now proceed to the proof of the main theorem. Let $A \subseteq \mathbb{Z}^k$ be a full sublattice, $g = \gcd \{ x, y \mid x, y \in A \}$ and h be the largest admissible integer factor of g. If $h = 1$, then there is nothing to prove. If $h > 1$, then there is a $q|h$ which is either an admissible prime or the square of a prime. As A is q-divisible we can embed $A \subseteq \Omega$ which is maximal q-divisible. By Lemma 3 the lattice $q^{-1/2} \Omega$ is unimodular and also odd if q is odd. So unless $k = 8$ and q is even then by Theorem 3 there is an isometry T with $T(q^{-1/2} \Omega) = \mathbb{Z}^k$. Now the map $S : x \mapsto q^{-1/2} T x$ is a similarity of scale factor $q^{-1/2}$ with $A' = SA \subseteq \mathbb{Z}^k$. Also $g' = \gcd \{ x', y' \mid x', y' \in A' \} = g/q$ and $h' = h/q$ is the largest admissible integer factor of g'. Repeating this process yields a similarity R of scale factor μ with $RA \subseteq \mathbb{Z}^k$ and $\mu^{-2} = h$ for $k \leq 7$ and $\mu^{-2} = l$ for $k = 8$, where l is the largest odd factor of $g = h$. Hence the theorem is proved for $k \leq 7$.

Now let $k = 8$. We may assume that $g = h$ is even and by the above we may reduce to the case where $g = h$ is a power of 2. If $g \leq 2$, we are done, so suppose that 4 divides g. As A is 4-divisible, we can embed $A \subseteq \Omega$ with Ω maximal 4-divisible. By Lemma 3 the lattice $2^{-1} \Omega$ is unimodular and so isometric to either \mathbb{Z}^8 or \mathbb{E}_8. In the former case we argue as above and reduce h by a factor of 4. Now I claim that there is a sublattice L of \mathbb{Z}^8 isometric to $\sqrt{2} \mathbb{E}_8$. Given this claim choose an isometry T with $T(2^{-1/2} \Omega) = L$. The map $S : x \mapsto 2^{-1/2} T x$ is a similarity of scale factor $2^{-1/2}$ with $SA \subseteq \mathbb{Z}^k$. Hence we can reduce g by a factor of 2. Repeating we can reduce g to 1 or 2 and the theorem is proved.

Finally the lattice L generated by the rows of the matrix

$$
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{pmatrix}
$$

is isometric to $\sqrt{2} \mathbb{E}_8$ as claimed (see p. 233 of [4]).

\[\Box\]
Acknowledgment

I would like to thank Dr. John Cremona for bringing this problem to my attention.

References