

Available online at www.sciencedirect.com SCIENCE \overrightarrow{a} DIRECT[®]

Journal of Algebra 283 (2005) 317–326

www.elsevier.com/locate/jalgebra

Hypercentral units in alternative loop rings $*$

Edgar G. Goodaire ^{a,∗}, Yuanlin Li^b, Michael M. Parmenter^a

^a *Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1C 5S7* ^b *Brock University, St. Catherine's, Ontario, Canada L2S 3A1*

Received 19 April 2004

Available online 16 September 2004

Communicated by Georgia Benkart

Abstract

Let *L* be an RA loop, that is, a loop whose loop rings are alternative, but not associative, rings (in any characteristic). We find necessary and sufficient conditions under which the hypercentral units in the integral loop ring Z*L* are central.

2004 Elsevier Inc. All rights reserved.

1. Introduction

Let *L* be a Moufang loop, that is, a loop satisfying any of the following three equivalent identities:

> $(xy \cdot z)y = x(y \cdot zy)$ right Moufang, $(xy \cdot x)z = x(y \cdot xz)$ left Moufang, $(xy)(zx) = x(yz \cdot x)$ middle Moufang.

This research was supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada.

Corresponding author.

E-mail addresses: edgar@math.mun.ca (E.G. Goodaire), yli@spartan.ac.brocku.ca (Y. Li), michael1@math.mun.ca (M.M. Parmenter).

^{0021-8693/\$ –} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.08.012

Perhaps the most important property of Moufang loops is their *diassociativity*: the subloop of a Moufang loop generated by any two elements is a group [8, §IV.2]. In particular, the Moufang identity is often used (unambiguously) in the form $(xy \cdot z)y = x(yzy)$. More generally, Moufang proved that if three elements of a Moufang loop associate in any order, then they generate a group [8, §IV.2].

For *x*, *y*, *z* \in *L*, the *commutator* (x, y) of *x* and *y* and the *associator* (x, y, z) of *x*, *y*, and *z* are defined, respectively, by

$$
xy = (yx)(x, y)
$$
 and $xy \cdot z = (x \cdot yz)(x, y, z)$.

Using diassociativity, notice that $(x, y) = x^{-1}y^{-1}xy$, just as with groups, and $(x, y, z) =$ $[xy \cdot z][z^{-1}y^{-1} \cdot x^{-1}]$. The *commutator–associator* subloop of *L* is the subloop *L'* generated by all commutators and associators.

The *centre*, $Z(L)$, of L is the set of all elements of L which commute with all other elements and associate with all pairs of elements of *L*:

$$
\mathcal{Z}(L) = \{ a \in L \mid (a, x) = (a, x, y) = (x, a, y) = (x, y, a) = 1 \text{ for all } x, y \in L \}.
$$

Just as in group theory, a Moufang loop *L* has an *upper central series*

$$
\{1\} = \mathcal{Z}_0(L) \subseteq \mathcal{Z}_1(L) \subseteq \mathcal{Z}_2(L) \subseteq \cdots,
$$

where $\mathcal{Z}_{i+1}(L)/\mathcal{Z}_i(L) = \mathcal{Z}(L/\mathcal{Z}_i(L))$. (Note that $\mathcal{Z}_1(L) = \mathcal{Z}(L)$, the centre of *L*.) When there is no chance of ambiguity, we write \mathcal{Z}_i rather than $\mathcal{Z}_i(L)$. The *hypercentre* of L is the subloop $\widetilde{\mathcal{Z}}(L) = \bigcup_{i \geq 0} \widetilde{\mathcal{Z}}_i(L)$.

For *x*, *y*, *a* \in *L*, there are bijections *R(x)*, *L(x)*, *T(x)* and *R(x, y)* defined by

$$
aR(x) = ax
$$
, $aL(x) = xa$, $T(x) = R(x)L(x)^{-1}$,
 $R(x, y) = R(x)R(y)R(xy)^{-1}$.

A subloop *H* of *L* is *normal* if and only if $HT(x) \subseteq H$ and $HR(x, y) \subseteq H$ for all $x, y \in L$. For instance, the commutator–associator subloop of a loop is always normal [1, Proposition II.1.8].

Throughout, $U(ZL)$ denotes the loop of units (that is, the invertible elements) in ZL , the integral loop ring of *L*, and we often write *U* for $U(ZL)$. We denote by $\mathcal{N}_U(L)$ the *normalizer* of *L* in U , this being the largest subloop of U in which *L* is normal.

An *alternative ring* is one in which $x(xy) = x^2y$ and $(yx)x = yx^2$ are identities. Alternative rings are so-named because in these rings, the *(ring) associator* $[a, b, c] :=$ $(ab)c - a(bc)$ is an alternating function of its arguments. (We use square brackets for ring associators to avoid confusion with loop associators.)

A (necessarily Moufang) loop *L* is an *RA loop* if, over any commutative associative coefficient ring R , the loop ring RL is an alternative, but not associative, ring. That there exist such loops came to light in 1983 [3]. By now, RA loops have been completely classified and many properties of the associated alternative loop rings explored. The best source of information on these subjects is [1] to which we make frequent reference here. We record now some properties of RA loops of special interest in this paper.

An RA loop *L* has the *LC property*: elements $g, h \in L$ commute if and only if one of *g, h, gh* is central [1, §IV.2]. In particular, this implies that the square of any element of an RA loop is central. In an RA loop *L*, the set of *torsion* elements (those of finite order) is a subloop of *L* [1, Lemma VIII.4.1] called the *torsion subloop* of *L*. If *L* is RA, then any loop ring *RL* of *L* is an alternative ring and so the unit loop of *RL* is Moufang [1, §II.5.3].

In an RA loop *L*, there is a unique nonidentity commutator (always denoted *s*) which is also the only nonidentity associator. This element has order 2 and is central in *L* (and hence central in U) [4, Lemma 3.2]. It follows that $L/Z(L)$ is an Abelian group, so $L = \mathcal{Z}_2(L)$, the *second centre* of *L*. It is rare for the entire unit loop U*(*Z*L)* to equal its second centre. When this occurs $U(ZL)$ is nilpotent and hence itself an RA loop [1, Corollary XII.2.14]. On the other hand, as we show in this paper, the second centre of $U(ZL)$ equals the centre "most of the time." Specifically, we establish the following theorem.

Theorem 1.1. Let *L* be an RA loop and let *U* be the loop of units of Z*L*. Then $\mathcal{Z}(U) =$ $\mathcal{Z}_2(\mathcal{U})$ *. Moreover, with* T *the torsion subloop of* L *,* $\mathcal{Z}(\mathcal{U}) \neq \mathcal{Z}(\mathcal{U})$ *if and only if*

(i) *T* is a Hamiltonian Moufang 2-loop and $l^{-1}t\ell = t^{\pm 1}$ for any $t \in T$ and any $l \in L$, or (ii) *T is an Abelian group and every subgroup of T is normal in L.*

The result for torsion RA loops (every element has finite order), was found by Goodaire and Li in 2001 [2].

Theorem 1.2. *If L is a torsion RA loop but not a Hamiltonian* 2*-loop, then* $\mathcal{Z}_2(\mathcal{U}) = \mathcal{Z}(\mathcal{U})$ *.*

We also refer the reader to [5] where some of the results of this paper are established for group rings.

2. Preliminaries

For the rest of this paper, L denotes an RA loop and U is the loop of units of the integral loop ring Z*L*. We begin with a short but very useful lemma.

Lemma 2.1. *Suppose* $u, v \in \mathcal{U}$ *and* $(u, v) \in L$ *. Then* $(u, v) \in L'$ *.*

Proof. Let $\alpha \mapsto \overline{\alpha}$ denote the extension to ZL of the natural map $L \to L/L'$. In the Abelian group ring $Z[L/L']$, the commutator $(\bar{u}, \bar{v}) = \bar{1}$. Thus $\overline{(u, v)} = (\bar{u}, \bar{v}) = \bar{1}$, so $(u, v) ∈ L'$.

While the next theorem was stated in [2] for *torsion* loops, the proof given does not use the torsion property.

Theorem 2.2 (The normalizer conjecture). Let L be an arbitrary RA loop. Then $\mathcal{N}_{\mathcal{U}}(L)$ = $L \cdot \mathcal{Z}(\mathcal{U})$ *.*

If $\alpha = \sum \alpha_{\ell} \ell$ is an element of a loop ring, the scalar $\sum \alpha_{\ell}$ is called the *augmentation* of α and denoted $\varepsilon(\alpha)$. The map $\varepsilon: RL \to R$ is a ring homomorphism and so, if *u* is a unit of ZL , its augmentation is ± 1 . When trying to establish properties of units, it is often convenient to assume that the augmentation of a given unit *u* is 1 since if $\varepsilon(u) = -1$, the result for −*u* (which has augmentation +1) usually gives the result for *u* immediately. This is clearly the case when trying to prove that units of ZL are *trivial*, that is, elements of $\pm L$.

Lemma 2.3. *Let L be a group or an RA loop and let u be a central unit in* Z*L. If uⁿ is trivial for some natural number n, then u is trivial too.*

Proof. It is sufficient to establish the result for *u* of augmentation 1. Let $\alpha \mapsto \alpha^{\sharp}$ be the extension to Z*L* of the map $\ell \mapsto \ell^{-1}$ in *L*; that is, for $\alpha = \sum \alpha_i \ell_i$, $\alpha^{\sharp} = \sum \alpha_i \ell_i^{-1}$. Easily $\alpha \mapsto \alpha^{\sharp}$ is an antiautomorphism of Z*L*, so, letting $\ell = u^{n} \in L$, we have $(u^{\sharp})^{n} = (u^{n})^{\sharp} =$ ℓ^{-1} . Since *u* and u^{\sharp} commute (and because *U* is a Moufang and hence diassociative loop), $(uu^{\sharp})^n = 1$. As a central unit in Z*L* of finite order, uu^{\sharp} is trivial [1, Corollary VIII.1.7]. Since $\varepsilon(u^{\sharp}) = \varepsilon(u) = 1$, the augmentation of uu^{\sharp} is 1, so $uu^{\sharp} = \ell_1$ for some $\ell_1 \in L$. Since the coefficient of 1 in uu^{\sharp} is not zero (it is the sum of squares of integers), it must be that $\ell_1 = 1$ from which it follows readily that *u* is trivial. \Box

Corollary 2.4. *Let L be an RA loop and let U be the loop of units of* **ZL***. Let u*, $v \in U$ *and* $z = (u, v)$ *. If* $z \in \mathcal{Z}(\mathcal{U})$ *and* z^n *is trivial for some natural number n, then* $z \in L'$ *.*

Proof. We have $z^n = \pm \ell$ for some $\ell \in L$. By Lemma 2.3, *z* is trivial. Since *z* is a commutator, $\varepsilon(z) = 1$, so $z \in L$. By Lemma 2.1, $z \in L'$. \Box

Theorem 2.5. *Let L be an RA loop and let U be the unit loop of* **ZL***. Then* $\mathcal{Z}(\mathcal{U}) \subseteq \mathcal{N}_{\mathcal{U}}(L)$ *.*

Proof. Writing \mathcal{Z}_n for $\mathcal{Z}_n(\mathcal{U})$, we prove by induction on $n \geq 1$ that $\mathcal{Z}_n \subseteq \mathcal{N}_{\mathcal{U}}(L)$. For *n* = 1, $\mathcal{Z}_1 = \mathcal{Z}(U) \subseteq \mathcal{N}_U(L)$ by Theorem 2.2. Suppose the result is true for *k* ≥ 1. Take $z_{k+1} \in \mathcal{Z}_{k+1}$ and $\ell \in L$. Then $(\ell, z_{k+1}) = z_k \in \mathcal{Z}_k \subseteq \mathcal{N}_{\mathcal{U}}(L)$ (and note that as a commutator, z_k has augmentation 1). By Theorem 2.2, we can write $z_k = z \ell_1$, $z \in \mathcal{Z}(\mathcal{U})$, $\ell_1 \in L$. Thus $z_{k+1}^{-1} \ell z_{k+1} = z \ell \ell_1$. Since ℓ^2 is central, $\ell^2 = z_{k+1}^{-1} \ell^2 z_{k+1} = z^2 (\ell \ell_1)^2$, so z^2 is trivial. By Lemma 2.3, *z* is trivial, so z_k is trivial, hence in \overrightarrow{L} (because this element has augmentation 1), and

$$
\ell z_k = z_{k+1}^{-1} \ell z_{k+1} = \ell T(z_{k+1}) \in L. \tag{2.1}
$$

It remains to show that $\ell R(z_{k+1}, w_{k+1}) \in L$ for any $z_{k+1}, w_{k+1} \in \mathcal{Z}_{k+1}$. To show this, we will use frequently that

$$
(\ell, z_{k+1}) \in L' \quad \text{for any } \ell \in L \text{ and any } z_{k+1} \in \mathcal{Z}_{k+1}, \tag{2.2}
$$

which follows from $(\ell, z_{k+1}) = z_k \in L$ and Lemma 2.1. Let $\ell \in L$ and let $z_{k+1}, w_{k+1} \in \mathcal{Z}_{k+1}$. We have

$$
\ell z_{k+1} \cdot w_{k+1} = [(z_{k+1}\ell)(\ell, z_{k+1})]w_{k+1}
$$

\n
$$
= s_1 z_{k+1} \ell \cdot w_{k+1} \quad s_1 \in L' \text{ by (2.2)}
$$

\n
$$
= s_1 [(z_{k+1}\ell \cdot w_{k+1})\ell] \ell^{-1} \quad \text{dissociativity implies } ab \cdot b^{-1} = a
$$

\nin a Moutang loop
\n
$$
= s_1 [z_{k+1}(\ell w_{k+1}\ell)] \ell^{-1} \quad \text{using the right Moutfang identity}
$$

\n
$$
= s_1 s_2 [z_{k+1}(w_{k+1}\ell^2)] \ell^{-1} \quad \text{since } s_2 = (\ell, w_{k+1}) \in L' \text{ is central}
$$

\n
$$
= s_1 s_2 z_{k+1} w_{k+1} \cdot \ell \quad \text{since } \ell^2 \text{ is central}
$$

\n
$$
= s_1 s_2 s_3 \ell \cdot z_{k+1} w_{k+1} \quad s_3 = (z_{k+1} w_{k+1}, \ell), \text{ using (2.2) a final time.}
$$

Thus $\ell R(z_{k+1}, w_{k+1}) = [(\ell z_{k+1})w_{k+1}](z_{k+1}w_{k+1})^{-1} = s_1 s_2 s_3 \ell \in L$, as desired. This completes the induction step and the proof. \Box

Corollary 2.6. *Torsion hypercentral units are trivial.*

Proof. Let $\tilde{z} \in \tilde{\mathcal{Z}}(\mathcal{U})$ and suppose $(\tilde{z})^n = 1$ for some positive integer *n*. By Theorems 2.2 and 2.5, we can write $\tilde{z} = z\ell$, $z \in \mathcal{Z}(\mathcal{U})$, $\ell \in L$, and $z^n \ell^n = 1$. This gives $z^n \in L$, so $z \in \pm L$ by Lemma 2.3. Thus $\tilde{z} \in \pm L$, as claimed. \Box

Corollary 2.7. $\mathcal{Z}(\mathcal{U}) = \mathcal{Z}_2(\mathcal{U})$ *.*

Proof. It suffices to prove that $\mathcal{Z}_3 \subseteq \mathcal{Z}_2$, so take $z_3 \in \mathcal{Z}_3$ and $u \in \mathcal{U}$. In view of Theorems 2.2 and 2.5, we can write $z_3 = z\ell$, $z \in \mathcal{Z}(\mathcal{U})$, $\ell \in L$, so $(z_3, u) = (\ell, u) = z_2 \in \mathcal{Z}_2$. By (2.1), $(z_2, \ell) \in L$, so Lemma 2.1 gives $z_2 \ell = \ell z_2 c$, with $c \in L'$ (hence $c^2 = 1$). Since ℓ^2 is central and $u^{-1} \ell u = \ell z_2$, $\ell^2 = u^{-1} \ell^2 u = \ell z_2 \ell z_2 = c \ell^2 z_2^2$, so $z_2^2 = c$ is trivial. Corollary 2.4 says $z_2 \in L' \subseteq \mathcal{Z}(L)$, so $z_3 \in \mathcal{Z}_2$. \Box

Corollary 2.8. *If* $z_2 \in \widetilde{\mathcal{Z}}(\mathcal{U}) = \mathcal{Z}_2(\mathcal{U})$, then z_2^2 is central.

Proof. Take any $\ell \in L$. By Theorem 2.5, $z_2^{-1}\ell^{-1}z_2 \in L$, so (z_2, ℓ) is in *L*, hence in *L'*. Write $z_2^{-1} \ell^{-1} z_2 = c \ell^{-1}$, $c \in L'$. Then $z_2^{-2} \ell^{-1} z_2^2 = c(z_2^{-1} \ell^{-1} z_2) = c^2 \ell^{-1} = \ell^{-1}$. Thus z_2^2 commutes with ℓ^{-1} and hence with ℓ . Since any element that commutes elementwise with *L* is in the centre of ZL , the proof is complete. \Box

Lemma 2.9. *If* $u \in \tilde{Z}(\mathcal{U}) = Z_2(\mathcal{U})$ *and* $v = 1 + n$ *,* $n^2 = 0$ *, then* $(u, v) = 1$ *.*

Proof. Since $u \in \mathcal{Z}_2(\mathcal{U})$, we have $(u^{-1}, v^{-1}) \in \mathcal{Z}(\mathcal{U})$, so $uvu^{-1} = cv$ for some $c \in \mathcal{Z}(\mathcal{U})$. By Corollary 2.8, u^2 is central, so $u^2vu^{-2} = v$, but also, $u^2vu^{-2} = u(cv)u^{-1} = c^2v$. Thus $c^2 = 1$, $uv^2u^{-1} = (uvu^{-1})^2 = c^2v^2 = v^2$, and $uv^2 = v^2u$. Since $v^2 = 1 + 2n$, it follows that *u* and *n* commute, so *v* and *u* commute. \Box

Lemma 2.10. *Let L be an RA loop with torsion subloop T. Let* $U = U(ZL)$ *be the loop of* units in ZL. If $t \in T$ and $u \in \widetilde{Z}(U) = Z_2(U)$, then $u^{-1}tu = t^{\pm 1}$. In the case $u^{-1}tu = t^{-1}$, *the order of t divides* 4*.*

Proof. Let $u \in \mathcal{Z}_2$ and $v \in \mathcal{U}$. Then $(u, v) = c \in \mathcal{Z}(\mathcal{U})$. As in Lemma 2.9, $c^2 = 1$, and *c* ∈ *L*' by Corollary 2.4. Let *t* ∈ *T* have order *n* and set $\hat{t} = 1 + t + t^2 + \cdots + t^{n-1}$. Notice that $t\hat{t} = \hat{t}t = \hat{t}$. Let *v* be the unit $v = 1 + (1 - t)u\hat{t}$. By Lemma 2.9, $(u, v) = 1$, so

$$
u(1-t)u\hat{t} = (1-t)u\hat{t}u.
$$
 (2.3)

By Theorems 2.2 and 2.5, (u, t) is in *L*, so it's in $L' = \{1, s\}.$

Suppose $(u, t) \neq 1$. Then $tu = sut$, so (2.3) and the fact that $t\hat{t} = \hat{t}$ give $u^2\hat{t} - su^2\hat{t} =$ $u\hat{t}u - s u\hat{t}u$, hence

$$
u\hat{t}u^{-1} - su\hat{t}u^{-1} = \hat{t} - s\hat{t}.
$$
 (2.4)

Now $u \in \mathcal{Z}_2 \subseteq \widetilde{\mathcal{Z}}$, so *u* is in the normalizer of *L* in *U* by Theorem 2.5. Writing \hat{t} as a sum of powers of *t*, each side of (2.4) is a sum of loop elements. Now *st* is one term in $s\hat{t}$ so either $st = t^i$ for some *i* or $st = sut^i u^{-1}$ for some *i*. In the first case, *s* is a power of *t*, so $u^{-1}tu = st$ is a power of *t*. In the second case $t = ut^{i}u^{-1}$, so again $u^{-1}tu$ is a power of *t*. In either case, *s* is a power of *t* and $u^{-1}tu = t^i$ for some $i, 1 \le i < n = o(t)$, the order of *t*.

Suppose $u^{-1}tu = t^i \notin \{t, t^{-1}\}$. Thus $1 < i < n - 1$, *i* is relatively prime to *n*, and $u^{-1}tu = st = t^{n/2+1}$ since $s \in \langle t \rangle$ has order 2. The element

$$
b = (1 + t + \dots + t^{i-1})^{\phi(n)} + \frac{1 - i^{\phi(n)}}{n} \hat{t}
$$

is a unit known as a *Bass cyclic unit* (see [6]) and it has infinite order [6, Proposition 8.1.12]. Now

$$
u^{-1}bu = (1 + t^{i} + \dots + t^{i(i-1)})^{\phi(n)} + \frac{1 - t^{\phi(n)}}{n}\hat{t}
$$

and, more generally,

$$
(u^r)^{-1}bu^r = (1 + i^{i^r} + \dots + i^{i^r(i-1)})^{\phi(n)} + \frac{1 - i^{\phi(n)}}{n}\hat{t}.
$$

It follows that

$$
bbubu2 \cdots bu\phi(n)-1 = (1 + t + \cdots + ti\phi(n)-1)\phi(n) + m\hat{t}
$$

for some integer *m*. But $(1 + t + \cdots + t^{i^{\phi(n)}-1})^{\phi(n)} = (1 + k\hat{t})^{\phi(n)}$ for some integer *k*, so

$$
bbubu2 \cdots bu\phi(n)-1 = 1 + m1\hat{t}
$$

for some integer m_1 . (See [6, Theorem 11.1.8] for more details.) Since *b* has augmentation 1, $m_1 = 0$ and

$$
bb^{u} \cdots b^{u^{\phi(n)-1}} = 1.
$$
 (2.5)

Since $(u, b) \in L'$, by Lemma 2.1, each factor b^{u^k} is either *b* or *sb*. So Eq. (2.5) implies that a power of *b* is 1 or *s*. This contradicts the fact that *b* has infinite order and shows that $u^{-1}tu$ is indeed either *t* or t^{-1} .

Finally, in the case $u^{-1}tu = t^{-1}$, we have $(u, t^{-1}) = u^{-1}tu t^{-1} = t^{-2}$, so $t^{-4} =$ $(u, t^{-1})^2 = 1$ and $o(t)$ | 4. □

Lemma 2.11. Let L be an RA loop with torsion subloop T. Let $\mathcal{U} = \mathcal{U}(ZL)$ denote the unit *loop of L* in Z*L.* If $t \in T$ and $\langle t \rangle$ is not normal in *L, then* $(u, \ell) = 1$ *for every* $u \in \mathcal{Z}(U) =$ $\mathcal{Z}_2(\mathcal{U})$ and every $\ell \in L$ *. In particular,* $\widetilde{\mathcal{Z}}(\mathcal{U}) = \mathcal{Z}_2(\mathcal{U}) = \mathcal{Z}(\mathcal{U})$ *.*

Proof. Let $u \in \mathcal{Z}_2(\mathcal{U})$. We use the fact that $s \notin \langle t \rangle$, an easy consequence of $\langle t \rangle$ being not normal. (See also [1, Corollary IV.1.11].)

First let $\ell \in L$ and assume $\ell t \ell^{-1} \notin \langle t \rangle$. Consider the unit $v = 1 + (1 - t)\ell \hat{t}$. By Lemma 2.9, we know that $(u, v) = 1$, so $u[(1 - t)\ell\hat{i}] = [(1 - t)\ell\hat{i}]u$, which gives

$$
u(\ell \hat{t})u^{-1} - u(t\ell \hat{t})u^{-1} = \ell \hat{t} - t\ell \hat{t}.
$$

Since $\ell t \ell^{-1} \notin \langle t \rangle$, supp $(\ell \hat{t})$ ∩ supp $(t \hat{t}) = \emptyset$. It follows (using Theorem 2.5) that $u \ell u^{-1}$, which is an element of *L* and in the support of the left-hand side, must equal ℓt^i for some *i*. But $u \ell u^{-1} = \ell$ or *s* ℓ (Theorem 2.5 and Lemma 2.1) and the latter contradicts *s* $\notin \langle t \rangle$. So $u \ell u^{-1} = \ell$ as desired.

Next, let $\ell \in L$ and assume this time that $\ell t \ell^{-1} \in \langle t \rangle$. Since $s \notin \langle t \rangle$, we know that $\ell t \ell^{-1} = t$. If ℓ is central, there is nothing to prove, so we may assume that ℓ is not central. Since *t* is also not central, the LC property tells us that $\ell = zt$ for some $z \in \mathcal{Z}(L)$. If *(t, u)* = $t^{-1}u^{-1}tu$ = *s,* then, by Lemma 2.10, *s* = 1 or *s* = t^{-2} , contradicting *s* ∉ $\langle t \rangle$. Since *(t, u)* ∈ *L'*, we must have $(t, u) = 1$, so $(\ell, u) = 1$ and we are done. $□$

Remark 2.12. Units of the type $v = 1 + (1 - t)\ell \hat{i}$ which appeared in the last proof, $\ell \in L$, *t* a torsion element of *L*, are called *bicyclic*. We refer the reader to either [1] or [6, Example 8.1.4] for more information about this important type of unit.

3. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1, first reminding the reader that $\mathcal{Z}(\mathcal{U}) = \mathcal{Z}_2(\mathcal{U})$ was established in Corollary 2.7.

Some explanations of terminology may be helpful. A Moufang loop which is not a group is *Hamiltonian* if every subloop is normal. Such loops were classified by Norton [7] as precisely those which are direct products $C \times E \times A$ with C the *Cayley loop* (a Moufang loop similar to the quaternion group of order 8), *E* is an Abelian group of exponent 2 and *A*

is an Abelian group all of whose elements have odd order. (See also [1, §II.4].) A Moufang loop is a 2*-loop* if each element has order a power of 2. In particular then, a Hamiltonian Moufang loop necessarily has exponent 4.

Assume now that L is an RA loop and $\mathcal{Z}(U) \neq \mathcal{Z}(U)$. Using Theorems 2.2 and 2.5 and the fact that $\mathcal{Z}(\mathcal{U}) \subseteq \mathcal{Z}(\mathcal{U})$, there must exist $\ell_0 \in L$, $\ell_0 \in \mathcal{Z}(\mathcal{U}) \setminus \mathcal{Z}(\mathcal{U})$. By Lemma 2.11, every subloop of *T* is normal in *L* so, in particular, *T* is either an Abelian group or a Hamiltonian Moufang (possibly associative) loop [1, §II.4].

Suppose *T* is Hamiltonian. If *T* is not a 2-loop, there exists a noncentral element $x \in T$ of order 4*p*, *p* an odd prime. Since $o(x) \nmid 4$, Lemma 2.10 says that $\ell_0 x = x \ell_0$. Now the LC property in *L*, and the fact that neither *x* nor ℓ_0 is central, gives $x = \ell_0 z$ for some $z \in \mathcal{Z}(L)$. Thus $x \in \mathcal{Z}(U) \setminus \mathcal{Z}(U)$, so $x \in \mathcal{Z}(U(ZT)) \setminus \mathcal{Z}(U(ZT))$. Since *T* is a torsion RA loop, this contradicts Theorem 1.2. Thus *T* is indeed a 2-loop and hence of exponent 4. Remembering that $\langle t \rangle$ is normal in *L*, it follows that $\ell^{-1} t \ell = t^{\pm 1}$ for every $t \in T$ and every $\ell \in L$ (since any conjugate of *t* must have the same order as *t*). This completes the proof in one direction.

For the converse, first assume we are in case (i). Then [1, Corollary XII.2.14] tells us that $[\mathcal{U}(ZL)]'$ has order 2, so $[\mathcal{U}(ZL)]' = L' = \{1, s\}$ and, for any $u \in \mathcal{U} = \mathcal{U}(ZL)$ and any $\ell \in L$, $\ell T(u) = u^{-1} \ell u = \ell$ or $s\ell$. Moreover, for any $u_1, u_2 \in \mathcal{U}$ and any $\ell \in L$,

$$
\ell R(u_1, u_2) = (\ell u_1 \cdot u_2)(u_1 u_2)^{-1} = \ell \text{ or } s\ell
$$

because $\ell u_1 \cdot u_2 = \ell \cdot u_1 u_2$ or $s\ell \cdot u_1 u_2$. Clearly then *L* is normal in \mathcal{U} , so $\mathcal{U} = L \cdot \mathcal{Z}(\mathcal{U})$ by Theorem 2.2. Now choose $\ell_1 \in L \setminus \mathcal{Z}(L)$. Recalling that $L = \mathcal{Z}_2(L)$ (see Section 1), it follows that $U = Z_2(U)$ so $\ell_1 \in Z_2(U) \setminus Z(U)$ and $\widetilde{Z}(U) \neq Z(U)$.

Next, assume we are in case (ii). If *T* is central, then [1, Corollary XII.2.14] can be used again and we may complete the proof as in the preceding paragraph. So assume that *T* is not central and choose an element $t_0 \in T \setminus Z(L)$. To complete the proof, it suffices to show that $t_0 \in \mathcal{Z}_2(\mathcal{U})$. For this, we must show that for any unit $u \in \mathcal{U}$, the commutator (t_0, u) is central and, for any units $u, v \in \mathcal{U}$, the three associators (u, v, t_0) , (u, t_0, v) , and (t_0, u, v) are central.

Let $A = T \cap \mathcal{Z}(L)$ and let $t \in T$. Since $tt_0 = t_0t$ (*T* is Abelian) and t_0 is not central, the LC property says that *t* is central (so *t* ∈ *A*) or *t*₀ = *a* ∈ *A* which implies $t = at_0^{-2}t_0 \in At_0$ since squares in *L* are central. It follows that $T = \langle t_0, A \rangle$ and (again using $t_0^2 \in A$) $T =$ ${a t_0 | a ∈ A}.$ It follows that a unit in Z*T* has the form $u_0 + u_1 t_0$, with $u_0, u_1 ∈ ZA$ central. Since the conditions on *T* described in (ii) allow us to conclude that $U(ZL) = [U(ZT)]L$ [1, Proposition XII.1.3], every unit of ZL has the form $(u_0 + u_1t_0)\ell$, u_0, u_1 central and $\ell \in L$.

Let $u = (u_0 + u_1t_0)\ell$ be such a unit. Remembering that U is Moufang and hence diassociative, we have $ut_0 = u_0 \ell t_0 + u_1 t_0 \ell t_0$ whereas $t_0 u = u_0 t_0 \ell + u_1 t_0^2 \ell = ut_0(\ell, t_0)$. Thus

$$
(u, t_0) = (\ell, t_0) \tag{3.1}
$$

is in L' and so central as desired.

Now let $u = (u_0 + u_1t_0)\ell_1$ and $v = (v_0 + v_1t_0)\ell_2$, u_0, u_1, v_0, v_1 central, $\ell_1, \ell_2 \in L$, be units. We compute the associator (u, v, t_0) .

To begin, we compute

$$
uv \cdot t_0 = u_0 v_0 \ell_1 \ell_2 \cdot t_0 + u_0 v_1 (\ell_1 \cdot t_0 \ell_2) t_0 + u_1 v_0 (t_0 \ell_1 \cdot \ell_2) t_0 + u_1 v_1 (t_0 \ell_1 \cdot t_0 \ell_2) t_0
$$
\n(3.2)

and

$$
u \cdot vt_0 = u_0v_0\ell_1 \cdot \ell_2 t_0 + u_0v_1\ell_1(t_0\ell_2 t_0) + u_1v_0(t_0\ell_1 \cdot \ell_2 t_0) + u_1v_1(t_0\ell_1)(t_0\ell_2 t_0).
$$
 (3.3)

If ℓ_1, ℓ_2, t_0 associate, they generate a group (by Moufang's theorem) and $uv \cdot t_0 = u \cdot vt_0$. Thus we may assume that any associator of ℓ_1 , ℓ_2 , t_0 is *s*. In an RA loop, if two elements commute, they associate with any third element. It follows then that we may assume that the commutators (ℓ_1, t_0) and (ℓ_2, t_0) are each *s* as well, since if either is 1, then ℓ_1, ℓ_2, t_0 associate. We now examine the four terms on the right side of (3.2). We have

$$
\ell_1 \ell_2 \cdot t_0 = s\ell_1 \cdot \ell_2 t_0,
$$

\n
$$
(\ell_1 \cdot t_0 \ell_2) t_0 = s(\ell_1 t_0 \cdot \ell_2) t_0
$$

\n
$$
= s\ell_1 (t_0 \cdot \ell_2 t_0) \quad \text{by the right } \text{Moufang identity}
$$

\n
$$
= s\ell_1 (t_0 \ell_2 t_0) \quad \text{by } \text{dissociativity,}
$$

\n
$$
(t_0 \ell_1 \cdot \ell_2) t_0 = s(t_0 \cdot \ell_1 \ell_2) t_0
$$

\n
$$
= s t_0 \ell_1 \cdot \ell_2 t_0 \quad \text{by middle } \text{Moufang and } \text{dissociativity,}
$$

and

$$
(t_0 \ell_1 \cdot t_0 \ell_2) t_0 = s (t_0 \ell_1 \cdot \ell_2 t_0) t_0
$$

= $s [t_0 (\ell_1 \ell_2) t_0] t_0$ by the middle Moving identity
= $t_0 (\ell_1 \cdot \ell_2 t_0) t_0$ using dissociativity to minimize parentheses
= $st_0 (\ell_1 \cdot t_0 \ell_2) t_0$
= $s (t_0 \ell_1) (t_0 \ell_2 t_0)$ by middle Moving again.

Comparing with (3.3) gives $uv \cdot t_0 = (u \cdot vt_0)s$, so $(u, v, t_0) = s$ is central.

Now the ring associator $[u, v, t_0] = uv \cdot t_0 - u \cdot vt_0 = u \cdot vt_0(s - 1)$. Taking advantage of the alternating nature of associators in an alternative ring,

$$
ut_0 \cdot v - u \cdot t_0 v = [u, t_0, v] = -[u, v, t_0] = u \cdot vt_0(1 - s).
$$
 (3.4)

If *v* and t_0 were to commute, then ℓ_2 and t_0 would commute (as shown above—see (3.1)) and hence associate with every third element. It would follow that $(u, t_0, v) = 1$ is central.

Assume then that *v* and t_0 do not commute and, similarly, that *u* and t_0 do not commute. Thus $(u, t_0) = (\ell_1, t_0) = s$ by (3.1). Now (3.4) gives $ut_0 \cdot v - su \cdot vt_0 = u \cdot vt_0 - su \cdot vt_0$, so $ut_0 \cdot v = u \cdot vt_0 = su \cdot t_0v$. Thus $(u, t_0, v) = s$ is central.

Finally (using $(u, t_0, v) = s$ and continuing to assume that $(u, t_0) = s$),

$$
t_0u \cdot v - t_0 \cdot uv = [t_0, u, v] = -[u, t_0, v] = -ut_0 \cdot v + u \cdot t_0v
$$

= $-st_0u \cdot v + u \cdot t_0v = -st_0u \cdot v + sut_0 \cdot v = -st_0u \cdot v + t_0u \cdot v,$

so $t_0 \cdot uv = st_0u \cdot v$, giving $(t_0, u, v) = s^{-1} = s$. This completes the proof.

References

- [1] E.G. Goodaire, E. Jespers, C. Polcino Milies, Alternative Loop Rings, North-Holland Math. Stud., vol. 184, Elsevier, Amsterdam, 1996.
- [2] E.G. Goodaire, Y. Li, The normalizer conjecture in the alternative case, Algebra Colloq. 8 (4) (2001) 455–462.
- [3] E.G. Goodaire, Alternative loop rings, Publ. Math. Debrecen 30 (1983) 31–38.
- [4] E.G. Goodaire, D.A. Robinson, A class of loops with right alternative loop rings, Comm. Algebra 22 (14) (1995) 5623–5634.
- [5] Y. Li, M.M. Parmenter, Some results on hypercentral units in integral group rings, Comm. Algebra 31 (7) (2003) 3207–3217.
- [6] C. Polcino Milies, S.K. Sehgal, An Introduction to Group Rings, Algebras and Applications, Kluwer Academic, Dordrecht, 2002.
- [7] D.A. Norton, Hamiltonian loops, Proc. Amer. Math. Soc. 3 (1952) 56–65.
- [8] H.O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann, Berlin, 1990.