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Abstract

Let L be an RA loop, that is, a loop whose loop rings are alternative, but not associative, rings (in
any characteristic). We find necessary and sufficient conditions under which the hypercentral units in
the integral loop ring L are central.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let L be a Moufang loop, that is, a loop satisfying any of the following three equivalent
identities:

(xy-z)y=x(y-zy) right Moufang
(xy-x)z=x(y-xz) left Moufang
(xy)(zx) = x(yz-x) middle Moufang
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Perhaps the most important property of Moufang loops is tiagsociativity: the subloop
of a Moufang loop generated by any two elements is a group [8, 8IV.2]. In particular, the
Moufang identity is often used (unambiguously) in the fotay - z)y = x(yzy). More
generally, Moufang proved that if three elements of a Moufang loop associate in any order,
then they generate a group [8, 8IV.2].

Forx, y, z € L, thecommutator (x, y) of x andy and theassociator (x, y, z) of x, y,
andz are defined, respectively, by

xy=0x)(x,y) and xy-z=(x-yz2)(x,y,2).

Using diassociativity, notice thak, y) = x~1y~1xy, just as with groups, ang, y, z) =
[xy - z][z~ty~. x~1]. Thecommutator—associator subloop ofL is the subloog.’ gener-
ated by all commutators and associators.

Thecentre, Z(L), of L is the set of all elements df which commute with all other
elements and associate with all pairs of elements:of

Z(L) = {aeL \ (a,X)z(a,X,y):(x,a,y):(x,y,a):]_fora”x’yeL}'
Just as in group theory, a Moufang loffhas arupper central series
{}=Z20(L) S Z1(L) S Z2(L) S -+ -,

whereZ;11(L)/Z;(L) = Z(L/Z;(L)). (Note thatZ1(L) = Z(L), the centre of..) When
there is no chance of ambiguity, we wrigg rather thanz; (L). The hypercentre of L is
the subloopZ (L) = Ui>oZi(L)-

Forx, y,a € L, there are bijection®(x), L(x), T (x) andR(x, y) defined by

aR(x)=ax, aL(x) =xa, T(x)= R(x)L(x)™1,

R(x,y)=Rx)R()R(xy)™L.

A subloopH of L isnormal ifandonly if HT (x) € H andH R(x,y) € H forallx,y € L.
For instance, the commutator—associator subloop of a loop is always normal [1, Proposi-
tion 11.1.8].

Throughoutl/(ZL) denotes the loop of units (that is, the invertible element)Zin
the integral loop ring ofL, and we often writé/ for 1/(zL). We denote byV;,(L) the
normalizer of L in U, this being the largest subloopfin which L is normal.

An alternative ring is one in whichx(xy) = x2y and (yx)x = yx?2 are identities.
Alternative rings are so-named because in these ringsrithg) @ssociator [a, b, c] :=
(ab)c — a(bc) is an alternating function of its arguments. (We use square brackets for ring
associators to avoid confusion with loop associators.)

A (necessarily Moufang) loop is anRA loop if, over any commutative associative co-
efficientringR, the loop ringR L is an alternative, but not associative, ring. That there exist
such loops came to light in 1983 [3]. By now, RA loops have been completely classified
and many properties of the associated alternative loop rings explored. The best source of
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information on these subjects is [1] to which we make frequent reference here. We record
now some properties of RA loops of special interest in this paper.

An RA loop L has theL.C property: elementsg, » € L commute if and only if one of
g, h, ghis central [1, 8IV.2]. In particular, this implies that the square of any element of an
RA loop is central. In an RA loof., the set otorsion elements (those of finite order) is
a subloop ofL [1, Lemma VIII.4.1] called theorsion subloop of L. If L is RA, then any
loop ring RL of L is an alternative ring and so the unit loopRf. is Moufang [1, §11.5.3].

In an RA loopL, there is a unique nonidentity commutator (always deneo}edhich is
also the only nonidentity associatohi§ element has order 2 and is centralLifand hence
central inl{) [4, Lemma 3.2]. It follows thal /Z(L) is an Abelian group, s& = Z>(L),
the second centre of L. It is rare for the entire unit loofY(ZL) to equal its second centre.
When this occur#{(ZL) is nilpotent and hence itself an RA loop [1, Corollary XII.2.14].
On the other hand, as we show in this paper, the second cerifi@ff equals the centre
“most of the time.” Specifically, we establish the following theorem.

Theorem 1.1. Let L be an RA loop and let ¢/ be the loop of units of ZL. Then ZU) =
Zo(U). Moreover, with T thetorsion subloop of L, Z(U) # ZU) if and only if

() T isaHamiltonian Moufang 2-loop and ¢~1t¢ = t*! for any+ € T andany ¢ € L, or
(i) T isan Abelian group and every subgroup of 7 isnormal in L.

The result for torsion RA loops (every element has finite order), was found by Goodaire
and Liin 2001 [2].

Theorem 1.2. If L isatorsion RA loop but not a Hamiltonian 2-loop, then Z(U) = Z(U).

We also refer the reader to [5] where some of the results of this paper are established
for group rings.
2. Preliminaries

For the rest of this papek, denotes an RA loop arid is the loop of units of the integral
loop ringZL. We begin with a short but very useful lemma.

Lemma 2.1. Supposeu, v € U/ and (u, v) € L. Then (u,v) € L'.
Proof. Let « — @ denote the extension 8L of the natural mapl. — L/L’. In the

Abelian group ringz[L/L’], the commutatori, v) = 1. Thus(u,v) = (i, v) = 1, SO
wm,v)el’. O

While the next theorem was stated in [2] forsion loops, the proof given does not use
the torsion property.

Theorem 2.2 (The normalizer conjecturel)et L be an arbitrary RA loop. Then AV (L) =
L-ZU).



320 E.G. Goodaire et al. / Journal of Algebra 283 (2005) 317-326

If « =) «¢lis an element of a loop ring, the scalata, is called theaugmentation
of « and denoted(«). The mape: RL — R is a ring homomorphism and so,ufis a
unit of ZL, its augmentation is=1. When trying to establish properties of units, it is often
convenient to assume that the augmentation of a giveruusitl since ife(u) = —1, the
result for—u (which has augmentationl) usually gives the result farimmediately. This
is clearly the case when trying to prove that unit 6faretrivial, that is, elements of: L.

Lemma 2.3. Let L be a group or an RA loop and let u be a central unitin zZL. If u" is
trivial for some natural number », then i istrivial too.

Proof. It is sufficient to establish the result farof augmentation 1. Let — o be the
extension tazL of the map¢ — ¢~1in L; that is, fora = Saili, of = Zaizlfl. Easily

o — of is an antiautomorphism &L, so, lettingl = u” € L, we have(u®)" = (u")* =

¢~1, Sinceu andu® commute (and becausgis a Moufang and hence diassociative loop),
(uu®)" = 1. As a central unit irzL of finite order,uu® is trivial [1, Corollary VII.1.7].
Sincee(u*) = e(u) = 1, the augmentation ofu® is 1, souu® = ¢, for somety € L. Since

the coefficient of 1 in«u® is not zero (it is the sum of squares of integers), it must be that
¢1 =1 from which it follows readily that is trivial. O

Corollary 2.4. Let L be an RA loop and let / be the loop of unitsof ZL. Let u, v € { and
z=(u,v).lfz€ ZWU) and 7" istrivial for some natural number n, thenz € L’.

Proof. We have;” = +¢ for somel € L. By Lemma 2.3 is trivial. Sincez is a commu-
tator,e(z) =1,s0z € L.ByLemma2.1lz;e L. O

Theorem 2.5. Let L bean RA loop and let I/ bethe unit loop of ZL. Then ZU) € Ny, (L).

Proof. Writing Z, for Z, ), we prove by induction om > 1 that Z, € Ny (L). For
n=1, 21 = ZU) € Ny (L) by Theorem 2.2. Suppose the result is truedfor 1. Take
Zk+1 € Zry1 andl € L. Then(?, zx+1) = zx € Zx € Ny (L) (and note that as a commu-
tator, z; has augmentation 1). By Theorem 2.2, we can wgite- z¢1, z € Z(U), ¢1 € L.
Thuszj |1 €zir1 = z0€1. Sinced? is central £2 = ;1 02241 = z2(£€1)2, 5022 is trivial.

By Lemma 2.3 is trivial, sozy is trivial, hence inL (because this element has augmen-
tation 1), and

Oz = 2 1 laks1 =T (zk41) € L. (2.1)

It remains to show thatR (zx+1, wr+1) € L for any zx4+1, wr4+1 € Zx41. To show this, we
will use frequently that

(£, zk+1) € L' foranyt e L and anyz+1 € Zii1, (2.2)

which follows from(¢, zx+1) = zx € L and Lemma 2.1.
Let? € L and letzx41, wit1 € Zx+1. We have
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€2pt1 - w1 = [(@r420) (6 2 1) Jwip
=s12k+1¢ - wrr1 s1€ L' by (2.2)
=s1[(zet1l - wer)€]e™  diassociativity impliesib - b=t = a
in a Moufang loop
= s1[zrr1(wi20)]¢™t  using the right Moufang identity
= s152[ 21 (i1 )€1 sincesp = (€, wiqn) € L' is central
= s1s2zk1wis1- £ sincel? is central

= 5152530 - Zp+1Wr+1  $3 = (Zk+1Wir+1, £), Using (2.2) a final time.

Thus €R(zk+1, wk+1) = [(Czat1) wit1](Zk4+1wit1) ™ = s15253¢ € L, as desired. This
completes the induction step and the proof

Corollary 2.6. Torsion hypercentral units aretrivial.

Proof. Letz € E(U) and suppos€)” = 1 for some positive integer. By Theorems 2.2
and 2.5, we canwrite=z¢,z € Z(U), ¢ € L,andz"¢" = 1. This givex”" € L, soz € =L
by Lemma 2.3. Thu§ € £L, as claimed. O

Corollary 2.7. ZU) = Zo(U).

Proof. It suffices to prove thags C Zp, so takezz € Z3 andu € U. In view of Theo-
rems 2.2 and 2.5, we canwrite=z¢,z € Z(U), £ € L,s0(z3,u) = ({,u) =z2 € Z2. By
(2.1),(z2,£) € L, so Lemma 2.1 givesy¢ = £z2c, with ¢ € L’ (hencec? = 1). Sincet? is
central and: ~1eu = €z, €2 = u=10%u = £zp0z = ct?z3, S0z5 = c is trivial. Corollary 2.4
sayszy € L' € Z(L),S0z3€ Zo. O

Corollary 2.8.1f z € Z(U) = Z2(U), then z3 is central.

Proof. Take any? € L. By Theorem 2.51515‘1z2 € L,so0(z2,¢) isin L, hence inL'.
Write 2, ¢ 120 = c™1, c € L. Thenz; 267123 = c(z; ¢ 120) = 21 = ¢~1. Thusz3
commutes witt—1 and hence with. Since any element that commutes elementwise with
L is in the centre oZL, the proof is complete. O

Lemma29.Ifu e ZU) = Zo(Ud) andv =1 +n, n? =0, then (u, v) = 1.

Proof. Sinceu € Z>(U), we have(u™1, v™1) € ZU), souvu~1 = cv for somec € Z(U).
By Corollary 2.842 is central, sai?vu—2 = v, but alsou?vu—2 = u(cv)u~1 = c2v. Thus
AA=1uw?u1l= (uvu‘l)2 = 202 = 42, anduv? = v2u. Sincev? = 1 + 2x, it follows
thatu andn commute, s@ andu commute. O
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Lemma 2.10. Let L be an RA |oop with torsion subloop 7. Let ¢ = U(ZL) be the loop of
unitsinzL. 1ft e T andu € ZU) = Z(U), then uLru = 1*1. Inthecase uttu =171,
the order of ¢ divides 4.

Proof. Letu € Z, andv € U. Then(u,v) = ¢ € Z(U). As in Lemma 2.9¢2 = 1, and
c € L' by Corollary 2.4. Let € T have order and sef =1+t + 2+ --- + "~1. Notice
thattf =it = 7. Letv be the unitv = 1+ (1 — t)ut. By Lemma 2.9(u, v) = 1, so

u(l—t)ut = (1 — t)utu. (2.3)

By Theorems 2.2 and 2.5y, t)isin L, soit'sinL' = {1, s}.
Supposeu, 1) # 1. Thenru = sut, so (2.3) and the fact thaf = 7 give u?f — su?f =
utu — sufu, hence

utut — sutu=t =1 — si. (2.4)

Now u € 25 C Z, sou is in the normalizer of in i/ by Theorem 2.5. Writing as a sum

of powers oft, each side of (2.4) is a sum of loop elements. Nvis one term insf so

eithersr = ' for somei or st = sut'u~1 for somei. In the first cases is a power oft, so

u~ltu = st is a power of. In the second case= ur'u~1, so again:~17u is a power of.

In either cases is a power off andu~ru =1’ for somei, 1 <i < n = 0(r), the order of.
Supposer Yty =t ¢ {r,+71}. Thus 1<i <n — 1, is relatively prime ton, and

uttu = st = "/?*1 sinces € (r) has order 2. The element

1—i%m

—1

¢ (n)

b=1+t+---+rH"" 4

n

is a unit known as &ass cyclic unit (see [6]) and it has infinite order [6, Proposi-
tion 8.1.12]. Now

. o 1—90m
wlbu = (L1 4. DYWL 220
n

and, more generally,
_ . o 1— 90
(Mr) lbur — (1+tﬂ‘ 4oyl (171))¢(Vl) + - 7

n

It follows that

bbb b = (Lt PO

for some integem. But (L +7 + - -- 4+ ¢1*"'=1)$0 — (1 4 k7 )#™ for some integek, SO

bu¢(n)—1

bbb . —14mif
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for some integerm;. (See [6, Theorem 11.1.8] for more details.) Sikckas augmenta-
tion 1,m1 =0 and

ppt - b =1, (2.5)

Since(u,b) € L', by Lemma 2.1, each factét" is eitherb or sb. So Eq. (2.5) implies
that a power ob is 1 ors. This contradicts the fact thathas infinite order and shows that
u~tu is indeed either or =2,

Finally, in the case: 1ru = t~1, we have(u,t™1) = ultur1 =172 sor % =
(u,t~H2=1ando(t) |4. O

Lemma2.11. Let L bean RAloop with torsion subloop 7'. Let &/ = U/ (ZL) denote the unit
loopof LinZL.Ift €T and (z) isnot normal in L, then (u, £) =1 for everyu € Z({U) =
Zo(U) and every ¢ € L. In particular, Z(U) = Zo(U) = ZU).

Proof. Letu € Z>(U/). We use the fact that¢ (r), an easy consequence @f being not
normal. (See also [1, Corollary IV.1.11].)

First let ¢ € L and assumér¢—1 ¢ (t). Consider the unity = 1 + (1 — r)¢f. By
Lemma 2.9, we know thal, v) = 1, sou[(1 — 1)t ] = [(1 — t)£f Ju, which gives

u@Hu™t —u@et u=t = ef — 1of.

Sincetrt=1 ¢ (1), suppti) N suppzéz) = . It follows (using Theorem 2.5) thattu 1,
which is an element of and in the support of the left-hand side, must edealor somei .
But ufu—! = ¢ or s¢ (Theorem 2.5 and Lemma 2.1) and the latter contradigtss). So
ulu—t = ¢ as desired.

Next, let¢ € L and assume this time that¢—1 € (r). Sinces ¢ (), we know that
ete~1 =1, If £is central, there is nothing to prove, so we may assume/tisatot central.
Sincer is also not central, the LC property tells us tiat 7zt for somez € Z(L). If
(t,u) =t~ u=Ytu = 5, then, by Lemma 2.1@,= 1 ors = ¢ 2, contradicting ¢ (). Since
(t,u) € L', we must haveér, u) =1, so(¢, u) =1 and we are done.O

Remark 2.12. Units of the typev = 1+ (1 — t)¢7 which appeared in the last prodfe L,
t a torsion element of , are calledbicyclic. We refer the reader to either [1] or [6, Exam-
ple 8.1.4] for more information about this important type of unit.

3. Proof of Theorem 1.1

_ In this section, we complete the proof of Theorem 1.1, first reminding the reader that
ZU) = Z2(U) was established in Corollary 2.7.

Some explanations of terminology may be helpful. A Moufang loop which is not a
group isHamiltonian if every subloop is normal. Such loops were classified by Norton [7]
as precisely those which are direct produtts E x A with C theCayley loop (a Moufang
loop similar to the quaternion group of order 8)js an Abelian group of exponent 2 add
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is an Abelian group all of whose elements have odd order. (See also [1, §l1.4].) A Moufang
loop is a 2loop if each element has order a power of 2. In particular then, a Hamiltonian
Moufang loop necessarily has exponent 4.

Assume now that is an RA loop andg(u) # Z(U). Using Theorems 2.2 and 2.5 and
the fact thatZ (/) € Z(U), there must existg € L, £g € Z(U) \ ZU). By Lemma 2.11,
every subloop off" is normal inL so, in particular,T is either an Abelian group or a
Hamiltonian Moufang (possibly associative) loop [1, §ll1.4].

Supposd’ is Hamiltonian. IfT is not a 2-loop, there exists a honcentral elemeatl
of order 4p, p an odd prime. Since(x) t 4, Lemma 2.10 says th@bx = x£o. Now the
LC property inL, and the fact that neither nor ¢q is central, givest = £oz for some
z€ Z(L). Thusx € 2(2/{) \ ZU), sox € ZoUZT)) \ ZU(ZT)). SinceT is a torsion
RA loop, this contradicts Theorem 1.2. THliss indeed a 2-loop and hence of exponent 4.
Remembering that) is normal inL, it follows that¢—1r¢ = r*1 for everyr € T and every
¢ € L (since any conjugate afmust have the same ordergsThis completes the proof
in one direction.

For the converse, first assume we are in case (i). Then [1, Corollary XII.2.14] tells us
that[Z/(zL)] has order 2, sfi/(zL)]' = L' = {1, s} and, for anyu € Y =14/ (ZL) and any
e L, 0T (u)=uYeu =t orst. Moreover, for anyi1, uo €4 and anyl € L,

CR(u1, u2) = (Cu1 - uz)(uiuz) =t orse

becaus€ui - up = € - uiup or s - uuy. Clearly thenL is normal inl/, sod = L - ZU)
by Theorem 2.2. Now chooge € L \ Z(L). Recalling thatl = Z>(L) (see Section 1), it
follows thatif = Z>(U) so¢1 € ZoU) \ ZU) andZU) # ZU).

Next, assume we are in case (ii) 7lfis central, then [1, Corollary XII.2.14] can be used
again and we may complete the proof ashia preceding paragraph. So assume Thi
not central and choose an element 7'\ Z(L). To complete the proof, it suffices to show
thatzg € Z2(U). For this, we must show that for any umite U/, the commutato(r, u) is
central and, for any unitg, v € U, the three associato(s, v, tg), (u, tg, v), and(tg, u, v)
are central.

LetA=TnNZ(L)andletr € T. Sincertg = rot (T is Abelian) andy is not central, the
LC property says thatis central (sa € A) orrtg = a € A which impliesr = atazto € At
since squares il are central. It follows thal" = (r9, A) and (again usingg eA)T =
{atg | a € A}. It follows that a unit inZT has the formug + 1110, with ug, u1 € ZA central.
Since the conditions off described in (ii) allow us to conclude tha(zL) = [U(ZT)]L
[1, Proposition XI1.1.3], every unit oZL has the form(ug + u1fo)€, uo, u1 central and
Lel.

Letu = (uo + u1t0)£ be such a unit. Remembering tliatis Moufang and hence dias-
sociative, we havery = uoltg + uitolto whereasou = uotol + u 1t§€ =uto(¢, t9). Thus

(u, t0) = (£, to) (3.1)

isin L" and so central as desired.
Now letu = (ug + u1tg)€1 andv = (vg + vifg)€2, uog, u1, vo, v1 central,lq, £2 € L, be
units. We compute the associater, v, tg).
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To begin, we compute

uv - tg = uovol1f2 - to + uovi(€1 - 10€2)t0 + uivo(tols - £2)to

+ uav1(fols - tol2)to (3.2)

and

u - vig = uovol1 - €210 + uovif1(folato) + uivo(tola - £2t0)
+ u1v1(to€1) (tol210). (3.3)
If £1, £2, 19 associate, they generate a group (by Moufang’s theoremyang) = u - vro.
Thus we may assume that any associatat10f, 1o is s. In an RA loop, if two elements
commute, they associate with any third e It follows then that we may assume that
the commutatorsl1, ro) and (2, o) are eacly as well, since if either is 1, thefy, £2, 1o
associate. We now examine the four terms on the right side of (3.2). We have
L1182 - 19 =587 - L2to,
(€1 - tol2)tg = s(L1to - £2)10
=sl1(tg - 2tg) by the right Moufang identity
=sl1(rol2t0) by diassociativity,
(tol1 - £2)to = s(to - £1£2)10

=stol1 - L2tg by middle Moufang and diassociativity,

and

(tol1 - tol2)to = s (tol1 - £210)10
= s[to(1€2)t0]t0 by the middle Moufang identity
=1o(£1 - L2tp)tp uSing diassociativity to minimize parentheses
= sto(€1 - 10€2)10
=s(tol1)(tol2tp) by middle Moufang again.
Comparing with (3.3) givesv - ro = (u - vig)s, SO(u, v, fo) = s is central.

Now the ring associatdu, v, fo] = uv - fo — u - vig = u - vig(s — 1). Taking advantage
of the alternating nature of associators in an alternative ring,

utg-v —u - tov = [u, fo, vl = —[u, v, to] = u - vig(1 — s). (3.4)

If v andzg were to commute, thefp andse would commute (as shown above—see (3.1))
and hence associate with everyrthélement. It would follow thatu, 79, v) = 1 is central.
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Assume then that andzy do not commute and, similarly, thatandzy do not commute.
Thus(u, tg) = (£1, to) = s by (3.1). Now (3.4) givesitg - v — su - vtg = u - vtg — su - vig,
SOuty-v=u - vig=su - tgv. Thus(u, fg, v) = s is central.

Finally (using(u, tg, v) = s and continuing to assume th@t, zp) = s),

tou-v—1tg-uv=|[to,u,v]=—[u,tg, v]l=—utg-v-+u-tov

= —stou - v+ u - tov = —stouU - v + sutg - v = —stou - v + tou - v,

SO1g - uv = stou - v, giving (f0, u, v) = s+ = 5. This completes the proof.
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