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Abstract Missense mutations (A30P and A53T) in a-synuclein
and the overproduction of the wild-type protein cause familial
forms of Parkinson’s disease and dementia with Lewy bodies. a-
Synuclein is the major component of the filamentous Lewy
bodies and Lewy neurites that define these diseases at a
neuropathological level. Recently, a third missense mutation
(E46K) in a-synuclein was described in an inherited form of
dementia with Lewy bodies. Here, we have investigated the
functional effects of this novel mutation on phospholipid binding
and filament assembly of a-synuclein. When compared to the
wild-type protein, the E46K mutation caused a significantly
increased ability of a-synuclein to bind to negatively charged
liposomes, unlike the previously described mutations. The E46K
mutation increased the rate of filament assembly to the same
extent as the A53T mutation. Filaments formed from E46K a-
synuclein often had a twisted morphology with a cross-over
spacing of 43 nm. The observed effects on lipid binding and
filament assembly may explain the pathogenic nature of the
E46K mutation in a-synuclein.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Parkinson’s disease (PD) is the most common movement

disorder. Neuropathologically, it is defined by nerve cell loss in

a number of brain regions, including the substantia nigra, and

the presence there of Lewy bodies and Lewy neurites [1,2].

Abundant Lewy bodies and Lewy neurites in cerebral cortex

are also the defining neuropathological characteristics of de-

mentia with Lewy bodies (DLB), a common late-life dementia

that is clinically similar to Alzheimer’s disease. Ultrastructur-

ally, Lewy bodies and Lewy neurites are composed of fila-

mentous and granular material [3]. Missense mutations (A30P

and A53T) in the a-synuclein gene were identified as the cause

of autosomal-dominantly inherited forms of PD [4,5] and a-
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synuclein has been shown to be the major component of the

abnormal filamentous inclusions of Lewy bodies and Lewy

neurites in idiopathic PD and DLB [6–9]. In addition, the fil-

amentous glial and neuronal inclusions of multiple system

atrophy (MSA) have also been found to contain a-synuclein as

a major component [10–12]. This work has shown that PD,

DLB and MSA are a-synucleinopathies.
a-Synuclein is a 140 amino acid protein of unknown

function that is abundantly expressed in brain, where it is

concentrated in presynaptic nerve terminals [13,14]. The amino-

terminal region of a-synuclein (amino acids 7–87) consists of

seven imperfect repeats, each 11 amino acids in length, with the

consensus sequence KTKEGV. The repeats are continuous,

except for a four amino acid stretch between repeats 4 and 5,

and partially overlap with a hydrophobic region (amino acids

61–95). The carboxy-terminal region (amino acids 96–140) is

negatively charged. a-Synuclein is a natively unfolded protein

with little ordered secondary structure [15] that binds to lipid

membranes through its amino-terminal repeats, indicating that

it may be a physiological lipid-binding protein [16–21]. Upon

binding to phospholipid membranes, a-synuclein adopts

structures rich in a-helical character [16,18–21].
Recombinant a-synuclein readily assembles into filaments

that share many of the morphological and ultrastructural

characteristics of the filaments present in human brain [22–31].

Assembly is a nucleation-dependent process and occurs

through sequences located in the amino-terminal 100 amino

acids of a-synuclein. The carboxy-terminal region, in contrast,

inhibits assembly to a certain extent. The A53T mutation in a-
synuclein accelerates the rate of filament assembly. The A30P

mutation has been reported to increase the total aggregation of

a-synuclein, but to slow the rate of mature filament formation.

It reduces the binding of a-synuclein to natural lipid mem-

branes, suggesting that this may lead to its progressive accu-

mulation in the cytoplasm, thus facilitating aggregation and

filament formation [17,32–34]. Mutation A53T has no signifi-

cant effect on the ability of a-synuclein to bind to lipid mem-

branes [17,32–35].

Recent work has confirmed and extended the relevance of a-
synuclein dysfunction for the neurodegenerative process.

Triplication of a 1.6–2.0 Mb region on the long arm of chro-

mosome 4 has been found to cause an inherited form of PD-

dementia [36,37]. One of an estimated 17 genes located in this

region is the a-synuclein gene, suggesting that the simple

overproduction of wild-type a-synuclein may be sufficient to
blished by Elsevier B.V. All rights reserved.
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cause PD-dementia. Moreover, a novel missense mutation

(E46K) in a-synuclein has been identified in a Spanish family

with an autosomal-dominantly inherited form of DLB [38].

Here, we have examined the functional effects of the E46K

mutation on phospholipid binding and assembly of a-synuc-
lein into filaments.
2. Materials and methods

2.1. Expression and purification of recombinant human a-synucleins
Expression constructs of human a-synuclein, A30P a-synuclein and

A53T a-synuclein in pRK172 have been described [29]. Mutation
E46K in a-synuclein was introduced using site-directed mutagenesis
with QuikChange (Stratagene), followed by DNA sequencing. Bac-
terial expression and purification of a-synuclein, as well as procedures
for immunoblotting, were as described [14]. Protein concentrations
were determined by quantitative amino acid analysis. For constructs
encoding N-terminal glutathione S-transferase (GST)-fusion tags,
polymerase chain reaction (PCR) was used to amplify the coding re-
gion of human a-synuclein, A30P a-synuclein, E46K a-synuclein and
A53T a-synuclein in bacterial expression vector pRK172 and inserts
cloned into pGEX-5X-1 (Amersham Biosciences). Constructs were
verified by DNA sequencing. Bacterial expression was done as de-
scribed [14]. For constructs encoding C-terminal GST-fusion tags, the
Gateway Technology from Invitrogen was used. PCR primers were
designed according to the manufacturer’s instructions and used to
amplify the coding region of human a-synuclein. Entry clones were
generated in pDONR201 and expression clones in pDEST24. Con-
structs were verified by DNA sequencing. Expression clones were
transformed into BL21(DE3) and expression induced using 0.2% LL-
arabinoside (Sigma–Aldrich, Poole, Dorset, UK).
Pellets from 1 L culture were resuspended in 30 ml sonication buffer

[20 mM HEPES, pH 7.3, 500 mM NaCl, 1 mM EDTA, 2 mM DTT,
2% Triton X-100 and protease inhibitor cocktail (Roche Diagnostics,
Ltd.)]. The bacterial suspension was sonicated (10 cycles of 20 s
bursts), incubated for 20 min at 4 �C and centrifuged at 20 000· g for 1
h at 4 �C. The supernatant was added to 1 ml glutathione–agarose
beads. Following a 2 h rotating incubation at 4 �C, the beads were
washed three times with high salt buffer (20 mM HEPES, pH 7.3, 1 M
NaCl, 1 mM EDTA, and 0.1% Triton X-100) and the GST-fusion
protein eluted with 3 ml elution buffer (20 mM HEPES, pH 8.5, 250
mM NaCl, 15 mM glutathione, 1 mM EDTA, and 2 mM DTT). The
protein solution was dialyzed once against PBSE (phosphate-buffered
saline, 1 mM EDTA) and twice against HBSE (20 mM HEPES, pH
7.3, 100 mM NaCl, and 1 mM EDTA). Protein concentrations were
determined by quantitative amino acid analysis.

2.2. Preparation of fluorescence-labeled liposomes
Brain phosphatidylcholine (PC) and cholesterol were purchased

from Avanti Polar Lipids (Birmingham, AL). Brain phosphatidylserine
(PS) was obtained from Sigma–Aldrich. 3,30-Dioctadecyloxacarbocy-
anine perchlorate (DiO) was purchased from Molecular Probes (Eu-
gene, OR). Lipids and DiO were dissolved in chloroform–methanol
(1:1, v/v) and liposomes with the following compositions prepared:
PC:PS:Cholesterol 35:35:30 mol% and PC:PS:Cholesterol 52.5:17.5:30
mol%. DiO fluorescent dye was added to 0.5% (w/v). Mixed lipids were
dried under a stream of nitrogen and solubilized at 3 mM with HBSE
in the presence of 2% n-octylglucoside. Following dialysis to remove
the detergent (once against PBSE and twice against HBSE), the lipo-
some suspension was stored at 4 �C and used within 24 h. For size
determination, liposomes were placed on carbon-coated 400-mesh
grids and stained with 1% uranyl acetate, and micrographs recorded at
a nominal magnification of 20 000· on a Philips EM208S microscope.
The negatives were scanned and liposome diameters in pixels measured
using Photoshop (Adobe), followed by conversion into nanometers.
Extruded liposomes were prepared as described [39,40], using the

mini-extruder from Avanti Polar Lipids. Briefly, mixed lipids were
dried under a stream of nitrogen and solubilized at 3 mM with HBSE.
Solubilized mixed lipids were then serially extruded (21 passages for
each step) at room temperature through 100, 50 and 30 nm pore di-
ameter Nucleopore polycarbonate membranes (Whatman). The ex-
truded liposomes were stored at 4 �C and used within 24 h.
2.3. Liposome pull-down assay
The liposome pull-down assay was done essentially as described

[41,42]. Briefly, recombinant GST-fusion protein (37.5 pmol) was
bound to glutathione–agarose beads (30 ll). Following three washes
with HBSE, the beads were resuspended in 100 ll HBSE and mixed
with 100 ll diluted liposomes (75 lM lipid), followed by a 7.5 min
incubation at 37 �C with vigorous shaking. The incubation was ter-
minated by pelleting and the beads were washed three times with
HBSE at 4 �C. Bound lipids were solubilized with 0.2% Triton X-100
in HBSE and transferred to 96-well microplates. Fluorescence was
measured (460 nm excitation/538 nm emission) using a microplate
fluorimeter (Fluoroskan, Labsystems).

2.4. Filament assembly
Prior to setting up the assembly experiments, a-synuclein proteins

were spun for 30 min at 200 000· g, to remove any insoluble material.
For assembly, untagged a-synuclein proteins were used at 400 lM in
30 mM. 3-[N-Morpholino]propanesulfonic acid (Mops), pH 7.2, con-
taining 0.02% sodium azide and 20 lM thioflavin T (ThT, Sigma–
Aldrich), and placed in a shaking incubator at 37 �C, as described [29].
For a quantitative assessment of filament formation, ThT fluorescence
was used [43]. Aliquots (10 ll) were removed at various time points
and brought to 400 ll with 20 lM ThT in 50 mM glycine buffer, pH
8.5. Fluorimetry was performed using a Perkin–Elmer luminescence
spectrophotometer LS 50B (set at 450 nm excitation/480 nm emission,
with a scan speed of 200 nm/min and with excitation and emission slit
widths of 5 and 2.5 nm, respectively). Control experiments with wild-
type a-synuclein had established that the continuous presence of ThT
did not affect assembly (data not shown). For a semi-quantitative as-
sessment of filament formation, electron microscopy was used, as de-
scribed [29]. Briefly, aliquots of assembly mixtures were placed on
carbon-coated 400-mesh grids and stained with 1% potassium phos-
photungstate, and micrographs recorded at a nominal magnification of
20 000· on a Philips model EM208S microscope.
3. Results

3.1. Liposome binding of wild-type and mutant human

a-synucleins
A well-established liposome pull-down assay [41,42] was

used to investigate the lipid binding of wild-type, A30P, E46K

and A53T a-synucleins. Incubation of GST-a-synuclein at-

tached to glutathione–agarose (1.25 pmol/ll bead) with fluo-

rescence-labeled PC/PS/cholesterol liposomes (75 lM lipid)

resulted in the saturable binding of liposomes to GST-a-syn-
uclein. Binding was linearly dependent on the GST-a-synuclein
concentration in the range of 0.31–2.5 pmol protein/ll bead.
Incubation of liposomes with GST bound to glutathione–

agarose gave a figure for non-specific binding of approximately

12%, with the binding of wild-type GST-a-synuclein taken as

100%. Non-specific binding due to GST bound to beads was

subtracted from total binding to give the specific binding of

a-synuclein.
a-Synuclein proteins with either N- or C-terminal GST-

fusion tags were used. Both types of proteins were found to

bind to the same extent to liposomes (data not shown), in

agreement with reports showing that N-terminal GST-fusion

tags did not interfere with the lipid binding of a-synuclein
[34,44]. Constructs encoding a-synuclein with the N-terminal

GST-fusion tag gave a significantly higher yield of intact

protein than constructs encoding C-terminally tagged protein.

We, therefore, used N-terminally tagged proteins in sub-

sequent experiments.

Liposomes of two different lipid compositions were used,

PC:PS:cholesterol 52.5:17.5:30 mol% (type A, Fig. 1A) and

PC:PS:cholesterol 35:35:30 mol% (type B, Fig. 1B). The former

is more similar in composition to synaptic vesicles than the



Fig. 1. Binding of wild-type (WT) and mutant (A30P, E46K, A53T)
human a-synucleins to multilamellar liposomes. Liposomes of two
different compositions (A and B) were used. The results are presented
as percent binding of WT a-synuclein (taken as 100%) and expressed as
means�S.E.M. of the measurements obtained from three independent
protein preparations, each run in duplicate.

Fig. 2. Binding of wild-type (WT) and mutant (E46K) human a-sy-
nucleins to unilamellar liposomes. Type B liposomes of 30, 50 and 100
nm diameter were used. The results are presented as percent binding of
WT a-synuclein to 30 nm liposomes (taken as 100%) and expressed as
means�S.E.M. of the measurements obtained from three independent
protein preparations, each run in duplicate.

Fig. 3. Kinetics of fibrillation of wild-type (WT) and mutant (A30P,
E46K, A53T) human a-synucleins, as monitored by the enhancement
of thioflavin T (ThT) fluorescence intensity over time. The results are
presented as normalized fluorescence (with the value for wild-type a-
synuclein at 98 h taken as 100) and expressed as the means� S.E.M. of
the measurements obtained from three independent protein prepara-
tions.
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latter [45,46]. The absolute binding of wild-type human a-
synuclein to type B liposomes was approximately 4-fold higher

than to type A liposomes. The two liposome types showed

similar relative effects in binding of a-synuclein mutants, with

the magnitude of the effects being greater for type A liposomes

(Fig. 1). Mutation E46K increased the binding of a-synuclein
to type A liposomes by 88% and to type B liposomes by 56%.

Mutation A30P reduced the binding of a-synuclein to type A

liposomes by 95% and to type B liposomes by 53%, whereas

mutation A53T led to a non-significant 9–12% reduction in the

binding of a-synuclein to both liposome types. Liposomes used

for these measurements were heterogenous in size, with aver-

age sizes of 31� 15 nm (type A liposomes) and 32� 18 nm

(type B liposomes).

Defined size (30, 50 or 100 nm) type B liposomes were

produced by extrusion and the binding of wild-type and mu-

tant (E46K) a-synucleins examined (Fig. 2). Total binding of

GST a-synuclein to the extruded liposomes increased with

decreasing liposome size, being 12-fold higher for 30 nm than

for 100 nm liposomes. E46K a-synuclein bound significantly

better than the wild-type protein to each preparation of ex-

truded liposomes. Circular dichroism (CD) spectra from wild-

type and mutant (A30P, E46K, A53T) a-synucleins in the

presence of 50 nm type B liposomes confirmed that the lipid-

associated conformation of wild-type a-synuclein was highly

helical [16]. Of the three mutant proteins, the CD signal at 222

nm was strongest for the E46K mutation and weakest for the

A30P mutation. The signal for the A53T mutation was inter-

mediate and similar to that for wild-type a-synuclein (data not

shown).
3.2. Filament assembly of wild-type and mutant human

a-synucleins
Assembly of a-synuclein proteins was monitored quantita-

tively by ThT fluorescence and semi-quantitatively by electron

microscopy. Both methods were used in parallel in all experi-

ments and a close correspondence was observed between levels

of ThT fluorescence and filament numbers.

The time-dependent changes in ThT fluorescence during

incubation of untagged wild-type and mutant a-synucleins in a

shaking incubator at 37 �C are shown in Fig. 3. E46K a-syn-
uclein showed a faster rate of assembly and a 2.5-fold greater

total assembly than the wild-type protein at 98 h (Fig. 3). The

lag period was approximately 9 h for wild-type a-synuclein and

6 h for the E46K mutant. The A53T mutant behaved in a

similar way to E46K a-synuclein. The rate of assembly of the

A30P mutant was slower than for wild-type a-synuclein, but
the amount of assembly was similar to that of the E46K and

A53T mutants at 98 h (Fig. 3).

Incubation with shaking led to the bulk assembly of wild-

type a-synuclein and all three mutants into filaments (Fig. 4).



Fig. 4. Electron micrographs of wild-type and mutant human a-syn-
uclein filaments. Filaments were assembled from recombinant wild-
type a-synuclein (A), A30P a-synuclein (B), E46K a-synuclein (C) and
A53T a-synuclein (D). The recombinant proteins were incubated in a
shaking incubator at 37 �C for 24 h and represent samples of one of the
assemblies included in Fig. 3. Scale bar, 200 nm.
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The overall kinetics and amount of assembly seen by electron

microscopy matched those measured with the ThT fluores-

cence assay. The rates of assembly of the E46K and A53T

mutants were greater than those of the wild-type and A30P

proteins. As we have reported previously [29], the morpho-

logies of filaments of wild-type and A30P a-synucleins were

very similar, having a filament width of 6–9 nm which varied
slightly in a periodic manner along the length of the filament

(Fig. 4A and B). Images of filaments made from the A53T

mutant tended to show a more marked periodic variation in

width between about 5 and 14 nm, giving a twisted appearance

with a cross-over spacing of about 100 nm (Fig. 4D). By

contrast, filaments assembled from E46K a-synuclein often

showed a pronounced twisted appearance, with width varying

between about 5 and 14 nm, but with a much shorter cross-

over spacing of about 43 nm (Fig. 4C). The E46K filaments

had a tendency to line up in register, giving arrays with a

meshwork appearance.
4. Discussion

The present findings show that mutation E46K increases

both the binding of a-synuclein to liposomes and its propensity

to assemble into filaments. Phospholipid binding is mediated

through the amino-terminal repeat region of a-synuclein,
which undergoes a conformational transition from random

coil to a-helical secondary structure upon lipid binding [16,18–

21]. The recent analysis of the membrane interaction of a-
synuclein by site-directed spin labeling has confirmed that the

N-terminal repeats form extended a-helical structure, with the

C-terminal region remaining unfolded [21]. It has shown

moreover that equivalent positions within individual repeats

are located in comparable positions with respect to membrane

proximity. Each of the seven 11 amino acid repeats is believed

to take up three helical turns. In membrane-bound a-synuc-
lein, residue 46 is probably solvent-exposed, whereas lysine

residues in the repeats are present at the level of the negatively

charged lipid headgroups, where they contribute to binding

through electrostatic interactions [21]. It remains to be deter-

mined whether substitution of the glutamic acid residue at

position 46 by lysine results in increased lipid binding of a-
synuclein through electrostatic interactions or whether addi-

tional mechanisms are involved. The interaction of a-synuclein
with liposomes is dependent on the vesicle diameter, with

small, highly curved vesicles resulting in the strongest inter-

action [16,47]. The same was observed here, when unilamellar

vesicles of 30, 50 and 100 nm were compared. For each class of

liposome, E46K a-synuclein bound significantly better than

the wild-type protein, with the relative effect of the mutation

increasing with liposome size.

Previously, the disease-causing mutation A53T was shown

not to affect the binding of a-synuclein to artificial or natural

membranes [17,32–35,44,48,49]. The present findings using

type A and type B liposomes are in line with these results. In

contrast to mutation A53T, mutation A30P has been shown to

block the interaction of a-synuclein with rat brain membranes

[17], triglyceride-rich lipid droplets in cultured cells [32] and

yeast membranes [33]. However, its reported effects on the

binding of a-synuclein to artificial membranes have been more

variable, probably as a result of the different lipid composi-

tions used [44,48,49]. In the present study, we detected a strong

inhibitory effect of this mutation on the binding of a-synuclein
to negatively charged liposomes. Unlike previous preparations

[44,48,49], the liposomes used here contained cholesterol in

addition to phospholipids. A recent study [34] has established

that a-synuclein binds strongly to lipid rafts in nerve cells

and that the A30P mutation eliminates this interaction,

indicating that cholesterol may be required for both the
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physiological binding of wild-type a-synuclein to lipid mem-

branes and the strong inhibitory effect of the A30P mutation.

A30 and E46 are highly conserved across many species [5,38].

A53, by contrast, is solely found in a-synuclein from humans

and Old World primates, with T53 being present in rodents

and several other mammalian species [50], suggesting that the

A53T substitution may not influence the physiological func-

tion of a-synuclein. This is consistent with the observed lack of

effect of A53T a-synuclein on lipid binding.

Human E46K a-synuclein assembled into a larger number of

filaments at a significantly faster rate than the wild-type pro-

tein, as judged by ThT fluorescence and electron microscopy.

The magnitude of the observed effects was similar to that of

A53T a-synuclein, which is believed to cause disease through

an increased tendency to form filaments [24–30]. Filaments

formed from E46K a-synuclein were often strongly twisted

with a cross-over spacing of approximately 43 nm. As reported

previously [29], filaments formed from A53T a-synuclein were

also twisted, but with a cross-over spacing of approximately

100 nm. Filaments formed from wild-type and A30P a-syn-
uclein were straight, as described [29]. The structural rela-

tionship between straight and twisted a-synuclein filaments

may be similar to that between straight and paired helical tau

filaments in Alzheimer’s disease [51] and various twisted rib-

bon morphologies in familial tauopathies [52]. It may involve

an alternative strand packing, perhaps based on interfaces

formed by different sequence repeats.

By ThT fluorescence, the A30P mutant showed a slower rate

of filament assembly than wild-type a-synuclein, in agreement

with previous studies [28,30]. However, ThT fluorescence at 98

h was approximately 2.5-fold higher for the A30P mutant than

for the wild-type protein. All three mutants gave similar values

of ThT fluorescence after 98 h of incubation and this was

paralleled by increased numbers of filaments relative to the

wild-type protein. It remains to be seen whether the E46K

mutation also increases oligomerization and protofibril for-

mation of a-synuclein, as previously shown for mutations

A30P and A53T [28]. Protofibrils have been reported to per-

meabilize lipid vesicles upon binding [53].

Of the three disease-causing mutations, E46K is the only one

to increase both lipid binding and filament assembly of a-
synuclein. It is unclear whether lipid binding promotes or in-

hibits filament formation of a-synuclein, with some studies

[32,54–57] reporting a stimulatory and others [35,58] an in-

hibitory effect. One study [59] has suggested that the effect of

phospholipids on the assembly of a-synuclein is dependent on

the ratio of protein to lipid, with high ratios accelerating fila-

ment formation and low ratios being inhibitory. In addition to

a direct stimulatory effect of the E46K mutation on filament

assembly, it is therefore possible that the increased binding of

E46K a-synuclein to phospholipids may also contribute to

disease through an indirect stimulatory effect on assembly.
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