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a b s t r a c t

Graphics processors represent a promising technology for accelerating computational science applica-
tions.Many computational science applications require fast and scalable randomnumber generationwith
good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG).
We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high per-
formance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on
NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage
models for pseudorandom numbers and computational science applications executing on the CPU, GPU,
or both. This paper describes the implementation approach used to produce high performance and also
describes how to use the programming interface. The programming interface allows a user to be able to
use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop
tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and
use it. To help illustrate linkingwith GASPRNG, various demonstration codes are included for the different
usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and
is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical
streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for
scalable computational science applications.

Program summary

Program title: GASPRNG

Catalogue identifier: AEOI_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: UTK license.

No. of lines in distributed program, including test data, etc.: 167900

No. of bytes in distributed program, including test data, etc.: 1422058

Distribution format: tar.gz

Programming language: C and CUDA.

Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070).

Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX.

Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives.

RAM: 512 MB∼ 732 MB (main memory on host CPU, depending on the data type of random numbers.)
/ 512 MB (GPU global memory)

Classification: 4.13, 6.5.
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science/journal/00104655).
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Nature of problem:
Many computational science applications are able to consume large numbers of random numbers. For
example, Monte Carlo simulations are able to consume limitless random numbers for the computation as
long as resources for the computing are supported. Moreover, parallel computational science applications
require independent streams of random numbers to attain statistically significant results. The SPRNG
library provides this capability, but at a significant computational cost. The GASPRNG library presented
here accelerates the generators of independent streams of random numbers using graphical processing
units (GPUs).
Solution method:
Multiple copies of random number generators in GPUs allow a computational science application to
consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random
number generators library to allow a computational science application to employ multiple copies of
random number generators to boost performance. Users can interface GASPRNG with software code
executing on microprocessors and/or GPUs.
Running time:
The tests provided take a few minutes to run.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

A pseudorandom number generator with good statistical prop-
erties is a key component for a set of computational science
applications such as Monte Carlo simulations. To be practically
useful in massively parallel codes, the ability to create a large
number of independent pseudorandom number streams repre-
sents another basic requirement. A variety of randomnumber gen-
erating algorithms and libraries are available [1]. In particular,
the Scalable Parallel Random Number Generators Library (SPRNG)
provides high quality pseudorandom number generation for large
numbers of independent, parallel threads of execution [2,3].

Over the past fifteen years, graphical processing units (GPUs)
evolved from specialized custom hardware, to programmable
graphical processing engines, and recently to generally applicable
computational engines, particularly for streaming floating point
calculations [4,5]. Since the introduction of GPUs to high per-
formance computing (HPC), many HPC applications and libraries
exploit GPU accelerators to obtain performance improvements. To
facilitate the use of GPUs for scientific computing, developers cur-
rently can choose between two primary programming languages:
CUDA and OpenCL. Nvidia developed its CUDA programming lan-
guage for usewith its graphics hardware, particularlywith its Tesla
and Fermi families of GPUs [6,7]. OpenCL is an open standard sup-
porting a broad spectrum of multi-core processors and computa-
tional accelerators such as GPUs [8,9]. The code developed for this
paper and our GASPRNG library employs CUDA.

Monte Carlo simulation is a statistical method; the GPU
architecture and programming model fit well for this type of
application [10,11]. To meet the requirements of these GPU
accelerated codes, many parallel random number generators are
available [10,12–26]. These generators work in two ways:

(1) Providing interface functions to CPU routines, and creating
numerous generators on the GPU to generate random numbers in
the GPU’s global memory [13,14]; or,

(2) Providing a device level interface to tightly integrate random
number generation into the caller’s GPU kernel [10,12,15–26].

This paper presents the GPU Accelerated Scalable Parallel
RandomNumber Generators (GASPRNG) librarywhich extends the
Scalable Parallel Random Number Generators (SPRNG) library for
CPU+GPU hybrid simulations. SPRNG is a commonly used random
number generator library [2,3] with good statistic properties.
It includes six types of generators: Modified Lagged Fibonacci
Generator (LFG), Linear Congruential Generator (LCG), 64-bit
LCG (LCG64), Multiplicative Lagged Fibonacci Generator (MLFG),
Combined Multiple Recursive Generator (CMRG), and Prime
Modulus Linear Congruential Generator (PMLCG). GASRPNG has
identical statistical properties as the original SPRNG.

To reflect the diverse ways in which GPUs can be employed
with applications, GASPRNG supports several different approaches
for interfacing. First, applications executing with CPU cores can
employ GASPRNG as a co-processor for generating pseudorandom
numbers on demand, referred to herein as the host GASPRNG inter-
face. The host interface allows developers to exploit GPUswith very
little change to their original application, particularly for legacy
users of SPRNG. In this case we focus on managing the buffers
and data movement from the GPU. Second, GASPRNG can popu-
late buffers of pseudorandom numbers in GPU global memory for
application threads executing on GPUs, referred to as the global
GASPRNG interface. This case corresponds to existing GPU applica-
tions that require high-quality, high-performance pseudorandom
number generators, with an emphasis on managing buffers on the
GPU. Finally, GASPRNG can support tight integrationwithGPUpro-
grams inwhich the threads can create their own local, independent
pseudorandom number generators, an approach referred to as the
device GASPRNG interface.

The paper is organized as follows: Section 2 describes the
framework design, Section 3 describes the GPU kernel implemen-
tation for the six SPRNG algorithms, Section 4 is a brief interface
description, and Section 5 includes experimental results and anal-
ysis. Sections 6 and 7 list the installation and testing procedures.
Section 8 provides conclusions for the work.

2. GASPRNG framework

GASPRNG has three interfaces: host GASPRNG interface (HOST_
GASPRNG), global GASPRNG interface (GLOBAL_GASPRNG), and
device GASPRNG interface (DEVICE_GASPRNG). HOST_GASPRNG
provides random numbers to CPU routines; GLOBAL_GASPRNG
manages a random number pool in GPU global memory; DE-
VICE_GASPRNG creates one generator for each GPU thread, and
integrates the generator kernel into its caller. The purpose and im-
plementation of each interface aims at providing an efficient ran-
dom number source for different application requirements.

2.1. HOST_GASRPNG

This interface uses the GPU to produce pseudorandomnumbers
and place them inmainmemory to support applications executing
on the host. With HOST_GASPRNG, there are three main steps:
(1) generating pseudorandomnumber on the GPU; (2) transferring

http://creativecommons.org/licenses/by-nc-nd/3.0/
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Fig. 1. Framework for HOST_GASPRNG interface.

Fig. 2. Two-level pipeline to shorten the runtime; producing and consuming
happen in parallel.

random numbers across the PCIe bus; and (3) reading random
numbers frommainmemory. How to improve the efficiency of this
process is the central step to make GASPRNG outperform SPRNG.

HOST_GASPRNG has two work modes: NUMBER_MODE and
BUFFER_MODE. For both of them, the library sets up a two-level
pipeline to shorten the runtime. Fig. 1 is the framework of
the design. The left side is the application that gets random
numbers through host interface functions. The outermost layer of
HOST_GASRPNG is a controller; it connects with two page-locked
host memory buffers to implement double-buffering. This double-
buffering strategy aims at improving the parallelism of the random
number production and consumption. When the application is
consuming numbers in one buffer, the other buffer accepts new
numbers from the GPU. When the current consumer buffer is
empty, the buffers roles are exchanged,with the empty buffer filled
by the GPU while the CPU consumer retrieves random numbers
from the full buffer.

The generation is pipelined with help of CUDA’s asynchronous
streams. The generator kernel executes in parallel with random
number transfer across the PCIe bus. The whole task is divided
among several CUDA streams, and each of them fills a part of the
global memory buffer. The two-level pipeline is shown in Fig. 2. In
future architecture, if the PCIe bus is not a necessary part, the inner
level pipeline could be removed.

When no CPU routine requires random numbers, or both host
buffers are full, the GPU generators are suspended until the
controller triggers the next producing process. In the meantime,
theGPU could be used for other purposes. GASPRNGgenerators use
sharedmemory to hold context data. In order to pause and resume
random number production, context data must be maintained
safely. GASPRNG contains routines for this purpose. At the end of
kernel execution, the context data is copied to off-chip storage; and
when the next kernel execution starts, the context is restored.

The BUFFER_MODE gives the address and the size of the host
buffer to provide more flexibility. For example, when multiple
CPU threads exist and each needs a small amount of random
numbers, instead of starting multiple producing processes, these
threads could share the same buffer. When the current buffer
is empty, one thread notifies the controller and triggers random
Fig. 3. Application model of GLOBAL_GASPRNG.

number generation. An example of this behavior is included in
$(GASPRNG_PATH)/check/omp_host_buff_gasprng.

2.2. GLOBAL_GASRPNG

This interface provides a random number buffer in GPU global
memory, so GPU kernels can share the buffer and consume the
random numbers. The intent is for GPU codes to use GASPRNG
to generate random numbers and place them in a buffer; other
kernels will then consume them as needed. Fig. 3 shows the
relation between GASPRNG and an application. The generator
kernel is the producer and multiple application kernels can be
consumers. As in HOST_GASPRNG, context save/restore routines
are used for suspending and resuming generator kernel execution.
Between every two iterations of generator kernel execution, other
kernels could occupy GPU resources. In contrast to CURAND and
other commonly used GPU random number generators, GASPRNG
takes over themanagement of randomnumber buffers, simplifying
the integration task for application developers.

Sometimes applications have multiple GPU kernels or launch
the same kernelmultiple times.When each kernel execution needs
only a small amount of random numbers, since some generator
types have complex state data and initialization process, it is a
waste to maintain one generator for each GPU thread. By using
GLOBAL_GASPRNG and setting the producer–consumer relation
in Fig. 3, applications can use these generators more efficiently.
Quantum Monte Carlo simulation (QMC) is an example presented
in Section 5.5.

2.3. DEVICE_GASRPNG

Aswith the GLOBAL_GASPRNG interface, the DEVICE_GASPRNG
interface is intended for GPU codes that will consume random
numbers while executing on the GPU. In contrast to using a buffer
in global memory, the intent for the DEVICE_GASPRNG interface
is to support kernels that are tightly coupled with GASPRNG; the
threads of an application will generate numbers on demand while
executing within the same CUDA kernel. SPRNG supports MPI
programs; each process has a generator and the process rank is
used to determine the seed. In the last fewyears,manyMonte Carlo
simulations were ported to CPU/GPU hybrid platforms. One typical
behavior is to obtain a generator for each GPU thread. Currently
most GPU random number tools provide this interface. GASPRNG
also defines the DEVICE_GASPRNG interface for this purpose.

One common concern of GPU programming is the limitation of
on-chipmemory resources. Other GPU randomnumber generators
make state data as small as possible to solve this problem.
To provide high quality random number streams, generator
algorithms in SPRNGmaintain relatively complex state structures.
Since GPU kernel execution normally starts thousands of threads
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simultaneously, the on-chip storage is not enough for hosting the
state data of all generators. Section 3 presents the main schemes
to solve this problem for generator kernels in GASPRNG.

The main part of this interface is defined as a set of __device__
functions; they are called by application __global__ functions. On
the one hand, since random numbers are produced and consumed
inside one kernel execution, they could reside in on-chip storage
and avoid extra global memory operation. On the other hand, as a
consequence of the code integration, the execution of generator
and application kernels are inter-dependent because they share
on-chip resources and there is a constraint that both GPU routines
must run with the same block/thread number. To help with
application development, the package includes a calculator for the
resource requirements of GASPRNG.

Both the GLOBAL_GASPRNG and DEVICE_GASPRNG inter-
faces provide random numbers for GPU kernels. However,
GLOBAL_GASPRNG ismore flexible than DEVICE_GASPRNG. On the
other hand, DEVICE_GASPRNG fits well for GPU kernels that con-
sume massive quantities of random numbers; we include Pi simu-
lation as a basic example.

3. SPRNG generator equations and GPU kernel design

SPRNG includes six types of generators: Modified Lagged Fi-
bonacci Generator (LFG), Linear Congruential Generator (LCG),
64-bit LCG (LCG64), Multiplicative Lagged Fibonacci Genera-
tor (MLFG), Combined Multiple Recursive Generator (CMRG),
and Prime Modulus Linear Congruential Generator (PMLCG). In
GASPRNG, each of these generator types is implemented as an ef-
ficient GPU kernel. Each GPU thread works as one generator. This
section introduces the implementation and optimization of these
kernels.

3.1. LFG

The LFG (Lagged Fibonacci Generator) is a widely used
generator; it has excellent random number statistics and is the
default generator for SPRNG. The formula of LFG is:

Z(n) = Z(n − k) + Z(n − l)(Mod 264) (1)

where k and l are the lags. It uses previously generated
pseudorandom numbers with indices (n − k) and (n − l). SPRNG
support 11 different pair of lags; the period of the generator is
231(2l−1), and the number of concurrent streams is 2[31(l−1)−1] [3].
LFG uses a large data structure to save state data of one generator.
This structure includes several arrays. The sizes of these arrays are
determined by lag values. For the lag values {1279, 861, 1, 233}, the
length of the state array is 1279. On a GPU, hundreds of generators
can share one SM. If each generator has so much state data, the
GPU on-chip storage is not large enough for this purpose. If the
whole array of state data is stored in global memory, it causes
unnecessary waste.

To solve this problem, the state data structure for one generator
is divided into two parts according to the way it is used. For
generators in one GPU thread block, the following data members
are reorganized to be integrated into one data structure that serves
for one thread block:

• The data are determined by a generator initialization step and
remain constant during random number generation; its size is
not large and it is shared among all generators. In such a case,
shared memory is used as a constant buffer during random
number generating period. One example is the base pointers
of array members stored in global memory. These pointers are
used for generating each random number.
• The data is frequently used and the size is small. An example is
pointerwalk through an array, it changeswhen generating each
random number. In such cases the shared memory is used as a
cache.

For array members and other large size data members of
original state structure, global memory is used to hold one
state data for each generator. In order to improve memory
operation efficiency, amemory addressmapping is set up to realize
coalescing memory visiting. Although this mapping involves more
operations, the performance improvement outweighs the extra
work. Finally, the kernel code is optimized so that the number of
global memory access is reduced as much as possible.

3.2. LCG

The 48 bit LCG is based on:

Z(n) = a × Z(n − 1) + p(Mod 248) (2)

where a is a multiplier and p is a prime number. The period of this
generator is 248. The number of parallel streams is of the order of
219 [3]. Since the lag here is only 1, the space needed for saving
the generator state is much less than that for the LFG. The new
generator state structure resides in shared memory as described
in Section 3.1, GASPRNG defines one state data structure in shared
memory for all generators of one GPU thread block: it includes
arrays of seeds, prime numbers, and some necessary constants.
Compared with the LFG, the LCG speed is much faster because no
global memory operations are needed for visiting the generator
state data.

3.3. LCG64

The LCG64 is based on the 48 bit LCG, but with a larger modulo
value as below:

Z(n) = a × Z(n − 1) + p(Mod 264). (3)

The period of this generator is 264 and the number of parallel
streams is over 108 [3]. The method of organizing state data in the
GPU memory hierarchy is similar to the LCG.

3.4. CMRG

The CMRG is based on:

X(n) = a × X(n − 1) + p(Mod 264)

Y (n) = 107374182 × Y (n − 1) + 104480
× Y (n − 5)(mod 2147483647)

Z(n) = X(n) + Y (n) × 232(Mod 264). (4)

The period of this generator is around 2219; and the number of
distinct streams is over 108 [3]. Themethod of organizing state data
in the GPU memory hierarchy is similar to the LFG.

3.5. MLFG

The MLFG is based on:

Z(n) = Z(n − k) × Z(n − l)(Mod 264) (5)

where l is the lag. The period of this generator is 261(2l
− 1),

and the distinct streams number is 2[63(l−1)−1] [3]. For the default
lag value, this means around 21008 streams. The MLFG kernel
implementation is similar to the LFG. The state has large arrays in
the generator state structure; they are reorganized in the sameway
as with the LFG and stored using both global memory and shared
memory.
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3.6. PMLCG

The PMLCG is based on:

Z(n) = a × Z(n − 1)(mod 261
− 1). (6)

The period of this generator is 261
− 2; and the number of

streams is around 258 [3]. The method of organizing state data
in the GPU memory hierarchy is similar to the LCG. In contrast
to the other five generator types, the PMLCG requires two extra
arrays to initialize the generators that are populated by using the
GMP library. Currently, the CPU version of GMP is used. In practice,
this can reduce the scalability of the PMLCG generator due to slow
initialization.

The context data discussed in Section 2 are stored in shared
memory. This datamust be stored in globalmemorywhen the GPU
is reclaimed for other purposes, and they can be restored to shared
memory before continuing random number generation.

4. Programming interface

4.1. HOST_GASRPNG

The HOST_GASPRNG interface is similar to SPRNG. There
are three main phases: initializing random number streams,
generating random numbers, and releasing the streams. The
initialization function takes configuration parameters and creates
a group of generators on the GPU, returning the handle of one
random number stream that is generated by the generator group
(for function parameter details and examples, please refer to the
user manual). Other functions take this handle as a parameter
to operate on the stream. Beside this handle variable, all state
information is hidden from caller routines. The following is the
calling sequence for NUMBER_MODE:

handle = init_gasprng (generator_type, streamIdx, rn_type, seed,
param);

for i = 0 to rn_num do
rn = dgasprng (handle); //igasprng returns integer, and fgasprng

returns float
end for
destroy_gasprng (handle);
As mentioned above, CPU routines may require a buffer of

random numbers; the buffer address is returned by gasprng_buff().
The pointer type returned is void *, before using it, a type
conversion is necessary. The following is the typical usage for the
BUFFER_MODE:

handle = init_gasprng_buff (generator_type, streamIdx, rn_type,
seed, param, buff_size)

ptr = (Type *)gasprng_buff (handle);
//use random numbers in the buffer pointed by ptr
destroy_gasprng_buff (handle);

4.2. GLOBAL_GASRPNG

The steps of using this interface are similar to the previous
ones: initialize random streams, obtain random number buffer
information, and destroy random number streams. The buffer size
is required to initialize the random number stream; the type of the
pointer returned by gasprng_global() is void * as well. (For function
parameter details and examples, please refer to the user manual.)

handle = init_gasprng_global (. . . ,buff_size. . . );
rn_buff = (Type *) gasprng_global (handle);
//use random number in rn_buff
destroy_gasprng_global (handle);
Fig. 4. Seven steps to use DEVICE_GASPRNG for an example LFG generator.

4.3. DEVICE_GASRPNG

Fig. 4 shows the 7 steps to use the DEVICE_GASPRNG interface.
Steps 1, 2 and 7 happen in CPU host code, and steps 3, 4, 5,
and 6 occur in GPU kernel code. The first step defines an empty
struct_info object, which is used to store the information necessary
for creating random number generators. Step 2 fills the empty
object according to the given parameters. Step 3 defines a context
object, which resides in shared memory. Step 4 saves a pointer
to the context object in the struct_info. Step 5 initializes the
generator for the current GPU thread. Step 6 gets random numbers
in sequence. Finally, step 7 deletes the generators and releases the
related resources.

5. Experiments and results

The following platforms are used to evaluate the performance
of GASPRNG:

Single machine with GPU:

(1) Intel i7, 920, 2.67 GHz, 11 GB; NVIDIA Fermi GTX480;
GNU/Linux, CUDA 4.0

(2) Intel Xeon, X5570, 2.93 GHz, 23 GB; NVIDIA Tesla C1060,
GNU/Linux, CUDA 4.0

CPU/GPU hybrid cluster:

(3) Keeneland System [27]. Each node: 2 x 6 Intel Xeon X5660,
2.8 GHz; 23 GB; NVIDIA M2070; GNU/Linux, CUDA 4.0.

The performance test covers: (1) six generator types; (2) three
level interfaces; and (3) three random number data types. The
results are compared with SPRNG 2.0 [2,3] and CURAND from the
CUDA4.0 toolkit (CURAND’s default uniform generator XORWOR is
used.). The efficiency of the two-level pipeline is analyzed; actual
timing results are compared. Finally, two real applications using
GASPRNG are presented.

5.1. DEVICE_GASPRNG

Tables 1–3 show the performance of DEVICE_GASPRNG, the
result is compared with SPRNG performance on one core. The
performance of SPRNG is obtained through a timing tool in the
SPRNG 2.0 package. Comparedwith SPRNG 2.0, GASPRNG provides
5x ∼ 97x speedup for integer, 11x ∼ 283x for single precision,
and 11x ∼ 271x for double precision. Lee implements HASPRNG,
which is a FPGA implementation of SPRNG integer generators [28].
Compared with its performance data on the Xilinx XC2VP50
FPGA [28], GASPRNG shows 11x∼ 235x speedup. Fig. 5 shows the
performance compared with CURAND.

5.2. GLOBAL_GASPRNG performance

Fig. 6 shows the performance of GLOBAL_GASPRNG. The
result is compared with SPRNG on one core. Compared with
DEVICE_GASPRNG, the performance loss ranges from 30% to
80% due to two reasons: (1) each kernel has one more global
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Table 1
Performance of DEVICE_GASPRNG on integer random number generation (Millions of Random Numbers Generated per Second — MRS) and speedup compared to Xeon
x5570.

LFG LCG LCG64 CMRG MLFG PMLCG
MRS Speedup MRS Speedup MRS Speedup MRS Speedup MRS Speedup MRS Speedup

Fermi GTX480 2231 17.6 22694 63.6 37713 98.0 4592 20.2 8898 34.8 8257 59.4
Tesla M2070 1585 12.5 18714 52.4 30344 78.8 3743 16.5 7313 28.6 6789 48.8
Tesla C1060 1614 12.7 6866 19.2 9336 24.3 1157 5.1 3521 13.8 2357 17.0
Xeon x5570 127 – 357 – 385 – 227 – 256 – 139 –
Table 2
Performance of DEVICE_GASPRNG on single precision random number generation (Millions of Random Numbers Generated per Second — MRS) and Speedup compared to
Xeon.

LFG LCG LCG64 CMRG MLFG PMLCG
MRS Speedup MRS Speedup MRS Speedup MRS Speedup MRS Speedup MRS Speedup

Fermi GTX480 2232 17.4 22874 89.4 37720 283.6 4593 46.9 8898 39.2 8257 67.1
Tesla M2070 1585 12.4 18716 73.1 30844 231.9 3743 38.2 7313 32.2 6789 55.2
Tesla C1060 1615 12.6 6866 26.8 9336 70.2 1157 11.8 3521 15.5 2357 19.2
Xeon x5570 128 – 256 – 133 – 98 – 227 – 123 –
Table 3
Performance of DEVICE_GASPRNG on double precision random number generation (Millions of Random Numbers Generated per Second — MRS) and Speedup compared to
Xeon.

LFG LCG LCG64 CMRG MLFG PMLCG
MRS Speedup MRS Speedup MRS Speedup MRS Speedup MRS Speedup MRS Speedup

Fermi GTX480 2232 19.9 22834 68.6 37716 271.3 4596 45.5 8898 34.8 8258 50.8
Tesla M2070 1585 14.2 18468 55.5 30332 218.2 3743 37.1 7313 28.6 6789 51.1
Tesla C1060 1614 14.4 6865 20.6 9336 67.2 1157 11.5 3521 13.8 2357 17.7
Xeon x5570 112 – 333 – 139 – 101 – 256 – 133 –
(a) Integer. (b) Single precision. (c) Double precision.

Fig. 5. Comparing DEVICE_GASPRNG performance with CURAND (Millions of Random Numbers Generated per Second – MRS).
memory write operation; (2) interface and memory management
causes extra overhead. Compared with SPRNG, GLOBAL_GASPRNG
provides 4x ∼ 43x speedup for integer, 9x ∼ 116x for single
precision, and 7x ∼ 72x for double precision. As discussed above,
this interface provides flexible support for applications with
diverse random number use requirements.

5.3. HOST_GASPRNG performance

Fig. 7 shows the performance of HOST_GASPRNG in NUM-
BER_MODE. The caller routine acquires random numbers one by
one through interface functions. This figure also includes the per-
formance of SPRNG running on one core. The result shows that
GASPRNG outperforms SPRNG: the speedup is 1.2x ∼ 3.7x for in-
teger, 1.8x ∼ 5x for single precision, and 1.04x ∼ 4.6x for double
precision.

Fig. 8 shows the performance of the BUFFER_MODE. Compared
with NUMBER_MODE, it avoids the overhead of iterative memory
reading. The speedup over SPRNG is 3.5x ∼ 10x for integer, 5x ∼

12x for single precision, and 2x ∼ 7x for double precision. This
figure also includes the performance of CURAND. For most cases,
GASPRNG presents comparable performance with CURAND.
5.4. HOST_GASPRNG pipeline analysis

To test the efficiency of the two-level pipeline in HOST_
GASPRNG, we measure the dominant parts in Fig. 2 and estimate
the execution runtime. The runtime model is:

Produce_t = MAX(Kernel_t, DtoH_t) + MIN(Kernel_t, DtoH_t) /
Stream_num

Execution_t = MAX(Produce_t, Consume_t) ×Buff_number +
MIN(Produce_t, Consume_t)

MRNs = rn_num / Execution_t
Produce_t is the time for filling one of the two host buffers.

This task is divided and assigned to several streams, the Kernel_t
and DtoH_t are the kernel execution time and DtoH data transfer
time for each stream. We use the runtime of GLOBAL_GASPRNG
to simulate the Kernel_t, this interface generates random numbers
and writes them to a global memory buffer. The DtoH_t is
calculated using the PCIe bus bandwidth, which is around 6 GB/s.
Consume_t is the time of consuming random numbers in host
memory. When measuring this value, the interactions between
controller and internal GPU generator engine are disabled; the
controller assumes each random number is ready and reads the
same host buffer iteratively.
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(a) Tesla M2070. (b) Tesla C1060.

Fig. 6. Performance of GLOBAL_GASPRNG interface (Millions of Random Numbers Generated per Second – MRS).
(a) Tesla M2070. (b) Tesla C1060.

Fig. 7. Performance of HOST_GASPRNG interface in NUMBER_MODE (Millions of Random Numbers Generated per Second — MRS).
(a) Tesla M2070. (b) Tesla C1060.

Fig. 8. Performance of HOST_GASPRNG interface in BUFFER_MODE (Millions of Random Numbers Generated per Second — MRS).
This test generates 57600000× 10 integer (or double precision)
random numbers; the size of the host buffers is large enough to
avoid caching. Four CUDA streams are used for testing with one
node of the Keeneland system [27].

Fig. 9 compares the estimated result and actual timing result
in MRS (Millions of Random Numbers Generated Per Second). The
accuracy is above 95% for both double precision numbers and
integer numbers (the results of single precision and integer are
similar). Fig. 10 compares the timing of three dominant parts used
for runtime estimation. It shows that Consume_t is the bottleneck.
This is cause by overhead of the controller; it manages a hidden
data structure and maintains the valid location information.

5.5. Hybrid cases

5.5.1. Pi simulation with MPI+OMP+CUDA
This is a simple Monte Carlo integration. On a hybrid platform,

the whole task is distributed across multi-core and GPU resources.
One random number generator period is divided and shared
among all CPU/GPU threads; each of them finishes one part of the
integration. The final result is calculated by a two-level reduction
operation. This example does not include the scheduling between
multi-core and GPU, users can further make us of a static/dynamic
scheduler to improve its performance. The source code of this
example can be found in /gasprng1.0/example/Pi/hybrid/.

Another three Pi examples running on multiple nodes can be
found in /gasprng1.0/example/Pi/MPI. They use HOST_GASPRNG,
GLOBAL_GASPRNG, and DEVICE_GASPRNG, respectively.

5.5.2. QMC simulation
The second example is a Quantum Monte Carlo simulation

(QMC) [29,30]. In chemistry and physics, this method is commonly
used to find state properties. In the simulation, multiple walkers
are defined and each of them evaluates a single point in the
function space. The main nested loop is shown in Fig. 11.
In the inner loop, the coordinates of particles are randomly
perturbed, and the state of current state is computed. This result
is evaluated to determine whether current situation should be
accepted or not. This procedure continues until the system reaches
equilibrium.
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(a) Double precision. (b) Integer.

Fig. 9. Estimated MRS and Actual MRS for HOST_GASPRNG LFG generator (Millions of Random Numbers Generated per Second — MRS).
Fig. 10. Kernel_t/DtoH_t/Consume_t: generating/transferring/consuming57600000
double precision numbers.

Both steps of perturbing particles and making accept/reject
decisions need random numbers. The first one is data parallel; it
could be implemented as a GPU kernel. The second one is short
and simple, so it remains on the CPU. Thus, in this code, we need
both CPU random number generators and GPU random number
generators.

The GPU kernels must be launched multiple times; in each ker-
nel execution, only three random numbers are needed to perturb
one particle. As introduced, the GLOBAL_GASPRNG interface fits
well for this type of application. When making accept/reject de-
cisions, SPRNG is used as the CPU generator.

6. Installation instructions

We briefly describe here the process for installing GASPRNG.
For additional information, the reader is encouraged to check the
GASPRNG user guide. To install GASPRNG, the following software
and hardware are required.
• Software: GMP, SPRNG, CUDA toolkits 4.0
• Hardware: Nvidia GPU above sm_13 (either Tesla or Fermi

GPUs).

(Use $(CUDA_SDK_PATH)/C/bin/linux/release/deviceQuery to
check the number of installed device)

The main install steps are as following:

• Download GASPRNG from the website (http://TBD).
• Download and install gmp-5.0.2.tar.gz, and sprng2.0b.tar.gz
• Uncompress the GASPRNG package: tar zxvf gasprng1.0.tar.gz
• ./configure:

– Option ‘‘—prefix=PATH ’’: use it to configure the install path.
– Option ‘‘—enable-sm13’’: if the GPU device’s capability is

sm_13, set ‘‘—enable-sm13=yes’’. By default sm_20 is set as
GPU device capability level.

– Option ‘‘—with-cuda=PATH ’’: if CUDA toolkit is not installed
under default path /usr/local/cuda, use this option to set the
CUDA path.

– Option ‘‘—with-sprng=PATH ’’: if SPRNG is not installed under
default path of /usr/local, use this path to set the installing
location of SPRNG.

– Option ‘‘—with-gmp=PATH ’’: if GMP is not installed under
default path of /usr/local, use this path to set the installing
location of GMP.

• Use ‘‘make’’ command to build the library.
• User ‘‘make install’’ to install the libgasprng.aand header files.
• User ‘‘make check’’ to build examples and binaries for correct-

ness/binary check.
• Execute./bin/check_corr.sh for a basic correctness test.

7. Test run description

1. To verify the correctness of GASPRNG implementation, please
run the script:
Fig. 11. Basic QMC algorithm.

http://TBD
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• $(GASPRNG_PATH)/bin/check_corr.sh (By default, this script
checks three level interfaces. User can user option ‘‘–help’’ to
list the options accepted by this script. Basically, user can use
these options to choose which level interface to check)

2. To measure the performance of three level interfaces please
run the script:

• $(GASPRNG_PATH)/bin/check_perf.sh

3. To run MPI correctness test:

• Set the paths of MPI when executing. /configure:
– Option ‘‘—with-mpi’’: ifMPI is not installed under default path

of /usr/local, use this option to set the MPI library path.
• cd $(GASPRNG_PATH)
• make mpi
• Make sure you have at least 2 processors available.
• $(GASPRNG_PATH)/bin/check_corr_mpi.sh (By default, this script

checks three level interfaces. User can user option ‘‘–help’’ to list
the options accepted by this script. Basically, user can use these
options to choose which level interface to check.)

8. Conclusions and future work

GASPRNG is a GPU accelerated implementation of the SPRNG
library. It includes CUDA kernels for six generator types and three
types of interfaces to support various usage models, so program-
mers can choose the most efficient way to use generators in
GASPRNG. For each generator, GASPRNG outperforms SPRNG run-
ning on one CPU core. With its double-buffering scheme and two-
level pipeline structure, the GASPRNG host interface provides good
performance with a SPRNG-like interface. Additional GASPNG in-
terfaces support codes that consume random numbers in GPU ker-
nels. The future work includes supporting additional commonly
used probability distributions into GASPRNG (e.g., normal, ex-
ponential, Rayleigh). After that, an OpenCL version will be de-
veloped and architecture-related performance portability will be
considered. Currently, GASPRNG users maintain the seeds across
all CPU/GPU processes/threads. In the future, a seed management
modulewill be added,makes it easier to share one randomnumber
period across different devices.
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