
JOURNAL OF COMPUTER AND SYSTEM SCIENCES I0, 136-163 (1975) 

Tree Adjunct Grammars* 

ARAVIND K.  JOSHI 

Moore School of Electrical Engineering, University of Pennsylvania, 
Philadelphia, Pennsylvania 19174 

LEON S. LEVY 

University of Delaware, Newark, Delaware 19711 

AND 

MASAKO TAKAHASHI t 

University of Pennsylvania, Philadelphia, Pennsylvania 19164 

Received February 13, 1973 

In this paper, a tree generating system called a tree adjunct grammar is described 
and its formal propertaes are studied relating them to the tree generating systems of 
Brainerd (Information and Control 14 (1969), 217-231) and Rounds (Mathematical 
Systems Theory 4 (1970), 257-287) and to the recogmzable sets and local sets dmcussed 
by Thatcher  (Journal of Computer and System Sciences 1 (1967), 317-322; 4 (1970), 
339-367) and Rounds. Linguistm relevance of these systems has been briefly discussed 
also. 

1. INTRODUCTION 

I n  th is  paper ,  we will desc r ibe  a t ree  gene ra t i ng  sys t em cal led a t ree  ad junc t  g r a m m a r  

( tag) and  s t u d y  its fo rma l  p rope r t i e s  re la t ing  t h e m  to t he  t ree  g e n e r a t i n g  sys tems  of  

B r a i n e r d  [3, 4] a n d  R o u n d s  [16], a n d  also to t he  recognizab le  sets  a n d  local sets 

d i scussed  b y  T h a t c h e r  [17, 18] and  R o u n d s  [16]. 

* This  work was partially supported by NSF GS-35125, NSF GS-27, and the Advanced 
Research Seminar "Tree  Mappings in Lingmstics," sponsored by the Mathematical Social 
Science Board (1972). Some work on this paper was carried out by the first author while he was 
on leave at The  Institute for Advanced Study as a Guggenheim Fellow. 

We are indebted to the referee of this paper for has extremely valuable comments which 
helped us in improving the presentation. 

t Present address: Tokyo Institute of Technology, Tokyo, Japan. 

136 
Copyright �9 1975 by Academic Press, Inc. 
An rights of reproduction in any form reserved. 



TREE ADJUNCT GRAMMARS 137 

In  Section 2, we will define the tag systems, following an idea of Parikh [15] and 
study their properties. These grammars surprisingly turn out to be more powerful 
than context-free grammars. Much of the basic notation for trees and subtrees in this 
section is from Brainerd [3] Gorn [6], and Rounds [16]. The relationship of tag 
languages to context-free, indexed, and context-sensitive languages is discussed in 
Section 3 and to recognizable sets in Section 4. Section 5 deals with an important 
subclass of tag's called simple tag's, and another subclass called linear tag's is discussed 
in Section 6. In  Section 7, we introduce a generalization of tag's and study them with 
respect to the properties mentioned in the previous sections. A variant of a tag and a 
related open problem is discussed in Section 8. 

These grammars were motivated by several linguistic considerations. Our main 
purpose in this paper is the study of the formal properties of these grammars. However, 
before proceeding with this study, we will describe very. briefly the linguistic relevance 
of these systems: 

1. A tree is a structural description of a sentence. A tag is thus a grammar of 
structural descriptions. There are two types of basic trees in a tag, the center 
trees and the adjunct trees. The  center trees can be regarded as elementary 
(structured) a sentences and the adjunct trees have the semantic interpretation 
of modifiers. 

A given tree (structural description) may have more than one distinct deriva- 
tion in a tag. These distinct derivations invariably turn out to have linguistic 
relevance. For example, the phrase structure tree corresponding to big red house 
has two distinct derivations in the tag corresponding to the two readings 
(big (red (house))) and ((big) (red) (house)), i.e., corresponding, respectively, to 
the cases when big modifies red house and when big and red modify house 
independently. 

2. In  a tag, each intermediate tree in the derivation is also a sentential tree, i.e., 
the derivation proceeds from a (structured) sentence to another (structured) 
sentence, in contract to the usual derivation in a phrase structure grammar. 
Further, the set of all (structured) sentences corresponding to the intermediate 
steps in the derivation of a (structured) sentence can be regarded as the set of all 
partial (structured) sentences underlying the given (structured) sentence. These 
two properties are of interest because they capture to some extent two key 
linguistic concepts which can be very informally stated as follows [5, 7]. 
Sentences are related to other sentences in systematic ways and complex 
sentences are related to simple sentences and can be viewed as composed of 
simpler sentences which have been subjected to appropriate deformations. 

3. Simple tag's in Section 5 suggest a framework for formulating the question: 

a A s t r u c t u r e d  s e n t e n c e  as a s e n t e n c e  t o g e t h e r  w i t h  its t ree .  



138 JOSHI, LEVY AND TAKAHASHI 

How much hierarchical structure is necessary for sentence description? I t  
turns out that most of the base components  of currently available transforma- 
tional grammars fall into the class of simple tag's.  

A generalization of tag's (stag's in Section 7) provides a certain amount  discontiguous 
consti tuent structure and it is quite adequate for most linguistic purposes [8]. 

2. A TREE GENERATING SYSTEM (TREE ADJUNCT GRAMMAR) 

First ,  a notation for "trees."  Le t  J*  be the free monoid generated by J (set of all 
natural numbers).  Let  the binary operat ion be denoted by �9 and the identi ty by 0. 
F o r p ,  q ~ J * , p ~ q  i f f t h e r e  is a r ~ J *  such that q = p ' r  a n d p ~ q  i f f p ~ q  
and p -~ q. 

Let  V be a finite alphabet and 27 C V. We call 27 the " terminal  alphabet" and 
V - -  27 the "nonterminal  alphabet. ''~ 

DEFINITION 2.1. y is a "tree over V" iff it is a function from D~ into V where the 
domain D~ is a finite subset of J*  such that (1) if q ~ D r ,  p < q, then p ~ D~ ; (2) if 
p " j ~ D ~  , j ~ J ,  t h e n p  �9 1, p "  2 ..... p ' ( j  -- 1 ) ~ D  v . 

We call elements in D~ addresses of y. I f  (p, A) E ~ then we say that A is the label 
of the node at the address p in y. We will often write this as y(p) ~ A. 

DEFINITION 2.2. Let  y be a tree over V. A node q in y(more precisely, q ~ Dr) is 
called a " terminal  node"  iff for all p ~ D~, q <K p. A node q in y is an "inter ior  (non- 
terminal) node" iff q is not a terminal  node. A node whose address is 0 is called the 
"root  node." 

Let  ~-v be the set of all trees over V such that if ~, ~ r v and p ~ D v is an in ter ior  
node then ),(p) 6 V - -  27. Tha t  is, interior nodes must  be labeled with a nonterminal  
symbol. Terminal  nodes may be labeled with a terminal or a nonterrninal symbol. 

DEFINITION 2.3. Let  y ~ rv and p 6 D~. Then,  

y/p ~ {(q, A) I (P " q, A) ~ y, q ~ J*}, 

YlP ~ {(q, A) I (q, A) e 7, p ~ q}. 

y/p is called the "subtree"  at p and YtP is called the "super t ree"  of y at p. Further ,  for 

Y ~ r v  a n d p  e J*, 

P ' r  ~ { ( P ' q , A )  I (q ,A)~Y}.  

We have here a ranked alphabet {V, r) where r _C V • to is a finite relation called the 
ranking relation. If r(a, n) then we say that r has "rank" n and V, denotes the set of symbols of 
rank n [18]. We also require Vto satisfy the condition: V0(=2~) ~ V, ~ ~,  i ~ O. 



TREE ADJUNCT GRAMMARS 139 

PROPOSITION 2.1. 

I. If r @ ~-v , 7 4: ~ , then O e D~ . 

2. r = y\P u p �9 (y/P), for  r e ~'v and p ~ D~ . 

3. Y~P e ~-v and r ip  ~ ~'v , for  Y ~ "Cv and p e D r . 

However, p �9 Y ~ rv  unless p = O, for  y e r v  and p E J*.  

DEFINITION 2.4. The  "yield" Y is a function from ~-v into V* defined as follows. 

Y(r) = r ( 0 )  if D r = { 0 ) .  

Y(r) = Y(7/1) Y(7/2)" ' -  YO'/J) if 1 , 2 , . . . , j e D ~ , ,  and j +  1 ~ D , .  

V* is the free monoid generated by V with identity e. Thus  f (7)  is the string of the 
labels of the terminal nodes of r.  

DEFINITION 2.5. The  "f ront"  ~ of Y in rv  is defined as 

z~ ( (p ,A)  e r l p  <~q, for any qeDr} ,  

i.e., ~ is the set of address-label pairs corresponding to the terminal nodes of Y. 

DEFINITION 2.6. A sequence ((Po,A0),  (Pl ,  A1),..-, (P~, At))  of elements of 
r e r v  is a "pa th"  of Y iff 

P0 = 0, (Pl,  Az) ~ 7, P, = Pi-1 "j~ for some Ji ~ J(i  = 1, 2,..., I). 

l is the length of the path. 
For r e r v ,  the "path  set" py of r is the set of all paths of ~. I f  ~-'C r v ,  

P(r ' )  = U~,e," P~,. We call P(1-') the path set of ~-'. We are now ready to define a tree 
generating system called a tree adjunct grammar  (tag). 

DEFINITION 2.7. A "tree adjunct g rammar"  (tag), ff is a pair ff = (rE, 6g) where 
rE and 6g are finite subsets of r v satisfying the following conditions. 

1. I f  7 6 rE then Y(r) ~ Z*  and r(0) ---= S where S is a distinguished symbol 
in V - - Z .  

2. I f  fl E 0/ and a(0) ~ X then X E V - -  Z ,  Y(fi) e Z * X  Z* u Z * X  Z *  (where 
Z* = Z Z * )  3. 

rE is called the set of "center  trees" and C/the set of "adjunct trees." The  set rE LJ 
will be called the set of "basic trees" of ft. 

3 T h u s  the y ie ld  of an adjunct  tree has at least  one te rmina l  symbol.  



140 JOSHI, LEVY AND TAKAHASHI 

DEFINITION 2.8. Le t  13 be an adjunct tree and 1' ~ z v . L e t p  ~ D~ and 1'(p) = 13(0). 
T h e n  13 is "adjoinable to 1' at p" and 1' [p, 13] is the tree obtained from 1' adjoining 13 
at p defined as 

1"[P, 13] ~ 71P u p " 13 u (p  " r)  �9 (1"/p), 

where  r ~ D e ,  13(r) = 13(0), and (r, 3(r)) ~ t~, i.e., r is the address of  that node  which  is 
in the front of  B and which  has the label 13(0). Th i s  operation wil l  be called "adjunction" 

For a given fr = (c~, ~ )  we  wil l  write  1' ~-cr 1" iff for s o m e  13 and some  p, 13 is 
adjoinable to 1' at p and 1" -~ 1"[p, 13]. ~-~ is the reflexive, transitive closure of  ~ - -~ .  

,/ x ~  

/ ~ ' ~ -  -~'-~:--g:Yip ISUBTREE AT p) 

X = ~ ( O )  

P =  / \ 

ADJUNCT TREE 

~ __X 13(r I - 

Yr(TREE 06TAINED BY ADJOINING p TO Y A T p )  

5 ' '= . • / .  - ,  . . . . .  , . . . . . .  A . . . .  

/ / \ 
z _ ~ /  . 

_ 
Z • 

' /  ~ N 

FIG. 1. Adjunction. 

DEFINITION 2.9. 
defined as 

Let  f4 ~ (T,  5 )  be a tag. T h e n  the "tree set TM of f~, z(f~) is 

~-(f~) & {1" E ~'v [ for s o m e  ~ E q~, ~ ~ - ~  1'}, 

and the language of  ~ ,  L(f#) (a "tree adjunct language," tal) 

L(f#) • {x [ x = Y(1'). for s o m e  1' ~ z(ff)} .  

Let t3 be adjoinable to I/ at p, then 1'[p, 13](p) = 1"(p) = 13(0). Hence 13 is again 
adjoinable to y[p,/3] at p. Write y[p, 13]~ for (y[p, fl],-x) [p,/3] (n > 1). Then by 

4 In the terminology of Rounds [I6], we can call the tree set of ff the dendrolanguage of ft. 
Tree sets of tags are included in context-free dendrolanguages (see Section 4). 



TREE ADJUNCT GRAMMARS 141 

induct ion,  for  n > 1, fl is adjoinable  to y[p,  fl]n--1 a t p  if it  is so to y a t p ;  hence y[p,  fl]n 
is well  defined. F u r t h e r  given ff  = (W, C/), if y e r(ff) ,  and  f l e  C/, then  for  n > 1, 

r[*, 8]" e -(v). 

EXAMPLE 2.1. Le t  '(~1 = ( (6~, (~ )  where  cd = (CXl, O~2} , and ~ = {/31,/3~ ..... rio}. 

/~\ /I\ 
a T b  a T b  

/ \  / \  
a b b a 

/ \  / \  
T T T T 

/ \  / \  
b a a b 

T 

/ \  
T T 

/ \  
b a 

/ \  / \  
T T S a 

/ \  /~\ 
a b a T b  

S 

a T b 

/\ 
S a  

L c t y o  := al =- 

T h e n  

S 

/ iX 
a T b 

a b  

~, oYo h,13s I = S 
,' \ 

/ \, 

a ,T, b 

"' / " "k 
/ /  S a X 

a b 



142 JOSHI, LEVY AND TAKAHASHI 

a T b 

/ /  ~\\ \ 

, ' $ - .  a 

/ a T b ""-."~7~II3 
/ , /  \ \  

/ / \ ....... 
/~ . . . . . . . . . . . . .  s . . . . . . . . .  a . . . . . . . . . . . . . . . . . .  ".. 

a I b 

/ , 

a 'b 

a n d  so for th .  

L e t  ~ : (~ ,  6>/) w h e r e  ~ ~--- {oh) , a n d  ~ ~ { i l l ,  f12}. 

oq ~ S 

I 
e 

/~1 : S 32 = /J 
a T 

/1\ 
b S c 

L e t  ~ 3  = ((~ '  ~ ' )  w h e r e  c~ = {al), a n d  ~ ~-- (ill}. 

T 

/I 
a S 

/l\ 
b T c  

Ot 1 ~ _  ~ 

I 
e 

f l l  ~ S 

/ \  
a S 

/1\ 
b S c  



TREE ADJUNCT GRAMMARS 143 

3. RELATIONSHIP TO CONTEX-FREE AND CONTEXT-SENSITIVE LANGUAGES 

For  a context-flee grammar (cfg) G, let r (G) be the set of all sentential derivation 
trees of G, i.e., trees whose roots are labeled with S, the initial symbol and whose 
terminal nodes are labeled with terminal symbols. Let  L(G)  be the language of G. I t  
is easy to characterize .r(G) in terms of a tag [10]. 

THEOREM 3.1. For any cfg G, there is a tag ~ = (~, 6"1) such that r(fY) -~ r(G) 
and L(fY) = L(G).  Further we can have the tag ~ such that the basic trees satisfy the 
restriction: I f  ~ ~ ~r then in any path in ~ no nonterminal appears more than once, and 
i f  fl c 6'1 then in any path in fl no nonterminal appears more than once, not counting the 
nonterminal labeling the root node of  ft. 

In Example 2.1, ~1 is a tag for the cfg G = (V, X, P, S)  where V = {S, T, a, b}, 
21 --  {a, b}, and P = { S - +  aTb, T--~ Sa,  T---~ TT ,  T - ~  ab, T - *  ba}. fY2 and fr are 
not tag's for any cfg's. 

For  a given ~ =~ (~, 6g), the size of a tree (in terms of the number  of nodes) whose 
yield is a string, say ~o ~ L ( ~ )  is some linear combination of the sizes of trees in ~ u 5 .  
Thus  we can construct in a straightforward manner a linear bounded automaton 
(not necessarily deterministic) which recognizes precisely L(fr This  argument works 
because the yield of an adjunct tree always has at least one terminal  symbol (see 
Definition 2.7). ~ 

THEOREM 3.2. Let  ~ = (cC, 6~) be a tag. Then the tal L(  fY) is a context-sensitive 
language (csl). 

In  Example 2.1, L(N2) and L(~a)  are context-sensitive and not context-free. L(N2) = 
{coec ~ I n >~ O, co is a string of a ' s  and b's such that # a ' s  = # b ' s  = n, and for any 
initial proper  substring of ~o, # a ' s  ~> #b's}.  L(Cg2) c~ a*b*ec* = {anb"ec n I n ~ 1} 
which is context-sensitive but  not context-free. Fur ther  L(~3) = L(fYe). The  tag fez 
satisfies the restriction in Theorem 3.1; however, the tag fr does not satisfy it. This  
indicates that the restriction in Theorme 3.1 does not imply context-freeness of the 
corresponding language. 

From the definition of tag and, in particular, the rule of adjunction it is easily 
seen that the well-known intercalation theorem (uvwxy- theorem) for cfl 's can be 
easily extended to tal's. 6 

5 If in Definition 2.7, we define an adjunct tree fl such that y(fl) E 27* x 27", then the above 
argument will not work. However, even in this case, Theorem 3.2 is true on account of the 
containment of tal' in indexed languages (see Section 4). 

6 Ogden [14] has presented a stronger version of the uvwxy-theorem. This theorem as well as 
the intercalation theorem in [10] can both be extended to tal's. 

571/'Io1I-Io 



144 JOSHI~ LEVY AND TAKAHASHI 

Hence, we can show that the context-sensitive language {a*'b'~c~ln >/1} is not 
a tal. An informal explanation of this fact is that in a tag we can keep track of more 
than two dependent counts but not of two or more dependent nestings. 

Let  ~esl ~ef l  and ~ta l  be the classes of languages corresponding to context-sensitive 
grammars (csg) context-free grammars (cfg) and tag's, respectively. 

COROLLARY 3.1. ~acn C ~taa C s 

Remark. Let ~ i n d  be the class of indexed languages of  Aho [11. Then,  it can be 
shown that s C ~lna (see Section 4). 

4. RELATIONSHIP TO RECOGNIZABLE SETS AND CONTEXT-FREE DENDROGRAMMARS 

A set of (labeled) trees, R, is "recognizable" if three is a bot tom-to- top tree auto- 
maton which recognizes precisely the trees in R [16, 17]. A set of trees is "local" 
if it is the set of all derivation trees of cfg. 

Let  R be a recognizable set of trees. Let  P(R)  be the path set of R (see Definition 
2.6). Rounds [16] has shown that if R is recognizable then P(R)  is regular (i.e., a 
finite state language). We now see why tag's are more powerful than cfg's. Let  fr be a 
tag and 7(~) the corresponding tree set. The  path set of ~-(fr is generated by rules 
of the form X---~X~bX, or X - + X ~ b a  where X ~  V - -  Z, ~b~ ( V - -  Z')*, and a ~ Z .  
I t  is thus possible to get a nonreguIar path set. 

EXAMPLE 4.1. 

0L 1 

Let f~ = (~,  6/) where fg = {o~1} , and 6 / =  {fix, f12}. 

S 

l 
e 

S f~2= U 
/ \ / r \  

a T d a T d 

/iX /IX 
a U d a S d 

/IX /IX 
b V c b V c 

/ [ \  

The  path set P(~-(fr is nonregular, for under the homomorphism, h which erases 
S and U, we have 

h(P(~-(fr n T*V*e  ~ {TnV"e  [ n >/0}, 

which is nonregular. 



TREE ADJUNCT GRAMMARS 145 

THEOREM 4.1. The tree sets of  tag's and the recognizable sets are incomparable 
and their intersection properly contains the local sets. 

Proof. The  set of a tag ~ for L(~) which is not a cfl is clearly not recognizable. 
Now consider a set of trees of the following form. 

S 
J 

S S 
/ \  / \  

S a S b 
/ \  / \  

S a S b 

/ \ 

/ \ 
S S 
/\ / \  

S a S b 

a b 

i.e., a set of trees whose linear prefix representation is {Sm+lamSnb n [ m, n ~ 1}. This  
set is recognizable but  it is not a tree set for any tag because in any tag for this tree set 
the adjuncts which allow us to iterate a and b, respectively, will be adjoinable to each 
other and thus, a ' s  and b's will be mixed in the yield string. 7 

Local sets are recognizable. Also they correspond to cfg's. They  are clearly tree sets 
of tag's (see Theorem 3.1). Thus  local sets are contained in the intersection of re- 
cognizable sets and tree sets of tag's. The  containment is proper  as can be seen from 
the following example. Let  ff = (c~, 5 )  be a tag where c~ = {al}, and 5 ' / =  {/~1}- 

~1 == S /3 t = S 

r(ff)  is recognizable but  it is not local. | 

Remark. Although recognizable sets are closed under  boolean operations, tree 
sets of tag's are not. This  follows from the fact that tree sets of tag's  are not closed 
under  union. 

7 See Section 8 for a variant of tag which captures this recognizable set. 



146 J O S H I ,  L E V Y  A N D  T A K A H A S H I  

Let  ,(~1 = ((~1, {9/1) where g ' ,  = {~1}, and 0/, = {ill}- 

~,--S fl,= ,S' 

L /\ 
e a N 

and ~a (~'2, ~2) where ~e = {~,), and 6g 2 = {ill}. 

I /\ 
e c S 

The  set of trees r(fY,) u r(N2) is not a tree set for any tag, since there is no way to 
keep the a 's  and c's separate. 

I t  is easy to show that the tree adjunct languages (tal's) are closed under  union, set 
product,  and Kleene star. 

Fo r  some additional results concerning recognizable sets and tree sets of tag's, see 
Section 5 (Theorem 5.1) and Section 6 (Theorem 6.3, Corollary 6.1). 

A tag can be regarded as a restricted case of the context free dendrogrammar  of 
Rounds [16]. Corresponding to an adjunetion rule, we will have a rule of the context 
free dendrogrammar  of the following form (adopting Rounds '  notation). 

\ -,,, 
2~71 2~ 2 ,T n z (7 

X 1 X 2 g n  

where e is a nonterminal,  

/o  
is a tree r~(r and 

(7 

/ \  
X 1 ~T 2 X n 

is a tree in "l's 2 ,... ,  Xn) with indices x 1 , x 2 ,..., x n  �9 

Let  "proj- tag sets" be the set of all tree sets obtained from tree sets of tags by 



TREE ADJUNCT GRAMMARS 147 

projection) Then  we have the following relationship among the various tree sets 
(--~ denotes projection). 

local sets C tag sets 

recognizable sets C proj-tag sets C context free dendrolanguages 

Since the yields of context-free dendrolanguages are precisely the indexed languages 
[16], it follows that -Wta 1 C ~ ina .  Proper containment follows from the fact that 
L = {anb'~c "~ ] n ~ 1} is an indexed language but not a tal. 

5. SIMPLE TAG'S 

When measuring the depth of a tree we will ignore the branches between the 
terminal and the preterminal nodes. The motivation for this is that these correspond 
to terminal rules (A ~ ~ is a terminal rule if A ~ V - -  L" and a ~ 2:*) and terminal 
rules are used to insert lexical items (e.g., as in N - +  John) or fixed strings of lexical 
items. These rules are also called lexical rules. It is clear that lexical rules do not 
contribute to hierarchical constituent structure. 

We now introduce simple tag's which are a subclass of tag's. A simple tag has, in a 
sense, a minimal hierarchical structure. 

DEFINITION 5.1. A tree a is "simple" iff the depth of a is 1, ignoring the branches 
between terminal and preterminal nodes. 

EXAMPLE 5.1. 

% = A otz-= .-I o~a-= 
/ I  x, / r \  

B C D B C D 

/ \  l i !/t 
b E f Et b d e 

(A ,B ,  C ,D,  E e  V - -  X ; b , c , d , e ,  f e S )  

A 

f B C D  

I I I 
b c d 

al is not simple but ~1 and ~2 are simple. 

s A set of trees 71 over an alphabet /71 is a "project ion" of set of trees r2 over an alphabet V2 
if 71 is obtained f rom r~ by  relabeling nodes, through an onto mapping  ,r = V• --~ Vx, which 
changes alphabets [17]. r 2 is said to be the "inverse projection" of r l  if it is the largest set of 
trees with labels in V2 whose projection is rl  �9 



148 

DEFINITION 5.2. 

EXAMPLE 5.2. 

JOSHI, LEVY AND TAKAHASHI 

A tag q# = (cg, 6~) is "simple" iff all basic trees of ~ are simple. 

= (~, O/) where ~ ~ {~1), and 6~ = {/31,/33). 

% =  S 
[ 
e 

f~l = S ~2 = T 

a T S U b 

1 I I 
e d e 

Although tag's in general are more powerful than context-free grammars, simple 
tag's are not. 

THEOREM 5.1. Let  ~ = (~ ,  Ol) be a simple tag. Then the tree set of  ~ ,  7(qfl) is 
recognizable. 9 

Proof. We can construct a (nondeterministic) bottom-up tree automaton [17, 18] 
which recognizes precisely r(q~), as follows. 

State  set: {%} w { q ~ i x 6 Z }  w (ql} w {q(X,  y l  , y2 .... , y~) [ X ~ V - -  Z;  

Yl, Y~ ,..., Yn ~ Z such that 

X 
/ \  

Yl Y2 ""Y,~ 

is a subtree of some basic tree of N.} 

Ini t ial  state set: {%} 

Final  state set: {qr} u {q(s.~vu ~ ..... ~,} I S ~ V - -  Z ,  the distinguished symbol; 
Yl  , Y2 ,..., Yn ~ Z such that 

S 
/ \  

Yl Y2 "'" Yn 

is a center tree of ~.} 

D T h i s  t h e o r e m  holds  even if ~ is no t  s imple .  



TREE ADJUNCT GRAMMARS 

T r a n s i t i o n s :  

(i) x -+  " q~ , x c Z 

qo 

(ii) X --~ " q ( x , u l , v ,  . . . . .  ~.) 

/ 1 \  
q v l  q~2 "'" qu~ 

(iii) 

X e V - -  27, qu~ ~ {qx ] x e Z'}, j = 1, 2,. . . ,  n 

W e  say tha t  

X / l \  
q~l q ~  "'" q~. 

" c o r r e s p o n d s "  to a bas ic  t ree  o f  f f  if, u n d e r  t he  m a p p i n g  q~ --~ x, x ~ X, and  

and  

t h e  t r ee  

Yl Y~ "'" Y~* Y v ~  X 

�9 q(r ,uvu ~ ..... u.) ~ " X ,  Y = X 

X 

qul qv2 "'" qv. 

m a p s  in to  a bas ic  t ree  o f  ~ .  

I f  

X 

/ \  
qvl qua "'" qu. 

c o r r e s p o n d s  to a bas ic  t r ee  a n d  qu, = q ( x , z l . z 2 , . . - , z ~ )  fo r  s o m e  k, t h e n  

X - ~  " q(x,~l,z~ ..... z~) / \ \  
q~l "'" q~2 q~. 

149 



150 JOSHI~ LEVY AND TAKAHASHI 

I f  

S 

q'Jl q,,,~ "'" q,J,, 

corresponds to a center tree of rd, then 

S - + ' q t  / /  \\\ 

I t  is easy to check that the bot tom-up tree automaton described above recognizes 
precisely T(~). | 

COROLLARY 5.1. Let fr be a simple tag. Then the path set P(~-(f~)) is regular. 

COROLLARY 5.2. The language L(f~) of a simple tag ~ is context-free. (A tal which 
is the language of a simple tag will be called a simple tal; thus a simple tal is context-free.) 

COROLLARY 5.3. The equivalence problem for tree sets of simple tag's is decidable. 

From Corollary 5.2, we see that if a cfi L is a simple tal then it can be "descr ibed"  
with a minimal hierarchical structure. 1~ We now show, however, that  not  every 
cfl is a simple tal. 

DEFINITION 5.2. A terminal symbol is said to be of "bounded  occurrence" in L 
iff the number  of t imes it occurs in any word in the languageL is bounded by  a constant. 

DEFINITION 5.3. A nonterminal  symbol, say X is self-dominating iff there is an 
adjunct  tree whose root has label X. 

PROPOSITION 5.1. For any tag fr there is a weakly equivalent tag fq' (i.e., L(fr = 
L(aJ')) such that the set of nonterminals of fr (i.e., V' - -  X ' )  is just the set {S} U { X  I X is 
self-dominating}. Note that S may or may not be self-dominating, but, even i f  it is not, 
it cannot be eliminated. 

PROPOSITION 5.2. I f  a terminal symbol is of bounded occurrence, then it cannot 
occur at the leaves of (i.e., at the front of) an adjunct tree (this is so because an adjunct 
tree can be adjoined arbitrarily many times). Thus a symbol of bounded occurrence can 
occur only at the leaves of a center tree. 

10 These results can be considered as belonging to the area of syntactic complexity. For some 
other results in this area see (Bar-Hillel, et al. [2]). 



TREE ADJUNCT GRAMMARS 151 

LEMMA 5.1. Let  L = {#("a(m)ma)"#  I m, n ~ 1}. L is a cfl but not a simple tal. 

Proof. Let  L be s imple tal, i.e., L = L((r where  (r = (W, 5 )  is a s imple tag. 
T h e  symbols  a and  # are of b o u n d e d  occurrence.  Hence,  center  trees of  ~ mus t  be 
of the form:  

S 

# 0.0 • ~1 ~ " "  

/ \  / L / L  
T 1 T 2 Tn 

where 0.i, ~-~ a {a, (,)}*, i = 0, 1, 2,..., n, X i E V - -  Z', i = 1, 2 ..... n. Fur ther ,  there 
cannot  be any adjunct  trees wi th  root  labeled S. We now observe t h a t L  is a parenthesis  
language;  hence in any  ad junc t  tree 

0.1 X i  0"2 

we mus t  have at least one '(' in  0.a and  at least one ' f  in  0.2 (see Levy  [11]). I n  ho t ,  

0.1 ~ (k, and  o s = )k, for some k ~ 1. At  most  one X i can occur in a center  tree, 
since otherwise a ( ) ( ) parentheses  s t ructure  could be generated;  therefore, any  
tree in ~ mus t  be  of the form: 

S 

/ \ 
"ril 

and  any tree in  0 / m u s t  be of the form:  

Xi 

(", X~ )., 

I n  a center  tree, ei ther bo th  occurrences of a are in  ~'~t ' or one is in  aq  and  the other  

in  a i l .  Hence,  for any  tree derived from a given center  tree, ei ther m or n is fixed. 
Hence,  we cannot  have a simple tag for L.  | 

Thus ,  we have the following. 

57xlIo/I-~I 



152 JOSHI, LEVY AND TAKAHASH! 

THEOREM 5.2. The class o f  simple tal 's is properly contained in LPen . 

I t  is easily shown that an infinite hierarchy of languages is obtained, depending 
on the maximum allowable depths of the basic trees in a tag. 

Although not all cfl's are simple tals, cfl's which are finite state languages (regular) 
are simple tal 's. 

THEOREM 5.3. I f  L is a regular language then there is a tag fr such that L(f~) = L 

and f~ is simple. 

Proof. Let  L be a regular language and let G be a cfg such that L ( G )  = L.  Since 
L is regular, we can take G to be a right linear grammar,  i.e., the rules of G are of the 
form: A ~ a, A ~ aB,  where A, B 6 V - -  2:. F rom G we can obtain a tag fr ~ (~, 67/) 
such that L(fr = L ( G )  = L.  The  basic trees of fr may not be all simple, however. 
A typical center tree, say a, will be of the form: 

\. 

A~.n. 1(2 n-1 ) 

(2-- 1)an 
S, A 1 ,..., An  ~ V - -  Z ;  ao , al ,..., a,~ ~ S .  At each node, the address of that node is 
indicated inside parentheses. 2 m means 2 �9 2 �9 2 . . . .  2 (m times). F rom Theorem 3.1, 
we know that S,  A1 ..... A,~ will be all distinct. 

We will now transform a into a '  in the following manner.  

a 2 "] 

I I I 
al a2 an 

where  S[~, 0], A l l  % 2] A2[n, 2 -  2] , . . ,  A~[e~, 2 ~] are new nonterminals  not  in V - -  ~ .  
A nonterminal,  e.g., A2[c~, 2 �9 2] essentially records the information about a particular 



TREE ADJUNCT GRAMMARS 153 

occurrence of A~ in the tree ~ at the address 2 �9 2. Note that ~' is a simple tree; hence, 
we call c~' a "simplification" of ~. Let  c~, = {~, I a '  is a simplification of some a ~ c~}. 

A typical adjunct tree, say fi, in fr will be of the following form. 

(1) bo Ya(2) 

(2.1)~ G(2.2) 

(2.2. 

y~_l (2 "-1 ) 

(2~-1 �9 1)~,-1 Y,(2")  
/ \  

(2- �9 1)bN X(2"+ 1 ) 

X,  Y1,  Yz .... , Y~ ~ V -- Z; bob 2 ..... bn e Z'. Y1,  Y2 ..... Y ,  will be all distinct and 
also distinct from X (see Theorem 3.1). We call/3 an X- type  tree. A tree/~ (called a 
"simple skeleton" of fl) is obtained as follows./~ is a simplification off l  except that  the 
root node in/~ and the terminal node in/~ corresponding to the address 2 "+1 in fl are 
not labeled (i.e., left blank). Since fl is an X-type  adjunct tree, we call ]~ an X- type  
simple skeleton. 

bo Yx[fl, 2] Y 2 [ ~ - -  

b I b2 b~ 

where Ya[fi, 2], Y2[fl, 2 '  2], . . ,  Y,~[fl, 2"] are new nonterminals not in V --  L' . --denotes 
an unlabeled node. Note that j~ is a simple tree. Let  ~ = {/~ ]J~ is a simple skeleton 
of some fi ~ ~}. 

Let  U be the set of all the new nonterminals introduced in constructing go, from 
and ~ from 5 .  A nonterminal in U, say X[y, p], where X 6  V -  27, y is a basic 

tree and p is an address in y, will be called an X- type  nonterminal. We now obtain 
a set of simple adjunct trees, ~ ' ,  as follows. Let  fl ~ ~ be an X- type  simple skeleton. 
For each X-type nonterminal, say X[y, p] we obtain an adjunct tree, say/3' from • by 
labeling the unlabeled nodes in/~ by X[y, p]. We will say that fi' is obtained by "filling 
in" fl. Note that the filling in is always with nonterminals of the appropriate type 



154 JOSHI, LEVY AND T A K A H A S H I  

depending on the type of ft. Let  5 '  = {8' [ 8 '  is obtained by filling in some f l e  @}. 
Now let fr = (c~,, 5 ' )  be a tag where ,~' and 0/ '  are constructed as above, f~' is a 

"s imple"  tag. We will now show that L(G)  = L ( ~ ' ) .  From the construction of fr it is 
clear that  L ( G ) C L ( ~ ' ) .  We now want to show that L(  fr C L(  G). This is easily 
shown by induction on the number  of steps in the derivation in ~ ' .  Let  x aL(fr  
7 '  a r ( ~ ' )  such that Y(7') = x, and let 7'  be derived in one step, i.e., 7'  must  be a center 
tree, i.e., a tree in T ' .  Clearly, there is some center tree, say 7, in c~ such that Y(7) = 
Y(7') = x. Assume that  if 7' is derived in n steps in fr then there is a derivation in n 
steps in f# of a tree 7 such that Y(7 ' )  = Y(7) .  Now let 7' be derived in ~ '  in n + 1 

t 
steps, i.e., there is a derivation 71' ~-~r 72' w--~, ,..., v--~. 7n' ~ -g '  7n+t ~ 7' where 
9'1' ccC'- F rom the inductive hypothesis there is a derivation 71 ~--~72 ,..., w-~cTn, 

where 71 E ~ ,  such that  Y(Tn') = Y(7 , ) .  (In fact, we have Y(71') = Y(71), Y(72') = 
Y(72) ..... Y(7 , ' )  = Y(Tn).) Let  7~+1 be derived from 7~' by adjoining an adjunct tree, 
say, fl' ~ 5 '  to 7,,' at address p, i.e., 7'~+1 = 7,,'[P, fl']. From the construction of fr 
it  follows that there is an address q in 7** such that  7n(q) = 7n' (P) = X ,  say, and 
further there is an adjunct tree, say fi 6 5 such that fi is an X- type  adjunct tree, 
7,,+1 = 7,,[q, fi], and ~XF'(Tn+I)= Y ( 7 ; , + 1 ) -  Hence, L ( ~ ' ) C L ( G )  and therefore 
L(G)  = L((r I 

EXAMPLE 5.3. Let  G : (V, 27, P,  S) be a cfg, where 27 = {a, b, c, d}, V -  2J = 
{S, A, B, C}, and P : {S  -+ aA,  A --~ bB, B --,- bC, C ~ cB, B -+ d}. G is a right- 
linear cfg and hence L(G)  is regular. A corresponding tag is qr = (5,  5 )  where 

= { ~ } ,  a ~ d  5 = {~, ~}. 

~i  : :  S 81 = B P 2 :  

/\ / \ 
a A b C 

/ \  / \  
b B c B 

d 

C 
/ \  

c B 
/ \  

b C 

This  tag is not simple. However,  the following is a simple tag for L(G) .  fr = (cg,, 5 ' )  
where cc' r , ,, 

t/ 
a '  = S i l l '  - -  Bo f l l  = B1 f12' = C1 

a A o BI. b C 1 B o 

i r I I i 
b d c c b 

-do, B0,  B1 and C 1 are new nonterminals not  in V - -  Z.  L ( G )  = L(ff ' ) .  F r o m  Theorem 
5.3 and Corollary 5.2 we have the following. 



TREE ADJUNCT GRAMMARS 155 

COROLLARY 5.4. Let L be a regular language. Then there is a cfg G =- (/7, Z', P, S) 
such that L(G) = L and the rules of  G are of  the form X - +  a, X--+ aCX where 
X ~ 1 / ' - -  27, a c X, and ~b = E, the null string or r = YlI72 "'" Y~ , Yk ~ V - -  Z,  
k ~ 1, 2,..., n such that for  i # j ,  Y~ ~ I~ and Yi ~ X ,  i , j  = l,  2 ..... n. 

6. LINEAR TAG'S 

DEFINITION 6.1. A tree is "linear" iff at any depth there is at most one nonterminal. 
(Alternatively, a tree is linear iff for any pair of nonterminals, say X 1 , ~X~, in the tree, 
either X 1 dominates X~ or X 2 dominates X 1 where A dominates B means that there is 
a path from A to B.) A tag ~ ~ (oK, 6~') is a "linear" tag iff all basic trees of f~ are 
linear. A language L is a "linear tal" iffL ---- L(~)  for some linear tag f#. 

EXAMPLE 6.1. In Example 2.1, ~ and f~a are linear tag's, but f#l is not. In Example 
5.3, ~ is a linear tag but f#' is not. 

THEOREM 6.1. Linear cfl's C Linear tal's. Linear tal's are not comparable with cfl's. 

Proof. If  L is a linear cfl then L has a linear cfg, say f#. Then every derivation 
tree in G is linear; hence, linear cfl's C linear tal's. The language L(~2) of ~2 in 
Example 6.1 is not a linear cfl (in fact, it is a csl). Therefore, linear cfl's C linear tal's. 

L e t L  = { # a  ' ~ # b ' # c  ~ # d  ' ~ # [ m , n ) l } . L  is cfl. We will now show t h a t L  
is not a linear tal. The # is a symbol of bounded occurrence (see Definition 5.2) 
and thus it can only occur on the leaves of a center tree. I f  L has a linear tag f#, then 
all trees in r(f#) (which include the center trees of f~) are linear. Now any adjunct tree 
whose yield has a in it must have the yield of the form akXb k where X ~ V -  ~', 
otherwise, we can easily generate words not in L. We will call X an (a, b) variable. 
Similarly, any adjunct tree whose yield has a c in it must have the yield of the form 
cSYd ~ where Y ~ V - -  Z. We will call Y a (c, d) variable. The adjunct trees must be 
either of these two forms and the two sets of (a, b) and (c, d) variables must be disjoint. 
Further, in any tree in r (~)  it is not possible for an (a, b) variable to dominate a (c, d) 
variable or vice versa (see Definition 6.1). But since m, n are unbounded there must 
be trees in the tree set of any tag forL with both (a, b) and (c, d) variables without one 
dominating the other; hence the tag must be nonlinear. Thus  linear tal's are not 
comparable with cfl's. | 

DEFINITION 6.2. A tree is right-linear (left-linear) iff it is linear and at any depth 
the nonterminal is the rightmost (leftmost) symbol at that depth. A tag fr is right- 
linear (left-linear) iff all the basic trees of f~ are right-linear (left-linear). A tag f# is 
one-sided linear iff it is either right-linear or a left-linear tag. A language L is one- 
sided linear iff there is a one-sided linear tag ~ such that L(f~) = L. 



156 JOSHI,  LEVY AND TAKAHASHI 

THEOREM 6.2. Regular languages C one-sided linear tal's C efl's. 

Proof. By the technique of "simplification" in the proof of Theorem 5.5, it can 
be shown that if ~ is a one-sided linear tag then there is a simple tag ~ '  such that 
L(fr ~-L(f~'). c5' is not necessarily a one-sided tag, however. By Corollary 5.2, the 
language of a simple tag is a cfl. Hence, one-sided linear tal's C cfl's. Proper contain- 
ment follows from the example in Theorem 6.1. 

I f  L is a regular language then L has right-linear (left-linear) cfg and hence a one- 
sided linear tag. Thus  regular languages C one-sided linear tal's. Proper containment 
follows from the fact that Lz = {w [ w ~ {a, b}* and # a's (i.e., the number of a's) in 
W = # b's in w and in any initial proper substring of w, # a 's > # b's} is a one-sided 
linear tal but not a regular language. The fact that L 2 is not regular is obvious. The 
following is a one-sided linear tag for L 2 . Let ~ = (.~, ~ )  where r = {~1}, and 

~x:t ~ S / \  
a X 

L 

b 

T h e n L ( ~ ) = L a .  | 

/~1 ---- X /~2 = Y 
/ \  / \  

a Y a X 

b / b / 

X Y 

THEOREM 6.3. Let ~ be a one-sided linear tag. I f  r((~) is a recognizable set then 
L( ~)  is regular. 

Proof. We can construct a deterministic top-down automaton which will accept 
precisely an inverse projection of ~-(~) ([13] and Theorem 2.2). The  rules of the 
automaton are of the form: 

(q, X) --~ X 

u ~.., ..... ~ (q~,  ~) (q~,  ~),..., (qx,,, ~,)  

where X f V - - 2 : ,  ]11, I12 .... , Y ~ f V ,  and q, qx~,qx~ ..... qx,, are states. Then  
(q, X)  ~ (qxx , Ya) (qx~, Y~),..., (qx,,, Y,,) will be a rule of a cfg, say G, for L(ff) 
where (q, X) will be a nonterminal of G and (qxx , Y1), (qx 2 , Y2),..., (qx,,, Y,,) will be 
terminal or nonterminal symbols of G. I f  cff is a one-sided linear tag then all trees in 
r(ff) will also be one-sided linear; hence the rules of G will be one-sided linear (i.e., 
either all right-linear or all left-linear). L(ff) is regular. | 

COROLLARY 6.1. I f  the tree set r(ff) of a one-sided linear tag ff is such that L(f~) is 
not regular then z(~) is not recognizable. 



TREE ADJUNCT GRAMMARS 157 

The  converse of Corollary 6.1 is not true, however. Let  ff = (~, 6~) where 

= {a l ,  a2}, and ~ =- {fix, f2}. 

~1 --: S f t  : : X Pz =: Y 

a/ "/I a/ 
X Y X 

I b/1 / Y b 
l 
b Z Y 

X / I  / ~  
Z a Z b Z 

[ 
b 

is a one-sided linear tag. L (~)  is regular, but  ~(~) is not recognizable. 

7. A GENERALIZATION OF TREE ADJUNCT GRAMMAR 

We will generalize a tag so that it will be possible to adjoin one or more adjunct 
trees simuhaneously during each adjunction operation. 

DEFINITION 7.1. "A simultaneous tag (stag)," ~ is a pair ~ = (c~, 5 )  where (g 
is a finite set of center trees and 07[ is a finite set of "adjunct  sets" where each adjunct 

set is a finite set of adjunct trees. 

EXAMPLE 3.1. Let  fr = (~, 5 )  where c6' = {as}, and ~ = { f l ,  f z ,  fz}. 

C~ 1 ~ S 

/1\ 
A B C 

D b 

d 

~1 = {f i l l ,  fl12, fl13}, f l l l  = A /~12 = B f l s  = 
/ \  / \  

a A B b 

C 
/ \  

C c 



158 JOSHI ,  LEVY AND TAKAHASHI 

B 
/ \  

B b 

~ $8 ~ D 

/ \  
D d 

#,  = fl , = c 

/ \  
C d 

fix, fie, and/3 a are "adjunct  sets." f i n ,  fl12, and fila will be called components of i l l .  
Similarly, t2 has fi21 and fl22 as its components,  t3 has only one component,  viz, flal. 

Let  fli be an adjunct set with k components,  i.e., t ,  = {fi,1, fli2 ..... fli~}, and let 
y ~ r v .  Let Pl ,  P~ ,..., P~ e D~, Pi 4= PJ, for i ~ j ,  and Y(Pl) = flil(0), y(pe) = flt2(O),..., 
Y(Pk) = flt~(0). Then,  speaking informally, we say that fli = {fl~, fl,, .... , fltk} is 
"adjoinable" to y at Pl ,  P2 ,..., Pk and y '  is the tree obtained from y by adjoining 
(according to Definition 2.8) f i l l  at p l ,  fii= at p~ ,..., and flik at p~, "simultaneously." 

First, let us consider the case when Pl ,  P3 ,..., P~ are mutually nondominating (i.e., 
for any pair, p i ,  p~, it is not the case that p, dominates p~ or p~ dominates Pi). I t  is 
clear that the order of adjoining the components of fii is irrelevant as long as fia is 
adjoined at p l ,  fli= is adjoined at P2 ..... and fit~ is adjoined at p , .  But in order to give 
a precise definition for adjunction by using Definition 2.8 we will have to impose 
some ordering (arbitrary) and let us assume that fla is adjoined first, then flis, etc. 
Hence, y '  is obtained as follows. 

Y," == r[Px , fi,1], ~'," = ~'l'[P*, flid,..., Y~' = Y'~-l[Pk , fl, k] = Y'. 

For the case when one node dominates another, say, pr dominates Ps ,  we adjoin 
/3~ at p8 first and then/3~r at p~, i.e., we start adjoining at the lowest node first and 
work upwards. We may still speak informally of adjoining "simultaneously" because 
of Lemma  7.1 below. For simplicity let fl~ have only two components,  i.e., fli = {fla, fl~2}. 

Let  fin = X and/3,3 = Y 

address q address r 2 

i.e., ( r l ,  X ) E f l a  and (r~, Y)E/~,2 �9 Then  from Definitions 2.3 and 2.8, we have the 
next lemma. 

LEMMA 7.1. L e t  fl~ = {flil, fli~}, 7 E r v ,  and Px ,  P2 ~ D ~ .  L e t  Pl > P~, i.e., P2 

dominates Pl . L e t  7 1 ' =  7[Pa, f in],  7~' = Yl '[P2,  [3id = 7' and  7~ = 7[03,  fl~l], 
y~ = 7101 " r2 , fli2] = Y". Then 7'  = 7", i .e.,  the tree obtained by  adjoining f la  a t  Pl 



TREE ADJUNCT GRAMMARS 159 

f irst  and then adjoining/3~2 at P2 is the same as the tree obtained by adjoining/3i2 at p2 and 
then adjoining/3il at Pi " r~ . (Note that the node at Pl " r2 is the same node which previously 

had the address Pt in 7.) 

W e  can now define ad junc t ion  in a stag. Le t  /3i = {/3a, fl~2 .... ,/3~}, 7 e Zv,  

Px, P2 , . . - ,  P k  ~ D~,  p~ v e p j ,  for  i =~ j ,  and  Y(Pl) =/3,1(0),  7(P2) = /3 i2(0) ,  . . . ,  Y(P h) : 
fli~(0). Assume  that  P1, P~ ..... Pk are o rdered  bo t t om to top  and  left  to r ight  n in the  
t ree 7. 

D E F I N I T I O N  7.2. I f /3 ,  = {flix,/3,2 ,..., fiik) is adjoinable  to 7 at P l ,  P2 . . . .  , p ,  then  
7 '  = 7 [P l ,  P~ ,..., pk ,  fli], the resul tant  tree, 7 '  is ob ta ined  f rom 7 as follows. L e t  

71 t = 7 [ P l ,  till ,  72' = 71 t [/92, /3i2] , '" ,  7kt = 7 'k--l[Pk , /3ik]" T h e n  7 '  = 7~'. 

EXAMPLE 3.2. Cons ider  the stag ff  of Example  3.1. Le t  

S 

/ f \  
A B C 

I l \  \ 
a D d e 

i 
d 

L e t  fix be ad jo ined  to 7 at  p 1 ( = l ) ,  02(=2) ,  and  pa (=3) .  T h e n  the resul t ing  tree 7 '  is 

yr~ S 

t / \  I 
a D b c 

d 

Again,  let  y ~ o~ 1 as before.  Let/32 be ad jo ined  to 7 at  p1(=2) ,  and  p ~ ( = 2  �9 1). No te  
tha t  the  node  at  Pl domina tes  the  node  at  P2 �9 T h e n  the resul t ing  tree 7 '  is (Pl domina tes  

P2 ; henee/322 is adjoined first and  then/321) 

11 That is, for i ----- 2, .... k, either p~ dominates P~-I or Pt is to the right of p,-1 in the tree y. 



160 JOSHI ,  LEVY AND TAKAHASHI 

~l= S 

A ,B', C 

/ ,, 

j \ ,  
, ,Dx  b 

/ / _ _ p .  . . . . . . . . . .  _d ":,_ 

t 
d 

Definition 2.9 can be easily extended to stag's. Let  ff := (~6 ~, G/) be a stag and let 
~((r be the "tree set" of fr and L(ff) be the corresponding language ("simultaneous 
tree adjunct language," stal). Let  .L, Cstal be the class of languages corresponding to 
stag's. We then have the following. 

THEOREM 7.1. -~en C L#ta 1 C ~stal C owes 1 . 

Proof. From Corollary 2.1 we have ~r C .,eta 1 C ~CPes 1 . Tag ' s  are special cases 
of stag's; in a tag, each adjunct set has exactly one adjunct tree. Hence, ~-~tal C ~stal �9 
Given a stag ~,  it is easy to construct a nondeterministic linear bounded automaton 
which recognizes precisely L(fr Hence, oWstal C .Wes t . I t  is also easily shown that 
L = {a n~ [ n ~ 1} is not a stal by examining the growth rate of the lengths of strings 
in the language of a stag. Thus  ~c, astal C -~esl �9 

This argument works because the yield of each adjunct tree has at least one non- 
terminal in it (see Definition 2.7). I f  in Definition 2.7, we define an adjunct tree/5 such 
that 7,(/5) e Z'*X27*, then, however, the above argument does not hold. We conjecture 
that even in this case ~stal  C ~es l -  Note that the corresponding theorem for ~Pta] 
(Theorem 3.2) is true in this case (see footnote 4). | 

Analogous to a "simple tag" (Definition 5.2), we can define a "simple stag" as a 
stag all of whose trees are simple (see Joshi [8] for an application of a simple stag). 

8. A VAm~'~T OF n TAG 

In Section 4, it was shown that the tree sets of tag's and recognizable sets are 
incomparable (Theorem 4.1). In this section, we will give a different formulation of 
tag's  which has the advantage that many recognizable sets which are not tree sets 



TREE ADJUNCT GRAMMARS 161 

of tag's are captured in this new characterization. Whether  or not all recognizable 
sets can be characterized in this way is still an open probem. 

An adjunct tree fl is adjoinable to a tree y at address p if the label a tp ,  i.e., 7(p) = fl(O). 
I n  the new formulation we will make adjunction depend not only on the identity of 
labels (y(p) =/3(0))  but  also on the basic tree (i.e., in ,~ ~3 5 )  to which the node at p 
belongs. This  characterization is a direct generalization of some of the basic ideas in 
Joshi et al. [11]. In  order to distinguish this new formulation from the old one we will 
refer to the earlier formulation by tag 1 and the new one by  tag 2 . 

DEFINITION 8.1. A tag 2 is a triple f~ = (~, 6~, J )  where ~ is a finite set of center 
trees, G/ is  a finite set of adjunct trees (~6: u i f / i s  the set of basic trees), and J is a 
finite set of adjunction rules. 12 

An adjunction rule u G J is a tr iple u = (~,,, Y3", ~) where y~ ~ ~ U 6~, ~9 G 5 ,  and 
is an address in ~ , .  ~ is called the host of u, ~ . ,  the adjunct of u, and ~:, the point  of 

adjunction in the host. Of course, it is understood that ),~(~) = )5(0). Thus  adjoinability 
of y~. at ~: depends not only on the fact that the labels match but also on the fact that 
the node at ~: is a node in one of the basic trees as specified by u. 

As before, ,(f~) is a set of all trees derived from trees in cg. The  definition of deriva- 
tion is more complicated now. We will not give a detailed precise definition. I t  can be 
formulated along the same lines as in Joshi et aL [11]. We will illustrate the idea by  
means of an example. 

EXAMPLE 8.1. 

J = {Ul, ,,2). 

o ~ =  S 
/ \  

S S 

I I 
a b 

Let  fr = (cg, 5 ,  J )  be a tag 2 where ~ = {aa), 0/' = {fl:, f12}, and 

/ 3 : =  S /32= S 
/ \  / \  

S a S b 

Ul = (~1, /31,1)  u2 = (~1, /32,2)  

Note that although/31(0 ) =/32(0 ) = ~:(1) = ~2(2), fix adjoins to ~1 only at address 
1 and/3 z adjoins 51 only at address 2. I t  is clear that by repeated applications of u: and 
u 2 (not necessarily the same number  of times) one obtains a tree set whose linear 
prefix representation is (S~+lamSnb~l m, n ~ 1} (See the example in the proof  of 
Theorem 4.1). This  set is recognizable but  it  is not a tree set of tagl (Theorem 4.1), 
although as we see now, it is a tree set of tag 2. The  following results are 
easily established. 

:~ Such a tag is used for representing the base component of the transformational grammar 
in Joshi [9]. 



162 JOSHI, LEVY AND TAKAHASHI 

THEOREM 8.1. Let r (~ )  be a tree set of  (~ where (r is a t ag  a . Then there is a tag  2 

~.r such that z (~ ' )  = r(~) .  

THEOREM 8.2. Let pro j - t ag  2 sets be the set of  all tree sets obtained from tree sets of  
tag2 by projection. Then ( from Theorem A.1 and the diagram at the end of Section 4), 

Recognizable sets C pro j - t ag l  sets C proj - tagz  sets 

THEOREM 8.3. 

Open problem. 
"r(f~) = R ? 

There are recognizable sets which are tree sets of  tags but not of  tag 1 . 

L e t  R be  a recognizab le  set.  Does  t he re  exist  a tag  2 ~ such  t h a t  

REFERENCES 

1. A. V. AHO, Indexed grammars: an extension of the context-free grammars, J. Assoc. Comput. 
Mach. 15 (1968), 647-671. 

2. Y. BAR-HILLEL, A. KASHER, AND E. SHAMIR, "Measures of syntactic complexity," Teeh. 
Report No. 13, Applied Logic Branch, The  Hebrew University of Jerusalem, Jerusalem, 
Israel, 1963. 

3. W. S. BRAINERD, Tree generating regular systems, Information and Control 14 (1969), 
217-231. 

4. W. S. Bt~AINERD, Semi-Thue systems and representations of trees, in "Proceedings Tenth  
Annual IEEE Symposium on Switching and Automata Theory,"  Waterloo, Canada, 1969. 

5. N. CHOMSKY, "Syntactic Structures," Monton, The  Hague, Netherlands, 1957. 
6. S. GonN, Explicit definitions and hnguistm dominoes, in "Proceedings of the Systems and 

Computer Science Conference," University" of Western Ontario, 1965, pp. 77-115. 
7. Z. S. HARRIS, "Mathematical  Structures of Language," Interscience, New York, 1968. 
8. A. K. JOSHI, How much hierarchical structures is necessary for sentence description ?, in 

"Transformationelle Analyse" (S. Plbtz, Ed.), Athenaum-Verlag (Harcourt Brace), Frank- 
furt, 1972. 

9. A. K. JOSHI, "A Class of Transformational Grammars"  (M. Gross, M. Halle, and M. P. 
Schfitzenberger, Eds.), Monton, The  Hague, Netherlands, 1973. 

10. A. K. JOSHI AND M. TAKAHASHI, "A characterization of the derivation trees of a context-free 
grammar and an intercalation theorem," Tech. Report, The  Moore School of Electrical 
Engineering, University of Pennsylvania, 1971. 

11. A. K. JossI,  S. KOSARAJU, AND H. M. YAMADA, String adjunct grammars: Parts I and II, 
Information and Control 21 (1972), 93-116; 235-260. 

12. L. S. LEVY, Tree adjunct, parenthesis, and distributed adjunct grammars, "Proceedings of 
the International Symposium on Theory of Machines and Computations," Haifa, 1971, 
pp. 127-143, Academic Press, New York, 1971. 

13. L. S. LEVY AND A. K. JOSHI, Some results in tree automata, Math. Systems Theory 6 
(1972). 

14. W. OGDEN, A helpful result for proving inherent ambiguity, Math. Systems Theory 2 (1968), 
191-194. 

15. R. J. PARIKH, On context-free languages, J. Assoc. Comput. Mach. 13 (1969), 570--581. 



TREE ADJUNCT GRAMMARS 163 

16. W. C. ROUNDS, Mappings and grammars on trees, Math. Systems Theory 4 (1970), 257-287. 
17. J. W. THATCHER, Characterizing derivation trees of a context-free grammar through a 

generalization of finite automata theory, J. Comput. System Sci. 1 (1967), 317-322. 
18. J. W. THATClJER, Generalized sequential transducer, ]. Comput. System Sci. 4 (1970), 

339-367. 

Printed m Belgium 


