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In this paper, a tree generating system called a tree adjunct grammar 1s described
and its formal properties are studied relating them to the tree generating systems of
Brainerd (Information and Control 14 (1969), 217-231) and Rounds (Mathematical
Systems Theory 4 (1970), 257-287) and to the recognizable sets and local sets discussed
by Thatcher (Journal of Computer and System Sciences 1 (1967), 317-322; 4 (1970),
339-367) and Rounds. Linguistic relevance of these systems has been briefly discussed
also.

1. INTRODUCTION

In this paper, we will describe a tree generating system called a tree adjunct grammar
(tag) and study its formal properties relating them to the tree generating systems of
Brainerd [3, 4] and Rounds [16], and also to the recognizable sets and local sets
discussed by Thatcher [17, 18] and Rounds [16].
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TREE ADJUNCT GRAMMARS 137

In Section 2, we will define the tag systems, following an idea of Parikh [15] and
study their properties. These grammars surprisingly turn out to be more powerful
than context-free grammars. Much of the basic notation for trees and subtrees in this
section is from Brainerd [3] Gorn [6], and Rounds [16]. The relationship of tag
languages to context-free, indexed, and context-sensitive languages is discussed in
Section 3 and to recognizable sets in Section 4. Section 5 deals with an important
subclass of tag’s called simple tag’s, and another subclass called linear tag’s is discussed
in Section 6. In Section 7, we introduce a generalization of tag’s and study them with
respect to the properties mentioned in the previous sections. A variant of a tag and a
related open problem is discussed in Section 8.

These grammars were motivated by several linguistic considerations. Our main
purpose in this paper is the study of the formal properties of these grammars. However,
before proceeding with this study, we will describe very briefly the linguistic relevance
of these systems:

1. A tree is a structural description of a sentence. A tag is thus a grammar of
structural descriptions. There are two types of basic trees in a tag, the center
trees and the adjunct trees. The center trees can be regarded as elementary
(structured)! sentences and the adjunct trees have the semantic interpretation
of modifiers.

A given tree (structural description) may have more than one distinct deriva-
tion in a tag. These distinct derivations invariably turn out to have linguistic
relevance. For example, the phrase structure tree corresponding to big red house
has two distinct derivations in the tag corresponding to the two readings
(big (red (house))) and ((big) (red) (house)), i.e., corresponding, respectively, to
the cases when big modifies red house and when big and red modify house
independently.

2. In a tag, each intermediate tree in the derivation is also a sentential tree, i.e.,
the derivation proceeds from a (structured) sentence to another (structured)
sentence, in contract to the usual derivation in a phrase structure grammar.
Further, the set of all (structured) sentences corresponding to the intermediate
steps in the derivation of a (structured) sentence can be regarded as the set of all
partial (structured) sentences underlying the given (structured) sentence. These
two properties are of interest because they capture to some extent two key
linguistic concepts which can be very informally stated as follows [5, 7].
Sentences are related to other sentences in systematic ways and complex
sentences are related to simple sentences and can be viewed as composed of
simpler sentences which have been subjected to appropriate deformations.

3. Simple tag’s in Section 5 suggest a framework for formulating the question:

1 A structured sentence 1s a sentence together with its tree.
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How much hierarchical structure is necessary for sentence description? It
turns out that most of the base components of currently available transforma-
tional grammars fall into the class of simple tag’s.

A generalization of tag’s (stag’s in Section 7) provides a certain amount discontiguous
constituent structure and it is quite adequate for most linguistic purposes [8].

2. A Tree GENERATING SYSTEM (TREE ADJUNCT GRAMMAR)

First, a notation for “trees.” Let J* be the free monoid generated by [ (set of all
natural numbers). Let the binary operation be denoted by - and the identity by 0.
For p, ge J*, p < q iff there isare J* such that g =p -7 and p < q iff p < ¢
and p # q.

Let V' be a finite alphabet and ZC V. We call X the ‘“‘terminal alphabet” and
V' — X the “‘nonterminal alphabet.”?

DEerFINITION 2.1, yis 2 “tree over V" iff it is a function from D, into ¥ where the
domain D, is a finite subset of J* such that (1) if ge D, , p < g, then pe D, ; (2) if
pjeD,,je],thenp-1L,p-2,...,p-(j— 1)eD,.

We call elements in D, addresses of y. If (p, A) € y then we say that 4 is the label
of the node at the address p in y. We will often write this as y(p) = 4.

DerINITION 2.2, Let y be a tree over V. A node g in p(more precisely, g€ D,) is
called a “terminal node” iff for all pe D, , ¢ < p. A node ¢ in y is an *‘interior (non-
terminal) node” iff ¢ is not a terminal node. A node whose address is O is called the
“root node.”

Let 7, be the set of all trees over V such that if y € 7, and p € D, is an interior
node then y(p) € V' — 2. That is, interior nodes must be labeled with a nonterminal
symbol. Terminal nodes may be labeled with a terminal or a nonterminal symbol.

DeriNITION 2.3. Letyerpand pe D, . Then,

vip ¢ DI ¢ Aey, ge ],
7o 2{g A)1(g Dey,p €4
y/p is called the “subtree” at p and y\p is called the “supertree” of y at p. Further, for
yerpand pe J*,
Py 2{p g4 Dey)

2 We have here a ranked alphabet <V, 7> where r C V' X w is a finite relation called the
ranking relation. If (o, n) then we say that » has “‘rank” » and ¥, denctes the set of symbols of
rank z [18]. We also require ¥ to satisfy the condition: Vy(=ZY NV, = &,7 # 0.
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ProprosiTION 2.1.
. Ifyer,,y+#* @,then0eD,.

2. y=ypUVUp (vp)joryeryandpeD,.
3. yY\perpandylper,,forycr,andpeD,.

However, p -y ¢ 1, unlessp =0, for ye v, and p € J*.

DeriniTiON 2.4. The “yield” Y is a function from 7, into V* defined as follows.
Y(y) =»0) if D, ={0}.
Y() =YO/) Y2) - Y0rfj) if 1,2,..,jeD,, and j+1¢D,.
V* is the free monoid generated by V7 with identity e. Thus f(y) is the string of the

labels of the terminal nodes of .

DerFiniTiON 2.5. The “front” § of y in 7, is defined as

?j-é-{(P’A)e'ylP{q’ for any geD,},

ie., ¥ is the set of address—label pairs corresponding to the terminal nodes of y.

DEerFINITION 2.6. A sequence <{(pg,dq), (P15 A1)y (P1, Ay)) of elements of
y €1y is a “path” of y iff

PO = 0’ (Pl ’ Al) S pz = pi—l ‘jl fOI‘ some ]z € ](l = ls 2)'") l)'

1 is the length of the path.

For y € 7, the “path set” p, of y is the set of all paths of y. If +" C 7,
P(r") = ),er P, . We call P(') the path set of /. We are now ready to define a tree
generating system called a tree adjunct grammar (tag).

DerFiniTION 2.7. A “‘tree adjunct grammar” (tag), ¢ is a pair ¢ = (%, (¥) where
€ and (¥ are finite subsets of 7 satisfying the following conditions.

1. If ye® then Y(y)e2* and y(0) = S where S is a distinguished symbol
mV—2.

2. If Be and o(0) = X then Xe V — 5, Y(8)e Z*X 5t U Z'X I* (where
It = ZI%p,

% is called the set of “‘center trees” and ¢7 the set of “‘adjunct trees.” The set € U ¥
will be called the set of ““basic trees’ of &.

3 Thus the yield of an adjunct tree has at least one terminal symbol.
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DrrinNiTION 2.8. Let B be an adjunct tree and y € 7, . Let p € D, and y(p) = 5(0).
Then B is ““adjoinable to y at p”’ and v [p, 8] is the tree obtained from y adjoining 8
at p defined as

VB BlIEYp VP -BU(p 1) (V)

where r € Dy , B(r) = B(0), and (r, B(r)) € B, i.e., 7 is the address of that node which is

in the front of 8 and which has the label B(0). This operation will be called “‘adjunction”
For a given ¥ = (¢, () we will write yt—g 3" iff for some 8 and some p, 8 is

adjoinable to y at p and ¥ = y[p, B]. "=y is the reflexive, transitive closure of —¢ .

Toxsytp
e ’ “
N
/ /,/ N . _,\*_:__utY/p {SUBTREE AT p)

. ADJUNCT TREE B

— X N

=pir}

Y'(TREE OBTAINED BY ADJOINING P TO Y ATp}

N\

~

\\

~
, a X
Y= , /\ \+—— — Y WiTH ¢ DETACKHED
e ~
N

Fic. 1. Adjunction.

DerINITION 2.9. Let ¢ = (€, (¥) be a tag. Then the “tree set”® of ¢, (%) is
defined as

(%) & {yery| forsome ae®,artgy},
and the language of &, L(%) (a ''tree adjunct language,” tal)
L(%) & {x|x = Y(y). for some y e (%)}

Let 8 be adjoinable to y at p, then y[p, B](p) = y(p) = B(0). Hence B is again
adjoinable to y[p, B] at p. Write y[p, B1* for ([, BI"™Y) [p, Bl (n > 1). Then by

4 In the terminology of Rounds [16], we can call the tree set of % the dendrolanguage of .
Tree sets of tags are included in context-free dendrolanguages (see Section 4).
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induction, for # > 1, B is adjoinable to y[p, B]7~1 at p if it is so to y at p; hence y[p, B]"
is well defined. Further given ¥ = (%, (), if y € 7(¥), and Be &, then for n > 1,

y[p, B" € 7(%).

ExaMPLE 2.1. Let 9, = (%, (1) where € = {o,, oo}, and X = {B;, Ba s Be}-

ay = Y oty = S
a/iil‘\b a/7]1\b
/A /\
a b b a
By == T Ba == T By = T
/\ /\ /\
T T T T T T
/\ /\ \
b a a b b a
B == T ,3 = T Bs = S
/\ /\ AN
T T S a a T b
\ /N /\
a b aTlbd S a
Let yy 7= o = S
/N
a T b
\
ab
Then vy lzB1- S
e KRN
N
i'?r\ b
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'Y2=Y,[2.1,B5] = S

and so forth.
Let 4, = (%, (¥) where € = {0}, and ¥ = {8, , s}

o= S

4

R/
/N /)

bSc bTe

Let &, = (¢, () where € = {oq}, and O = {f,}.
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3. ReLATIONSHIP TO CONTEX-FREE AND CONTEXT-SENSITIVE LLANGUAGES

For a context-free grammar (cfg) G, let 7(G) be the set of all sentential derivation
trees of G, i.e., trees whose roots are labeled with S, the initial symbol and whose
terminal nodes are labeled with terminal symbols. Let L(G) be the language of G. It
is easy to characterize 7(G) in terms of a tag [10].

TueOREM 3.1. For any cfg G, there is a tag % = (€, (¥) such that (%) = 7(G)
and L(%) = L(G). Further we can have the tag G such that the basic trees satisfy the
restriction: If a € € then in any path in o no nonterminal appears more than once, and
if B e (l then in any path in 8 no nonterminal appears more than once, not counting the
nonterminal labeling the root node of f.

In Example 2.1, %, is a tag for the cfg G = (V, 2, P, S) where V = {S, T, a, b},
2 ={ab},and P ={S-—>aTh, T— Sa, T— TT, T— ab, T — ba}. ¥, and ¥, are
not tag’s for any cfg’s.

For a given & == (€, (¥), the size of a tree (in terms of the number of nodes) whose
yield is a string, say w € L(%) is some linear combination of the sizes of trees in € U (V.
Thus we can construct in a straightforward manner a linear bounded automaton
(not necessarily deterministic) which recognizes precisely L(%). This argument works
because the yield of an adjunct tree always has at least one terminal symbol (see
Definition 2.7).5

THEOREM 3.2. Let ¥ = (%, (¥) be a tag. Then the tal L(9%) is a context-sensitive
language (csl).

In Example 2.1, L(%,) and L{%,) are context-sensitive and not context-free. L{(%,) =
{wec® | n > 0, w is a string of &’s and &’s such that #a’s = #b’s = n, and for any
initial proper substring of w, #a's = #b’s}. L(%,) N a*b*ec* = {a"b"c™ | n = 1}
which is context-sensitive but not context-free. Further L(%,) = L(%,). The tag %,
satisfies the restriction in Theorem 3.1; however, the tag %, does not satisfy it. This
indicates that the restriction in Theorme 3.1 does not imply context-freeness of the
corresponding language.

From the definition of tag and, in particular, the rule of adjunction it is easily
seen that the well-known intercalation theorem (wwwxy-theorem) for cfl's can be
easily extended to tal’s.%

5 If in Definition 2.7, we define an adjunct tree B such that ¢(8) € X* < Z'*  then the above
argument will not work. However, even in this case, Theorem 3.2 is true on account of the
containment of tal’ in indexed languages (see Section 4).

$ Ogden [14] has presented a stronger version of the uvwxy-theorem. This theorem as well as
the intercalation theorem in [10] can both be extended to tal’s.

571/10[1-10
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Hence, we can show that the context-sensitive language {a"b"c" |n > 1} is not
a tal. An informal explanation of this fact is that in a tag we can keep track of more
than two dependent counts but not of two or more dependent nestings.

Let L, &t and ZFy; be the classes of languages corresponding to context-sensitive
grammars (csg) context-free grammars (cfg) and tag’s, respectively.

CoroLLARY 3.1. Ly G Fa1 & Logr -

Remark. Let Z4 be the class of indexed languages of Aho [1]. Then, it can be
shown that #;; & #pq (see Section 4).

4. RELATIONSHIP TO RECOGNIZABLE SETS AND CONTEXT-FREE DENDROGRAMMARS
A set of (labeled) trees, R, is “‘recognizable’ if three is a bottom-to-top tree auto-
maton which recognizes precisely the trees in R [16, 17]. A set of trees is ‘“local”
if it is the set of all derivation trees of cfg.

Let R be a recognizable set of trees. Let P(R) be the path set of R (see Definition
2.6). Rounds [16] has shown that if R is recognizable then P(R) is regular (i.e., a
finite state language). We now see why tag’s are more powerful than cfg’s. Let % be a
tag and (%) the corresponding tree set. The path set of #(¥) is generated by rules
of the form X — Xy X, or X — Xia where XeV — X, ye(V — XY, and ae 2.
It is thus possible to get a nonregular path set.

ExamrLE 4.1. Let ¥ = (%, (¥) where € = {o}, and (¥ = {B,, By}
= S B = S By =

‘ a/T\d /,\
/N N

N
b/ g\c / !\

The path set P(r(%)) is nonregular, for under the homomorphism, % which erases
S and U, we have

R(P(H(®))) N T*V*e = {T"V"e | n = 0},

which is nonregular.
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TuroreM 4.1. The tree sets of tag’s and the recognizable sets are incomparable
and thetr intersection properly contains the local sets.

Proof. 'The set of a tag % for L(¥) which is not a cfl is clearly not recognizable.
Now consider a set of trees of the following form.

S
/\
S S b
/ /\
S S b
/ \

/ \

a

Q/\C/J

S S
S )
) ;

i.e., a set of trees whose linear prefix representation is {S™+a™S"" | m, n > 1}. This
set is recognizable but it is not a tree set for any tag because in any tag for this tree set
the adjuncts which allow us to iterate @ and b, respectively, will be adjoinable to each
other and thus, a’s and &’s will be mixed in the yield string.?

Local sets are recognizable. Also they correspond to cfg’s. They are clearly tree sets
of tag’s (see Theorem 3.1). Thus local sets are contained in the intersection of re-
cognizable sets and tree sets of tag’s. The containment is proper as can be seen from
the following example. Let ¥ = (%, (¥) be a tag where € = {o}, and ¥ = {;}.

o = S B = S
i A

e a b

N

|
c
(%) is recognizable but it is not local. ||

Remark. Although recognizable sets are closed under boolean operations, tree
sets of tag’s are not. This follows from the fact that tree sets of tag’s are not closed
under union.

7 See Section 8 for a variant of tag which captures this recognizable set.
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Let 9, = (6, , (7,) where €, = {a}, and () = {B;}.

oy == S [31 = 8
\
i a/ S
and ¥, = (¢, , €,) where €, = {oq}, and (7, = {8}
= S = S
| AN
e c S

The set of trees 7(%;) U 7(%,) is not a tree set for any tag, since there is no way to
keep the a’s and ¢’s separate.

It is easy to show that the tree adjunct languages (tal’s) are closed under union, set
product, and Kleene star.

For some additional results concerning recognizable sets and tree sets of tag’s, see
Section 5 (Theorem 5.1) and Section 6 (Theorem 6.3, Corollary 6.1).

A tag can be regarded as a restricted case of the context free dendrogrammar of
Rounds [16]. Corresponding to an adjunction rule, we will have a rule of the context
free dendrogrammar of the following form (adopting Rounds’ notation).

NN

where ¢ is a2 nonterminal,

is a tree 75(¢), and

/ T
X Xy X,

is a tree in 75(%,%y ,..., ¥,) with indices x; , xy ,..., %, .
Let ‘‘proj-tag sets” be the set of all tree sets obtained from tree sets of tags by
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projection.? Then we have the following relationship among the various tree sets
— denotes projection).
proj

local sets C  tag sets
v v
recognizable sets C proj-tag sets ¢ context free dendrolanguages

Since the yields of context-free dendrolanguages are precisely the indexed languages
[16], it follows that £, C Finq . Proper containment follows from the fact that
L = {a?b"c" | n > 1} is an indexed language but not a tal.

5. SiMpLE TAG’s

When measuring the depth of a tree we will ignore the branches between the
terminal and the preterminal nodes. The motivation for this is that these correspond
to terminal rules (4 — « is a terminal rule if 4 € V' — X and a € 2*) and terminal
rules are used to insert lexical items (e.g., as in N — John) or fixed strings of lexical
items. These rules are also called lexical rules. It is clear that lexical rules do not
contribute to hierarchical constituent structure.

We now introduce simple tag’s which are a subclass of tag’s. A simple tag has, in a
sense, a minimal hierarchical structure.

DerFinITION 5.1, A tree o is “‘simple” iff the depth of « is 1, ignoring the branches
between terminal and preterminal nodes.

ExampLE 5.1.
oy = //(4\ oy = /‘:’1\ oy = A\\
B C \D B C D f/B \C D
A | ] -
b Ef d b c de b ¢ d

(4,B,C,D,EcV — Z;b,c,d, e, fe %)

oy is not simple but o, and «, are simple.

8 A set of trees 7, over an alphabet I/, is a “projection” of set of trees 7, over an alphabet V,
if 7; is obtained from 7, by relabeling nodes, through an onto mapping = = V', — V;, which
changes alphabets [17]. 7, is said to be the “inverse projection’’ of = if it is the largest set of
trees with labels in V7, whose projection is 7y .
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DeriNiTION 5.2, A tag & = (%, (¥) is “‘simple” iff all basic trees of ¥ are simple,

ExampLe 5.2. % = (%, (¥) where € = {a;}, and & = {B,, Ba}.

o = S
L

By = S By = T
/I /N
a T S U b a T S
L) |

Although tag’s in general are more powerful than context-free grammars, simple

tag’s are not.

THEOREM 5.1. Let & — (€, ) be a simple tag. Then the tree set of 4, (%) is
recognizable.®
Progf. We can construct a (nondeterministic) bottom-up tree automaton [17, 18]

which recognizes precisely 7(¥%), as follows.

State set: {go} U {gz 12 € Z} U {g7} U {g(X, ¥1, Yoroer yu) | X €V —
Y15 Yo reeer ¥ € 2 such that

X
RN
Y1 Y2t )

is a subtree of some basic tree of .}

’
n

Initial state set: {q,}
Final state set: {7} U {Q(s,y,v,....0) | S€V — Z, the distinguished symbol;
V15 Vg 3eeer ¥y € & such that

S
RN
Y1 Yo Vn

is a center tree of %.}

® This theorem holds even if ¥ is not simple.
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T'ransitions:

@) * »>-¢, =xeZ

%

(1) X > YUK u Y, e,

/I

Qyy Qv """ Qo

XeV -2, qyje{qa,]xez‘},j =12..,n
(ili) We say that
q?l]_ q!lz e Yn
“corresponds” to a basic tree of ¥ if, under the mapping ¢, — x, x€ %, and

Y g0 eentty) Y

/N

Vi Yo Un Y=X

and
Ty T X, Y=X

the tree
/ X\

9y, Qvy """ o,

maps into a basic tree of Z.
if

Ty Quv, " Do,

corresponds to a basic tree and ¢,, = g(x,z ,5,,--,5,) for some &, then

/\\

Qvy Qv

> (X, 20,2000 0 %m)
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If

VRN

Qvy Gu, """ 4y,
corresponds to a center tree of %, then
LS' —_ qf
/ | AN
N
~
Ty, 94,7 Gy,

It is easy to check that the bottom-up tree automaton described above recognizes
precisely 7(%). |

CoroLLARY 5.1. Let ¥ be a simple tag. Then the path set P(+(%)) is regular.

CoroLLary 5.2. The language L(%) of a simple tag & is context-free. (A tal which
is the language of a simple tag will be called a simple tal; thus a simple tal is context-free.)

COROLLARY 5.3. The equivalence problem for tree sets of simple tag's is decidable.

From Corollary 5.2, we see that if a cfl L is a simple tal then it can be ‘“‘described”
with a minimal hierarchical structure.’® We now show, however, that not every
cfl is a simple tal.

DEerFINITION 5.2. A terminal symbol is said to be of “bounded occurrence” in L
iff the number of times it occurs in any word in the language L is bounded by a constant.

DrriniTION 5.3. A nonterminal symbol, say X is self-dominating iff there is an
adjunct tree whose root has label X,

ProposITION 5.1. For any tag % there is a weakly equivalent tag %' (i.e., L(%) =
L(F")) such that the set of nonterminals of 9’ (i.e., V' — X'} is just the set {S} U {X | X és
self-dominating}. Note that S may or may not be self-dominating, but, even if it is not,
it cannot be eliminated.

ProrosiTiON 5.2. If a terminal symbol is of bounded occurrence, then it cannot
occur at the leaves of (i.e., at the front of) an adjunct tree (this is so because an adjunct
tree can be adjoined arbitrarily many times). Thus a symbol of bounded occurrence can
occur only at the leaves of a center tree.

10 These results can be considered as belonging to the area of syntactic complexity. For some
other results in this area see (Bar-Hillel, et al. [2]).
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LEmmMa 5.1. Let L = {#("a(™y"a)"# |m, n > 1}. L is a cfl but not a simple tal.

Proof. Let L be simple tal, i.e., L = L(¥) where ¥ = (¥, (¥) is a simple tag.
The symbols a and # are of bounded occurrence. Hence, center trees of % must be
of the form:

S
# o X/a\\YX o H#
X W AR

where ¢;, 7,€{a, (}*, i =0,1,2,..,n, X;eV— 2, i=1,2,.., n Further, there
cannot be any adjunct trees with root labeled S. We now observe that L is a parenthesis
language; hence in any adjunct tree

4}{
a, X; oy
we must have at least one ‘(" in o, and at least one ') in o, (see Levy [11]). In fact,
o, = (¥, and g, = )*, for some & > 1. At most one X; can occur in a center tree,
since otherwise a ( ) ( ) parentheses structure could be generated; therefore, any
tree in ¢ must be of the form:

S
#//Z(l\#

and any tree in (¥ must be of the form:
X
(n1 X; )n‘

In a center tree, either both occurrences of a are in 73, » OF One is in o, and the other
in o; . Hence, for any tree derived from a given center tree, either m or n is fixed.
Hence, we cannot have a simple tag for L. |}

Thus, we have the following.

571/10[1-11
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TrEOREM 5.2. The class of simple tal’s is properly contained in Ly .

It is easily shown that an infinite hierarchy of languages is obtained, depending
on the maximum allowable depths of the basic trees in a tag.

Although not all cfl’s are simple tals, cfl’s which are finite state languages (regular)
are simple tal’s.

TrEOREM 5.3. If L is a regular language then there is a tag G such that L(¥9) = L
and ¥ is simple.

Proof. Let L be a regular language and let G be a cfg such that L(G) = L. Since
L is regular, we can take G to be a right linear grammar, i.e., the rules of G are of the
form: 4 — a, A — aB, where 4, Be V' — 2. From G we can obtain a tag & = (%, (7)
such that I(%) = L(G) = L. The basic trees of & may not be all simple, however.
A typical center tree, say «, will be of the form:

o = S(0)
(Deay 43(2)
2 1Da, A,(2 - 2)
(2-2- a,
Ay (2
2 Da,_y A4,(2")
27 - Da,
S, 4,4,V —2; a4, a,..., a, € Z. At each node, the address of that node is
indicated inside parentheses. 2™ means 2 + 2 - 2 --- - 2 (m times). From Theorem 3.1,

we know that S, A4, ,..., 4,, will be all distinct.
We will now transform « into o' in the following manner.

of = Sfa, 0]

4 ay a,

where S[e, 0], Afa, 2] Apfe, 2 2},..., A,[e, 27] are new nonterminals not in V — Y.

A nonterminal, e.g., A,[a, 2 - 2] essentially records the information about a particular
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occurrence of A, in the tree « at the address 2 - 2. Note that o is a simple tree; hence,
we call o’ a “simplification” of a. Let €” = {a’ | o is a simplification of some a € €}.
A typical adjunct tree, say 8, in % will be of the following form.

B= X0
(1)’{0 ¥1(2)
@1y Y,(2 - 2)
@210 N
Y>_1(2““1)
@t s V(2

(2n . l)bN 1Y(2"+1)

X, Y,Ys,..,.Y, eV —2; bby,..., b, 2. Y,, Y,,..., Y, will be all distinct and
also distinct from X (see Theorem 3.1). We call 8 an X-type tree. A tree f (called a
“simple skeleton” of f) is obtained as follows. 8 is a simplification of 8 except that the
root node in B and the terminal node in § corresponding to the address 27*! in g are
not labeled (i.e., left blank). Since 8 is an X-type adjunct tree, we call § an X-type

simple skeleton.
Wi Y2[&|2-21>\;m,|2n1~

b, b, b,

where Y,[8, 2], Y,[B, 2 * 2],..., Y,[B, 27] are new nonterminals not in V" — 2.—denotes
an unlabeled node. Note that § is a simple tree. Let @ = {8 | is a simple skeleton
of some 8 e (7}

Let U be the set of all the new nonterminals introduced in constructing €’ from
% and & from (Y. A ponterminal in U, say X[y, p], where X e IV — Z, v is a basic
tree and p is an address in y, will be called an X-type nonterminal. We now obtain
a set of simple adjunct trees, (¥’, as follows. Let § € (7 be an X-type simple skeleton.
For each X-type nonterminal, say X[y, p] we obtain an adjunct tree, say 8’ from § by
labeling the unlabeled nodes in f by X[y, p]. We will say that 8’ is obtained by “filling
in” B. Note that the filling in is always with nonterminals of the appropriate type

B =
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depending on the type of 8. Let (7' = {8’ | §’ is obtained by filling in some f & (7}.

Now let 9’ = (%', (') be a tag where €’ and (¥’ are constructed as above. ¥’ is a
“simple” tag. We will now show that L{G) = L(%"). From the construction of %’ it is
clear that L(G) CL(#'). We now want to show that L(%'} C L(G). This is easily
shown by induction on the number of steps in the derivation in %', Let x e L(%’),
¥ € (%"} such that Y (') = «, and let ' be derived in one step, i.e., 9" must be a center
tree, i.e., a tree in %’. Clearly, there is some center tree, say y, in € such that Y(y) =
Y(y') = x. Assume that if y" is derived in # steps in %’ then there is a derivation in »
steps in & of a tree y such that Y(y') = Y(y). Now let y’ be derived in 4" in n + 1
steps, i.e., there is a derivation y,’ t—g ¥y t—g" ..., b—g ¥ —g* ¥ni1 = ¥ where
v, €%€’. From the inductive hypothesis there is a derivation y; —g ¥, ,..., —2 V5 »
where y, € €, such that Y(y,) = Y(y,). (In fact, we have Y(y,") = Y (), Y(y;) =
Y(y2)s--s Y(¥,) = Y(y,).) Let y,_, be derived from v, by adjoining an adjunct tree,
say, B e 0’ w0 vy, at address p, i.e., y, .1 = v,/ [p, B']. From the construction of ¥’
it follows that there is an address ¢ in y, such that y,(¢) = y,’ (p) = X, say, and
further there is an adjunct tree, say B (7 such that B is an X-type adjunct tree,
Yerr = valg, 8], and Y(y,,) = Y{y,.). Hence, L{¥"} CL(G) and therefore
LG)=L%). ]

ExampLE 5.3. Let G = (V, Z, P, S) be a cfg, where X ={a, b,¢,d}, V — 2 =
{S,4,B,C}, and P ={S—ad, A—bB, B—~bC, C—cB, B—d}. G is a right-
linear cfg and hence L(G) is regular. A corresponding tag is ¥ = (%, (¥) where
% = {u}, and T = {B;, B}

X T S, B = B Ba = c
/N /\ /\
a A\ b C c /B\
b }\3 ¢ B b C
d
This tag is not simple. However, the following is a simple tag for I(G). 9" = (€', (%)
where % = {o}, and (7 = {8/, 1, B,'}-

of = '15‘\ By = /}fo\ 1= !Bl\ By = Tl
a/zTO 1'?(, b C, B, c/C1 B, t:/B]\C'1
|
- : l b

Ay, By, By and C| are new nonterminals not in ¥V — X, L(G) = L(¥’). From Theorem
5.3 and Corollary 5.2 we have the following.



TREE ADJUNCT GRAMMARS 155

COROLLARY 5.4. Let L be a regular language. Then there is a cfg G = (V, 2, P, S)
such that L(G) = L and the rules of G are of the form X —a, X — apX where
XelV -2 acl, and y = €, the null string or 4 =YY, - Y,, Y, eV —2,
k=1,2,..,nsuchthatfori #j7, Y, % Y,and Y, #+ X, 4,j =1, 2,..., n.

6. Linear Tac’s

DEFINITION 6.1. A tree is “linear” iff at any depth there is at most one nonterminal.
(Alternatively, a tree is linear iff for any pair of nonterminals, say X, , X, , in the tree,
either X, dominates X, or X, dominates X; where 4 dominates B means that there is
a path from A to B.) A tag ¥ = (%, () is a “linear” tag iff all basic trees of ¥ are
linear. A language L is a ‘‘linear tal” iff L = L(%¥) for some linear tag %.

Exampre 6.1. In Example 2.1, %, and %, are linear tag’s, but %, is not. In Example
5.3, % is a linear tag but ¢’ 1s not.

TurorReM 6.1. Linear c¢f’s C Linear tal’s. Linear tal’s are not comparable with cfl’s.
ES

Proof. 1If L is a linear cfl then L has a linear cfg, say %. Then every derivation
tree in G is linear; hence, linear cfl’'s C linear tal’s. The language L(%,) of ¥4, in
Example 6.1 is not a linear cfl (in fact, it is a csl). Therefore, linear cfl’s { linear tal’s.

Letl ={#am # b #c"#d"#|mn>=1}Lis cfl. We will now show that L
is not a linear tal. The # is a symbol of bounded occurrence (see Definition 5.2)
and thus it can only occur on the leaves of a center tree. If L has a linear tag %, then
all trees in 7(%) (which include the center trees of %) are linear. Now any adjunct tree
whose yield has a in it must have the yield of the form a*Xb* where Xe V — Z,
otherwise, we can easily generate words not in L. We will call X an (a, b) variable.
Similarly, any adjunct tree whose yield has a ¢ in it must have the yield of the form
c3Yd® where Ye 1" — %, We will call Y a (¢, d) variable. The adjunct trees must be
either of these two forms and the two sets of (, b) and (¢, d) variables must be disjoint.
Further, in any tree in #(%) it is not possible for an (g, b) variable to dominate a (c, d)
variable or vice versa (see Definition 6.1). But since m, n are unbounded there must
be trees in the tree set of any tag for L with both (a, b) and (¢, d) variables without one
dominating the other; hence the tag must be nonlinear. Thus linear tal’s are not
comparable with cfl's. ||

DEFINITION 6.2. A tree is right-linear (left-linear) iff it is linear and at any depth
the nonterminal is the rightmost (leftmost) symbol at that depth. A tag ¥ is right-
linear (left-linear) iff all the basic trees of ¥ are right-linear (left-linear). A tag & is
one-sided linear iff it is either right-linear or a left-linear tag. A language L is one-
sided linear iff there is a one-sided linear tag % such that L(¥) = L.
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THEOREM 6.2. Regular languages C one-sided linear tal’s ¢ cfl’s.

Proof. By the technique of “simplification” in the proof of Theorem 5.5, it can
be shown that if ¢ is a one-sided linear tag then there is a simple tag %’ such that
L(9) = L(9¥'). % is not necessarily a one-sided tag, however. By Corollary 5.2, the
language of a simple tag is a cfl. Hence, one-sided linear tal's C cfl’s. Proper contain-
ment follows from the example in Theorem 6.1.

If L is a regular language then L has right-linear (left-linear) cfg and hence a one-
sided linear tag. Thus regular languages C one-sided linear tal’s. Proper containment
follows from the fact that Ly = {w | w € {a, b}* and # a’s (i.e., the number of &’s) in
W = # b’s in w and in any initial proper substring of w, # a@'s > # b’s} is a one-sided
linear tal but not a regular language. The fact that L, is not regular is obvious. The
following is a one-sided linear tag for L,. Let ¥ = (%, (¥) where ¥ = {«;}, and

X =By, Be)-

AN A
b | / |

Then I(¥9) =L,. |

THEOREM 6.3. Let € be a one-sided linear tag. If +(%) is a recognizable set then
L(%) is regular.

Proof. We can construct a deterministic top—down automaton which will accept
precisely an inverse projection of #(%) ([13] and Theorem 2.2). The rules of the
automaton are of the form:

(¢, -Y)

PN /\

}vl I72 LA irn (‘ZXl 171) (qu i (QX,1 s }7n)

where XelV — 2, V,,Y,,.,Y, eV, and g, qx, > 9x, »--» gx, are states. Then
(9, X) > (qx,» Y1) (qx,> Yo)ros (gx, > ¥r) will be a rule of a cfg, say G, for L(¥%)
where (g, X) will be a nonterminal of G and (gx, , Y1), (¢x, , Ya)--» (9x,, ¥r) will be
terminal or nonterminal symbols of G. If ¥ is a one-sided linear tag then all trees in
7(%) will also be one-sided linear; hence the rules of G will be one-sided linear (i.e.,
either all right-linear or all left-linear). (%) is regular. |

CoroLLaRrY 6.1. If the tree set 7(%) of a one-sided linear tag & is such that L(%) is
not regular then (%) is not recognizable.
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The converse of Corollary 6.1 is not true, however. Let ¢ = (%, (¥) where

C = {0, ), and T = {B,, B3}

oy == S

/

a

B

[

- X Boe= Y
] 4
a a
1," /JX’
b/ ‘ b
Z Y
A By = Z
[ |
a/Z b/Z

% is a one-sided linear tag. L(#) is regular, but =(¥) is not recognizable.

7. A GENERALIZATION OF TREE ADJUNCT GRAMMAR

We will generalize a tag so that it will be possible to adjoin one or more adjunct
trees simultaneously during each adjunction operation.

DEeriniTION 7.1,

“A simultaneous tag (stag),” ¥ is a pair ¥ = (¥, (¥) where ¥

is a finite set of center trees and (7 is a finite set of “adjunct sets” where each adjunct

set is a finite set of adjunct trees.

ExampLE 3.1.

oy ==

A

VRN
a A

191 = {:311 ’ Blz ’ /313}» 1311 =

Let & = (%, (¥) where € = {v}, and 7 = {§, , B, fs}-

&
/N
4 B C
Ny
D b
|
d
1912= B Bis = c
/" \ N
B b C <
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B = {Bar » Paz}s B = B Bas = D

7N\ 7N\
B b D d

133 = {ﬁal}: ﬂ31 = C

/N
c d

B:, Bz, and B; are “‘adjunct sets.” 8yy, By, , and B3 will be called components of 8, .
Similarly, 8, has B,, and By, as its components. 8, has only one component, viz, 8 .

Let 8; be an adjunct set with & components, i.e., 8, == {B,1, Bz ».-» Bary» and let
yery.Letpy, py,e, pr €D, ps 7 p;, fori o j, and y(py) = Ba(0), ¥(p2) = Bia(0),---
¥(px) = Bal(0). Then, speaking informally, we say that 8; = {B,, s,y Put 18
“‘adjoinable” to y at p;, py,..., pr and y’ is the tree obtained from y by adjoining
{(according to Definition 2.8) 8, at p, , B;; at py ..., and B, at p, , “‘simultaneously.”

First, let us consider the case when p, , p ,..., p are mutually nondominating (i.e.,
for any pair, p;, p;, it is not the case that p, dominates p; or p; dominates p,). It is
clear that the order of adjoining the components of B; is irrelevant as long as B;; is
adjoined at p, , f;, is adjoined at p, ,..., and B is adjoined at p; . But in order to give
a precise definition for adjunction by using Definition 2.8 we will have to impose
some ordering (arbitrary) and let us assume that 8, is adjoined first, then §;,, etc.
Hence, 3’ is obtained as follows.

¥ = vlp1» Bubs 2’ = n'lpe» Bicdseor ¥ = Yialpr» Bu] = ¥'-

For the case when one node dominates another, say, p, dominates p,, we adjoin
Bi, at p, first and then B, at p, , i.e., we start adjoining at the lowest node first and
work upwards. We may still speak informally of adjoining “‘simultaneously” because
of Lemma 7.1 below. For simplicity let 8; have only two components, i.e., 8; = {B; , Bis}-

Let 8, = X and B,y = Y

PN PN

address r; address 7,

ie., (r;, X)€pfi and (ry, Y)€PBi . Then from Definitions 2.3 and 2.8, we have the
next lemma.

Lemma 7.1, Let Bi = {Bil * Bi2}y Y€1y, and P1y P2 € Dv . Let P > Pz i'e" P2

dominates py. Let yi' = ylps, Bals ve' = n'los, Bl =" and ¥i = vlps, Buls
va = y[py - Ty s Bl = y". Then v =", i.e., the tree obtained by adjoining B,, at p,
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first and then adjoining B;, at p, is the same as the tree obtained by adjoining B, at p, and
then adjoining B at p, - vy . (Note that the node at p; - 1, s the same node which previously
had the address p; in vy.)

We can now define adjunction in a stag. Let 8, = {8, Bis s Bixhr ¥ € 7,

P1s P2 P eDv y Pi 7’: Pi> fOl‘ l#]) and Y(Pl) = ﬂzl(O), Y(PZ) = Biz(o)""! Y(Pk) =
B:(0). Assume that p,, ps ..., p; are ordered bottom to top and left to right!! in the
tree y.

DerinitioN 7.2, If B; == {Bi1» Bia s> B} is adjoinable to y at p; , pg ..., p; then
¥ = y[p1 s pg s Pr» Bil, the resultant tree, y" is obtained from y as follows. Let
v’ = ¥lp1, Bal vi' = [pas Bualiess vi' = ¥'ualpre s Bxl. Then y' = v’

ExampLE 3.2. Consider the stag & of Example 3.1. Let

AN
FAR
;

Let B, be adjoined to y at py(=1), py(==2), and ps(=3). Then the resulting tree ' is

/\\A

1C,

v/ 7 R
/N
|

Again, let y == o as before. Let B, be adjoined to y at p;(=2), and py(=2 - 1). Note
that the node at p; dominates the node at p, . Then the resulting tree ' is (p, dominates
p2 ; hence B,, is adjoined first and then B,,)

11 That is, for { = 2,..., &, either p; dominates p,_; or p; is to the right of p,_; in the tree y.
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S
AR
[ .
B

N

&

Definition 2.9 can be easily extended to stag’s. Let ¥ == (€, (¥) be a stag and let
(%) be the “tree set” of ¥ and L(%) be the corresponding language (‘‘simultaneous
tree adjunct language,” stal). Let F,; be the class of languages corresponding to
stag’s. We then have the following.

THEOREM 7.1. Zin C Fa1 & Litar & Low -

Proof. From Corollary 2.1 we have Zy C Fip & ZLigr - Tag’s are special cases
of stag’s; in a tag, each adjunct set has exactly one adjunct tree. Hence, %y & Fyia -
Given a stag &, it is easy to construct a nondeterministic linear bounded automaton
which recognizes precisely L(%). Hence, Ly C Zog - It is also easily shown that
L ={a™|n > 1} is not a stal by examining the growth rate of the lengths of strings
in the language of a stag. Thus F, C Log

This argument works because the yield of each adjunct tree has at least one non-
terminal in it (see Definition 2.7). If in Definition 2.7, we define an adjunct tree 8 such
that ¢{8) € 2* X X*, then, however, the above argument does not hold. We conjecture
that even in this case ZFyy1 & £ - Note that the corresponding theorem for %}y,
(Theorem 3.2) is true in this case (see footnote 4). |

Analogous to a “‘simple tag” (Definition 5.2), we can define a “‘simple stag” as a
stag all of whose trees are simple (see Joshi [8] for an application of a simple stag).

8. A VarianT or A Tac

In Section 4, it was shown that the tree sets of tag’s and recognizable sets are
incomparable (Theorem 4.1). In this section, we will give a different formulation of
tag’s which has the advantage that many recognizable sets which are not tree sets
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of tag’s are captured in this new characterization. Whether or not all recognizable
sets can be characterized in this way is still an open probem.

An adjunct tree B is adjoinable to a tree y at address p if the label at p, i.e., y(p) = B(0).
In the new formulation we will make adjunction depend not only on the identity of
labels (y(p) = B(0)) but also on the basic tree (i.e., in € U ) to which the node at p
belongs. This characterization is a direct generalization of some of the basic ideas in
Joshi et al. [11]. In order to distinguish this new formulation from the old one we will
refer to the earlier formulation by tag, and the new one by tag, .

DrerFINITION 8.1. A tag, is a triple ¥ = (%, (¥, ]) where € is a finite set of center
trees, (7 is a finite set of adjunct trees (6 U (% is the set of basic trees), and [ is a
finite set of adjunction rules.!?

An adjunction rule u € [ is a triple u = (y,, y;, £) where y; €% U 0¥, v, € ¥, and
£ is an address in v, . v, is called the host of #, y; , the adjunct of #, and ¢, the point of
adjunction in the host. Of course, it is understood that y,(£¢) = ¥,(0). Thus adjoinability
of y; at ¢ depends not only on the fact that the labels match but also on the fact that
the node at ¢ is a node in one of the basic trees as specified by .

As before, 7(%) is a set of all trees derived from trees in %. The definition of deriva-
tion is more complicated now. We will not give a detailed precise definition. It can be
formulated along the same lines as in Joshi et al. [11]. We will illustrate the idea by
means of an example.

ExampLE 8.1. Let & = (%, (7, J) be a tag, where € = {x}, X = {B;, B}, and
J={m, u}.

0 = S B = S B, = S
N /N VN
S S S a S b
I

a b
u = (a4, P, 1) Uy = (g, Ba, 2)

Note that although B,(0) = B(0) = ay(1) = a,(2), B, adjoins to a; only at address
1 and B, adjoins o, only at address 2. It is clear that by repeated applications of #; and
u, (not necessarily the same number of times) one obtains a tree set whose linear
prefix representation is {S™*a™S"b" | m, n > 1} (See the example in the proof of
Theorem 4.1). This set is recognizable but it is not a tree set of tag, (Theorem 4.1),
although as we see now, it is a tree set of tag,. The following results are
easily established.

2 Such a tag is used for representing the base component of the transformational grammar
in Joshi [9].
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i

TrEOREM 8.1. Let 7(¥%) be a tree set of G where ¥ is a tag, . Then there is a tag,
" such that +(9') = +(¥9).

TueorREM 8.2. Let proj-tag, sets be the set of all tree sets obtained from tree sets of

tag, by projection. Then ( from Theorem A.l and the diagram at the end of Section 4),

Recognizable sets . proj-tag, sets  proj-tag, sets

TuroREM 8.3. There are recognizable sets which are tree sets of tag, but not of tag, .

Open problem. Let R be a recognizable set. Does there exist a tag, ¢ such that

(%) = R?

10.

11.

12.

13.

14.

15
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