JOURNAL OF APPROXIMATION THEORY 30, 334-336 (1980)

Note

On Approximation by Linear Positive Operators

B. Mond

Department of Mathematics, La Trobe University, Bundoora 3083, Melbourne, Australia

AND

R. VASUDEVAN

Department of Mathematics, Delhi University, Delhi 110007, India Communicated by Oved Shisha Received January 19, 1979

In [7, 8], Shisha and Mond gave a quantitative formulation of some wellknown results of Korovkin [4]. In [6], Mond showed how a proof in [7] is easily modified to yield a more general and often better result. Here we show how the proofs of Censor [1] can be similarly modified to obtain corresponding generalizations. For simplicity we utilize the notation of [1].

THEOREM. Let A be a positive number. Let $L_1, L_2,...$ be linear positive operators on C[a, b]. Suppose that $\{L_n(1)\}_{n=1}^{\infty}$ is uniformly bounded in [a, b]. Let $f \in C^1[a, b]$ and let $\omega(f'; \cdot)$ be the modulus of continuity of f'. Then, for n = 1, 2,...,

$$\|L_n(f) - f\| \le \|f\| \cdot \|L_n(1) - 1\| + C_n \|f'\| \mu_n + C_n \mu_n \omega(f'; A\mu_n), \quad (1)$$

where

$$C_n = A^{-1} + \|L_n(1)\|^{1/2}$$

and

$$\mu_n = \|L_n\{(t-x)^2; x\}\|^{1/2}.$$

In particular, if $L_n(1) = 1$, (1) reduces to

$$||L_n(f) - f|| \leq ||f'|| \mu_n + (A^{-1} + 1) \mu_n \omega(f'; A\mu_n).$$

334

0021-9045/80/120334-03\$02.00/0

Copyright € 1981 by Academic Press, Inc.

All rights of reproduction in any form reserved.

If, in addition, $L_n\{t; x\} \equiv x$, we obtain

$$||L_n(f) - f|| \leq (A^{-1} + 1) \mu_n \omega(f'; A\mu_n).$$

Note that, if we take A = 1, the theorem reduces to that of Censor [1]. The proof of the theorem is analogous to that of Theorem 5 of [1] except that, in the appropriate step of the proof, one takes $\delta = A\mu_n$ instead of $\delta = \mu_n$. A number of other results of Censor [1] can similarly be improved by this change, introducing the arbitrary constant A into the estimate for $\|L_n(f) - f\|$.

EXAMPLE. Let D be the set of all real functions with domain [0, 1]. For n = 1, 2,..., let L_n be the linear positive operator with domain D, defined by

$$(L_n\phi)(x) \equiv \sum_{i=0}^n \phi(i/n) \binom{n}{i} x^i (1-x)^{n-i}.$$

Let f be a real function in $C^{1}[0, 1]$. Let n be a positive integer. Then $L_{n}(1) \equiv 1$, $[L_{n}(t)](x) \equiv x$,

$$|L_n(t^2)|(x) \equiv (n-1) n^{-1} x^2 + n^{-1} x, (L_n(|t-x|^2))(x) = n^{-1} (x-x^2).$$

Taking A = 2, our theorem gives

$$\max_{0 \le x \le 1} |f(x) - L_n f(x)| \le (\frac{1}{2} + 1) 2^{-1} n^{-1/2} \omega(f'; 2/(2n^{1/2}))$$
$$= \frac{3}{4} n^{-1/2} \omega(f'; n^{-1/2}).$$

Thus, by selecting A = 2, our theorem yields the estimate for the rate of convergence of Bernstein polynomials of functions in $C^{1}[0, 1]$ given in [5, p. 21], whereas in [1-3], as good a result is not achieved.

REFERENCES

- 1. E. CENSOR, Quantitative results for positive linear operators, J. Approximation Theory 4 (1971), 442-450.
- R. DEVORE, Optimal convergence of positive linear operators, in "Proceedings, Conference on the Constructive Theory of Functions, 1972," pp. 101–119.
- 3. C. W. GROETSCH AND O. SHISHA, On the degree of approximation by Bernstein polynomials, J. Approximation Theory 14 (1975), 317-318.
- 4. P. P. KOROVKIN, "Linear Operators and Approximation Theory," Delhi, Hindustan, India, 1960 (English translation).
- 5. G. G. LORENTZ, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
- 6. B. MOND, On the degree of approximation by linear positive operators, J. Approximation Theory 18 (1976), 304-306.

MOND AND VASUDEVAN

- 7. O. SHISHA AND B. MOND. The degree of convergence of sequences of linear positive operators. *Proc. Nat. Acad. Sci.* **60** (1968), 1196–1200.
- 8. O. SHISHA AND B. MOND, The degree of approximation to periodic functions by linear positive operators, J. Approximation Theory 1 (1968), 335-339.