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a b s t r a c t

In this paper, we will study asymptotic behavior of solutions to third-order nonlinear
dynamic equations on time scales of the form(

1
a2(t)

((
1
a1(t)

(x1(t))α1
)1)α2)1

+ q(t)f (x(t)) = 0.

By using the Riccati technique and integral averaging technique, two different types of
criteria are established, one of which extends some existing results and the other is
new. Two examples of dynamic equations on different time scales are given to show the
applications of the obtained results.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been much research activity concerning the oscillation and nonoscillation of solutions of some
ordinary differential equations and dynamic equations on time scales, we refer the reader to [2,3,8,9,12] and [1,4–7,10,11,
13], respectively, and the references therein. Especially in 2005, Erbe, Peterson and Saker [7] studied asymptotic behavior
of solutions of the following third-order nonlinear dynamic equation (1.1) for α1 = α2 = 1. Following this trend, in this
paper, we will study the asymptotic behavior of solutions to more general third-order nonlinear dynamic equations of the
form (

1
a2(t)

((
1
a1(t)

(x1(t))α1
)1)α2)1

+ q(t)f (x(t)) = 0, t ∈ T,

or for short,

L3x(t)+ q(t)f (x(t)) = 0, t ∈ T, (1.1)

where T is a time scale, L0x(t) = x(t), L3x(t) = (L2x(t))1, and

Lkx(t) =
1
ak(t)

(
(Lk−1x(t))1

)αk , k = 1, 2.

In Eq. (1.1), we assume that the following conditions are satisfied:
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(A1) The functions ai(t) (i = 1, 2) and q(t) are positive, real-valued, rd-continuous functions defined on the time scale
interval [a, b] (throughout a, b ∈ Twith a < b);

(A2) f : R→ R is a continuous function with xf (x) > 0 (x 6= 0), and for all k > 0, ∃M = Mk > 0, f (x)x ≥ M , |x| ≥ k;
(A3) αi is a quotient of odd positive integers, i = 1, 2.

Sincewe study the asymptotic behavior of solutions to Eq. (1.1), we suppose that the time scale under consideration is not
bounded above, i.e., it is a time scale interval of the form [t0,∞). By a solution of Eq. (1.1) we mean a nontrivial real-valued
function x(t) satisfying (1.1) for t ≥ t0. A solution x(t) of (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative, otherwise it is called nonoscillatory. Our attention is restricted to those solutions of Eq. (1.1) which
exist on some half-time [tx,∞) and satisfy sup{|x(t)| : t > T } > 0 for any T ≥ tx.
In this paper, we will use the Riccati transformation technique and integral averaging technique to give some sufficient

conditions in terms of the coefficients and the graininess function which guarantee that every solution of (1.1) is oscillatory
on [t0,∞) or converges as t → ∞. Two different types of criteria are established, one of which extends the results in [7]
and the other is new. Two examples of dynamic equations on different time scales are given to show the applications of the
obtained results.
To present our work better, we will organize this paper as follows. After this introduction, in Section 2, we state the

main results and give two examples. Some technical lemmas and the proofs of the main results are given in Section 3. We
assume the reader is familiar with the basic knowledge on dynamic equations on time scales. Those who are not may read
the Appendix at the end of this paper for a brief summary on the concepts and results on time scales related to our work,
and are referred to [4] for further details.

2. Main results

In this section, we state the main results which guarantee that every solution of (1.1) oscillates on [t0,∞) or converges
as t →∞ and give two examples to illustrate the significance of the results.

Theorem 2.1. Assume (A1)–(A3) and α1α2 = 1 hold, and∫
+∞

t0
[ai(s)]

1
αi1s = ∞, i = 1, 2. (2.1)

Furthermore, assume that there exists a positive function r(t) such that r1(t) is rd-continuous on [t0,∞), and that for all M > 0
and sufficiently large t1, t2 with t2 > t1, we have

lim sup
t→∞

∫ t

t2

[
Mr(s)q(s)−

(r1(s))2

4Q (s)

]
1s = ∞, (2.2)

where Q (t) = r(t) [a1(t)δ(t, t1)]
1
α1 , δ(t, t1) =

∫ t
t1
[a2(s)]

1
α21s. Then every solution x(t) of (1.1) is either oscillatory or

limt→∞ x(t) exists (finite).

Taking r(t) = 1 and r(t) = t in Theorem 2.1 respectively, we shall have the following two corollaries.

Corollary 2.1. Assume (A1)–(A3) , (2.1) and α1α2 = 1 hold, and∫
∞

t0
q(s)1s = ∞. (2.3)

Then every solution x(t) of (1.1) is either oscillatory or limt→∞ x(t) = 0.

Corollary 2.2. Assume (A1)–(A3) and (2.1) hold, α1α2 = 1. If for all M > 0 and sufficiently large t1, t2 with t2 > t1,

lim sup
t→∞

∫ t

t2

[
Msq(s)−

1
4s
(a1(s)δ(s, t1))

−
1
α1

]
1s = ∞,

where δ(t, t1) =
∫ t
t1
[a2(s)]

1
α21s, then every solution x(t) of (1.1) is either oscillatory or limt→∞ x(t) exists (finite).

The first example illustrates the application of Corollary 2.2.

Example 2.1. Consider the equation(( 1
a1(t)

(
x4(t)

) 1
k

)4)k4 + q(t)|x(t)|γ−1x(t) = 0, (2.4)

where t ∈ T = qN
0 , q0 > 1, k is any positive odd, a1(t), q(t) ∈ Crd(T,R)with a1(t) ≥ 1 and q(t) ≥

1
t , γ ≥ 1 is a constant.
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Taking α1 = 1
k , α2 = k, a2(t) = 1 and f (x) = |x(t)|

γ−1x(t), then for sufficiently large t1,

δ(t, t1) =
∫ t

t1
[a2(s)]

1
α21s =

∫ t

t1
1s = t − t1,

(a1(t)δ(t, t1))
−
1
α1 = (a1(t)(t − t1))−k ≤

1
(t − t1)k

,

and for allM > 0 and sufficiently large t1, t2 with t2 > t1, we have

lim sup
t→∞

∫ t

t2

[
Msq(s)−

1
4s
(a1(s)δ(s, t1))

−
1
α1

]
1s ≥ lim sup

t→∞

∫ t

t2

[
M −

1
4s(s− t1)k

]
1s = ∞.

Wesee that all conditions of Corollary 2.2 are satisfied and then every solution x(t) of (2.4) is either oscillatory or limt→∞ x(t)
exists (finite).

By using the functions of the form (t − s)m, we have the following theorem.

Theorem 2.2. Assume (A1)–(A3) and (2.1) hold, α1α2 = 1. If there exist m ≥ 1 and a positive function r(t) such that r1(t) is
rd-continuous on [t0,∞), and that for all M > 0 and sufficiently large t1, t2 with t2 > t1,

lim sup
t→∞

1
tm

∫ t

t2
(t − s)m

[
Mr(s)q(s)−

(r1(s))2

4Q (s)

]
1s = ∞, (2.5)

where Q (t) = r(t) [a1(t)δ(t, t1)]
1
α1 , δ(t, t1) =

∫ t
t1
[a2(s)]

1
α21s, then every solution x(t) of (1.1) is either oscillatory or

limt→∞ x(t) exists (finite).

Taking r(t) = 1 in Theorem 2.2, we have the following corollary.

Corollary 2.3. Assume (A1)–(A3) and (2.1) hold, α1α2 = 1. If there exists m ≥ 1 such that

lim sup
t→∞

1
tm

∫ t

t0
(t − s)mq(s)1s = ∞, (2.6)

then every solution x(t) of (1.1) is either oscillatory or limt→∞ x(t) exists (finite).

Remark 2.1. (2.6) can be considered as the extension of Kamenev-type oscillation criteria for second-order differential
equations (see [6,8]). When T = R+ := [0,∞), (2.6) becomes

lim
t→∞

1
tm

∫ t

t0
(t − s)mq(s)ds = ∞;

when T = N0, (2.6) becomes

lim
n→∞

1
nm

n−1∑
k=0

(n− k)mq(k) = ∞;

when T = pN0 , where p > 1 is a constant, (2.6) becomes

lim
n→∞

1
pmn

n−1∑
k=0

pk(pn − pk)mq(pk) = ∞.

Remark 2.2. In Theorems 2.1 and 2.2, Q (t1) = δ(t1, t1) = 0, so we replace ‘‘for sufficiently large t1’’ in Theorems 1 and 2
of [7] with ‘‘for sufficiently large t1, t2 with t2 > t1’’. When α1 = α2 = 1, Theorems 2.1 and 2.2 reduce to Theorems 1 and 2
of [7].

When f ′(x) ≥ C > 0 for some constant C , we present the following two different types of theorems from Theorems 2.1
and 2.2.

Theorem 2.3. Assume (A1)–(A3) and (2.1) hold, α1α2 = 1, and f ′(x) ≥ C > 0 for some constant C. If there exists a function
r(t) > 0 such that r1(t) is rd-continuous on [t0,∞) and for all sufficiently large t1, t2 with t2 > t1,

lim sup
t→∞

∫ t

t2

[
r(s)q(s)−

(r1(s))2

4CQ (s)

]
1s = ∞, (2.7)
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where Q (t) = r(t) [a1(t)δ(t, t1)]
1
α1 , δ(t, t1) =

∫ t
t1
[a2(s)]

1
α21s, then every solution x(t) of (1.1) is either oscillatory or

limt→∞ x(t) exists (finite).

Taking r(t) = t in Theorem 2.3, we have the following corollary.

Corollary 2.4. Assume (A1)–(A3) and (2.1) hold, α1α2 = 1 and f ′(x) ≥ C > 0 for some constant C. If for sufficiently large t1, t2
with t2 > t1,

lim sup
t→∞

∫ t

t2

[
sq(s)−

1
4Cs

(a1(s)δ(s, t1))
−
1
α1

]
1s = ∞,

where δ(t, t1) =
∫ t
t1
[a2(s)]

1
α21s, then every solution x(t) of (1.1) is either oscillatory or limt→∞ x(t) exists (finite).

By using the functions of the form (t − s)m, we also have the following theorem.

Theorem 2.4. Assume (A1)–(A3) and (2.1) hold, α1α2 = 1 and f ′(x) ≥ C > 0 for some constant C. If there exist m ≥ 1 and a
function r(t) > 0 such that r1(t) is rd-continuous on [t0,∞) and for all sufficiently large t1, t2 with t2 > t1,

lim sup
t→∞

1
tm

∫ t

t2
(t − s)m

[
r(s)q(s)−

(r1(s))2

4CQ (s)

]
1s = ∞, (2.8)

where Q (t) = r(t) [a1(t)δ(t, t1)]
1
α1 , δ(t, t1) =

∫ t
t1
[a2(s)]

1
α21s, then every solution x(t) of (1.1) is either oscillatory or

limt→∞ x(t) exists (finite).

The next example illustrates the application of Corollary 2.4.

Example 2.2. Consider the following equation(( 1
a1(t)

(
x1(t)

) 1
k

)1)k1

+ q(t)x(t)
(
1+ x6(t)

)
= 0, (2.9)

where t ∈ T, T = R or hNwith h > 0, k is any positive odd, a1(t), q(t) ∈ Crd(T,R)with a1(t) ≥ 1 and q(t) ≥ 1
t .

Taking α1 = 1
k , α2 = k, a2(t) = 1, f (x) = x(1+ x

6), then f ′(x) = 1+ 7x6 ≥ C = 1, and for sufficiently large t1 < t2,

δ(t, t1) =
∫ t

t1
[a2(s)]

1
α21s =

∫ t

t1
1s = t − t1,

(a1(t)δ(t, t1))
−
1
α1 ≤ (t − t1)−k,

and

lim sup
t→∞

∫ t

t2

[
sq(s)−

1
4Cs

(a1(s)δ(s, t1))
−
1
α1

]
1s ≥ lim sup

t→∞

∫ t

t2

[
1−

1
4s(s− t1)k

]
1s = ∞.

Wesee that all conditions of Corollary 2.4 are satisfied and then every solution x(t) of (2.9) is either oscillatory or limt→∞ x(t)
exists (finite).

Remark 2.3. The conditions imposed on function f (x) in Theorems 2.3 and 2.4 are stronger than those in Theorems 2.1 and
2.2. However, when f ′(x) ≥ C > 0, the restriction ‘‘for all M > 0’’ is dropped, and the corresponding conditions (2.7) and
(2.8) seem to be simpler and weaker than (2.2) and (2.5), respectively.

3. Basic lemmas and proofs

First, we state and prove some lemmas which we will need in the proofs of our main results.

Lemma 3.1. Assume (A1)–(A3) and (2.1) hold, x(t) is an eventually positive solution of (1.1). Then there exists a t1 ∈ [t0,∞)
such that either:
(1) x(t) > 0, L1x(t) > 0, L2x(t) > 0, t ∈ [t1,∞);
or
(2) x(t) > 0, L1x(t) < 0, L2x(t) > 0, t ∈ [t1,∞).
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Proof. Let x(t) be an eventually positive solution of (1.1), then there exists t1 ∈ [t0,∞) such that x(t) > 0 for t ∈ [t1,∞).
Since f (x(t)) > 0 for t ∈ [t1,∞), from (1.1) we have

L3x(t) = −q(t)f (x(t)) < 0, t ∈ [t1,∞),

which implies that L2x(t) is strictly decreasing on [t1,∞).
We claim that L2x(t) > 0. Otherwise, there exists a t2 ∈ [t1,∞) such that

L2x(t) ≤ L2x(t2) < 0, t ∈ [t2,∞),

that is,
1
a2(t)

(
(L1x(t))1

)α2
≤ L2x(t2) < 0, t ∈ [t2,∞).

Hence we have

(L1x(t))1 ≤ (a2(t)L2x(t2))
1
α2 , t ∈ [t2,∞), (3.1)

which implies that L1x(t) is strictly decreasing on [t2,∞). Integrating (3.1) from t2 to t (≥ t2), we obtain

L1x(t) ≤ L1x(t2)+ (L2x(t2))
1
α2

∫ t

t2
[a2(s)]

1
α21s.

Letting t →∞, from (2.1) we have L1x(t)→−∞. Thus, there exists t3 ∈ [t2,∞) such that

L1x(t) ≤ L1x(t3) < 0, t ∈ [t3,∞),

that is,
1
a1(t)

(x1(t))α1 ≤ L1x(t3) < 0, t ∈ [t3,∞).

It follows that

x1(t) ≤ (a1(t)L1x(t3))
1
α1 , t ∈ [t3,∞).

Integrating from t3 to t(≥ t3), we have

x(t) ≤ x(t3)+ (L1x(t3))
1
α1

∫ t

t3
[a1(s)]

1
α11s.

Letting t →∞, from (2.1) we have x(t)→−∞, which is a contradiction with the fact that x(t) > 0. Hence L2x(t) > 0, t ∈
[t1,∞). This implies that L1x(t) is strictly increasing on [t1,∞). It follows that either L1x(t) > 0 or L1x(t) < 0 and the proof
is complete. �

Lemma 3.2. Assume (A1)–(A3) and (2.3) hold. If x(t) is a solution of (1.1) that satisfies Case (2) in Lemma 3.1, then

lim
t→∞

x(t) = 0.

Proof. Let x(t) be a solution of (1.1) satisfying Case (2) in Lemma 3.1, that is, there exists t1 ∈ [t0,∞) such that

x(t) > 0, L1x(t) < 0, L2x(t) > 0, t ≥ t1.

Then from L1x(t) < 0, we see that 1
a1(t)

(x1(t))α1 < 0 for t ≥ t1. So, x1(t) < 0 for t ≥ t1 and limt→∞ x(t) = b ≥ 0.
We claim that b = 0. Assume not, b > 0, then x(t) ≥ b for t ≥ t1. With k = b, then from (A2) there existsM = Mb > 0

such that

L3x(t) = −q(t)f (x(t)) < −Mq(t)x(t) ≤ −Mbq(t), t ≥ t1.

Letting u(t) := L2x(t) > 0, t ≥ t1, then

u1(t) = L3x(t) < −Mbq(t), t ≥ t1.

Integrating from t1 to t (≥ t1), we have

u(t) ≤ u(t1)− bM
∫ t

t1
q(s)1s.

From (2.3), there exists a sufficiently large t2 ∈ [t1,∞) such that for all t ∈ [t2,∞),

u(t) < 0,

which is a contradiction with the fact that u(t) > 0, t ≥ t1.
Therefore, b = 0, that is, limt→∞ x(t) = 0. The proof is complete. �
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Lemma 3.3. Assume (A1)–(A3) hold. If x(t) is a solution of (1.1) satisfying Case (1) of Lemma 3.1, then there exists t1 ∈ [t0,∞)
such that

L1x(t) ≥ δ(t, t1) (L2x(t))
1
α2 or x1(t) ≥ (a1(t)δ(t, t1))

1
α1 (L2x(t))

1
α1α2 ,

and L1x(t)
δ(t,t1)

is decreasing on (t1,∞), where δ(t, t1) =
∫ t
t1
[a2(s)]

1
α21s.

Proof. Let x(t) be a solution of (1.1) satisfying Case (1) in Lemma 3.1, that is, there exists t1 ∈ [t0,∞) such that

x(t) > 0, L1x(t) > 0, L2x(t) > 0, t ≥ t1.

Then from (1.1) we have L3x(t) < 0 for t ∈ [t1,∞), so L2x(t) is strictly decreasing on [t1,∞). From L2x(t) =
1
a2(t)

((L1x(t))1)α2 , we obtain

(L1x(t))1 = (a2(t)L2x(t))
1
α2 .

Then for t ≥ t1, we have∫ t

t1
(L1x(s))11s = L1x(t)− L1x(t1) =

∫ t

t1
(a2(s)L2x(s))

1
α2 1s

≥ (L2x(t))
1
α2

∫ t

t1
[a2(s)]

1
α21s.

It follows that
1
a1(t)

(x1(t))α1 = L1x(t) ≥ L1x(t1)+ δ(t, t1)(L2x(t))
1
α2

≥ δ(t, t1)(L2x(t))
1
α2 , t ≥ t1, (3.2)

that is,

x1(t) ≥ (a1(t)δ(t, t1))
1
α1 (L2x(t))

1
α1α2 , t ≥ t1.

We claim that L1x(t)
δ(t,t1)

is decreasing on (t1,∞). In fact for t > t1, from (3.2) we obtain[
L1x(t)
δ(t, t1)

]1
=
(L1x(t))1δ(t, t1)− L1x(t)(δ(t, t1))1

δ(t, t1)δ(σ (t), t1)

=
(a2(t))

1
α2 (L2x(t))

1
α2 δ(t, t1)− L1x(t)(a2(t))

1
α2

δ(t, t1)δ(σ (t), t1)

≤
(a2(t))

1
α2 L1x(t)− L1x(t)(a2(t))

1
α2

δ(t, t1)δ(σ (t), t1)
= 0.

Hence, L1x(t)
δ(t,t1)

is decreasing on (t1,∞). The proof is complete. �

Now, we are in a position to prove our main results.

Proof of Theorem 2.1. Let x(t) be a nonoscillatory solution of (1.1). We only consider the case when x(t) is eventually
positive, since the case when x(t) is eventually negative is similar. Since (2.1) holds, by Lemma 3.1 we see that x(t) satisfies
either Case (1) or Case (2).
We claim that Case (1) of Lemma 3.1 is not true. Assume not, then there exists t1 ∈ [t0,∞), such that x(t) > 0, L1x(t) >

0, L2x(t) > 0 for t ≥ t1. Define the ‘‘Riccati’’-type function

w(t) =
r(t)L2x(t)
x(t)

, t ∈ [t1,∞), (3.3)

thenw(t) > 0, t ∈ [t1,∞). From (1.1) we obtain

w1(t) =
(
r(t)
x(t)

)1
L2x(σ (t))+

r(t)
x(t)

(L2x(t))1

=
r1(t)x(t)− r(t)x1(t)

x(t)x(σ (t))
L2x(σ (t))−

r(t)q(t)f (x(t))
x(t)

.
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With k = x(t1) > 0, from (A2) there existsM = Mk > 0 such that

f (x)
x
≥ M, |x| ≥ k.

Noting that α1α2 = 1, from Lemma 3.3 we have

w1(t) ≤ −Mr(t)q(t)+ w(σ(t))
r1(t)
r(σ (t))

−
r(t)x1(t)
x(t)x(σ (t))

L2x(σ (t))

≤ −Mr(t)q(t)+ w(σ(t))
r1(t)
r(σ (t))

−
Q (t)L2x(t)
x(t)x(σ (t))

L2x(σ (t)).

Since L1x(t) > 0, we have x1(t) > 0, that is, x(t) is increasing. So x(t) ≤ x(σ (t)) for t ≥ t1. Since (L2x(t))1 =
−q(t)f (x(t)) < 0, we see that L2x(t) is decreasing and so L2x(t) ≥ L2x(σ (t)) for t ≥ t1. It follows that

w1(t) ≤ −Mr(t)q(t)+ w(σ(t))
r1(t)
r(σ (t))

−
Q (t)
x2(σ (t))

L22x(σ (t))

= −Mr(t)q(t)+ w(σ(t))
r1(t)
r(σ (t))

−
Q (t)
r2(σ (t))

w2(σ (t))

= −Mr(t)q(t)−
[
w(σ(t))

√
Q (t)

r(σ (t))
−
r1(t)
2
√
Q (t)

]2
+
(r1(t))2

4Q (t)

≤ −Mr(t)q(t)+
(r1(t))2

4Q (t)
,

that is,

w1(t) ≤ −
(
Mr(t)q(t)−

(r1(t))2

4Q (t)

)
. (3.4)

Integrating (3.4) from t2 to t(≥ t2), we have

−w(t2) ≤ w(t)− w(t2) ≤ −
∫ t

t2

[
Mr(s)q(s)−

(r1(s))2

4Q (s)

]
1s,

that is,∫ t

t2

[
Mr(s)q(s)−

(r1(s))2

4Q (s)

]
1s ≤ w(t1),

which is a contradiction with (2.2). Hence, Case (1) of Lemma 3.1 is not true. If Case (2) of Lemma 3.1 holds, then clearly
limt→∞ x(t) exists (finite). The proof is complete. �

Proof of Corollary 2.1. Taking r(t) = 1 in Theorem 2.1, by the proof of Theorem 2.1 we have that every solution x(t) of
(1.1) is either oscillatory or limt→∞ x(t) exists (finite). For the last case, by Lemma 3.2 we obtain limt→∞ x(t) = 0. �

Proof of Theorem 2.2. Proceeding as in the proof of Theorem 2.1, we assume that (1.1) has a nonoscillatory solution, say
x(t) > 0 for all t ≥ t1 where t1 is chosen so large that Lemmas 3.1 and 3.3 hold. By Lemma 3.1 there are two possible cases.
First, if Case (1) holds, then by defining again w(t) by (3.3) as in the proof of Theorem 2.1 we have that w(t) > 0 and (3.4)
holds.
Multiplying (3.4) by (t − s)m (with t replaced by s) and then integrating from t2 (> t1) to t (≥ t2), we have∫ t

t2
(t − s)m

[
Mr(s)q(s)−

(r1(s))2

4Q (s)

]
1s ≤ −

∫ t

t2
(t − s)mw1(s)1s. (3.5)

An integration by parts of the right-hand side leads to∫ t

t2
(t − s)mw1(s)1s = (t − s)mw(s)

∣∣s=t
s=t2
−

∫ t

t2
h(t, s)w(σ(s))1s

= −(t − t2)mw(t2)−
∫ t

t2
h(t, s)w(σ(s))1s,
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where h(t, s) := ((t − s)m)1s . Since

h(t, s) =

−m(t − s)
m−1, if µ(s) = 0,

(t − σ(s))m − (t − s)m

µ(s)
, if µ(s) > 0,

and whenm ≥ 1, h(t, s) ≤ 0 for t ≥ σ(s), it follows that∫ t

t2
(t − s)mw1(s)1s ≥ −(t − t2)mw(t2).

From (3.5) we have∫ t

t2
(t − s)m

[
Mr(s)q(s)−

(r1(s))2

4Q (s)

]
1s ≤ (t − t2)mw(t2),

or

1
tm

∫ t

t2
(t − s)m

[
Mr(s)q(s)−

(r1(s))2

4Q (s)

]
1s ≤

(
t − t2
t

)m
w(t2) ≤ w(t2),

a contradiction with (2.5). Thus, Case (1) in Lemma 3.1 is not true.
If Case (2) in Lemma 3.1 holds, then as before, limt→∞ x(t) exists (finite). The proof is complete. �

Proof of Theorem 2.3. Proceeding as in the proof of Theorem 2.1, we assume that (1.1) has a nonoscillatory solution, say
x(t) > 0 for all t ≥ t1 where t1 is chosen so large that Lemmas 3.1 and 3.3 hold. By Lemma 3.1 there are two possible cases.
We will claim that Case (1) is not true.
Otherwise, if Case (1) holds, then there exists t1 ∈ [t0,∞) such that x(t) > 0, L1x(t) > 0, L2x(t) > 0 for t ≥ t1. Define

the ‘‘Riccati’’-type function

v(t) = −
r(t)L2x(t)
f (x(t))

, t ∈ [t1,∞),

then v(t) < 0 for t ∈ [t1,∞). From (1.1), Lemma 3.3 with α1α2 = 1 and [4, Theorem 1.90], we have

v1(t) = −
[
r(t)
f (x(t))

]1
L2x(σ (t))−

r(t)
f (x(t))

(L2x(t))1

=
r(t)
f (x(t))

q(t)f (x(t))− L2x(σ (t))
r1(t)f (x(t))− r(t)(f ◦ x)1(t)

f (x(t))f (x(σ (t)))

= r(t)q(t)− L2x(σ (t))
r1(t)f (x(t))− r(t){

∫ 1
0 f
′(x(t)+ hµ(t)x1(t))dh}x1(t)

f (x(t))f (x(σ (t)))

= r(t)q(t)− L2x(σ (t))
r1(t)

f (x(σ (t)))
+ L2x(σ (t))

r(t){
∫ 1
0 f
′(x(t)+ hµ(t)x1(t))dh}x1(t)
f (x(t))f (x(σ (t)))

≥ r(t)q(t)+ v(σ (t))
r1(t)
r(σ (t))

+ L2x(σ (t))
Cr(t)x1(t)

f (x(t))f (x(σ (t)))

≥ r(t)q(t)+ v(σ (t))
r1(t)
r(σ (t))

+ L2x(σ (t))
CQ (t)L2x(t)

f (x(t))f (x(σ (t)))
. (3.6)

As in the proof of Theorem 2.1, we see that x(t) is increasing and L2x(t) is decreasing on [t1,∞). Also, f ′(x) > 0 implies
that f (x) is increasing. It follows from (3.6) that

v1(t) ≥ r(t)q(t)+ v(σ (t))
r1(t)
r(σ (t))

+ L2x(σ (t))
CQ (t)L2x(σ (t))
(f (x(σ (t))))2

≥ r(t)q(t)+ v(σ (t))
r1(t)
r(σ (t))

+ v2(σ (t))
CQ (t)
r2(σ (t))

= r(t)q(t)+
[
v(σ (t))

√
Q (t)C

r(σ (t))
+

r1(t)
2
√
Q (t)C

]2
−
(r1(t))2

4CQ (t)

≥ r(t)q(t)−
(r1(t))2

4CQ (t)
,
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that is

v1(t) ≥ r(t)q(t)−
(r1(t))2

4CQ (t)
. (3.7)

Integrating (3.7) from t2 (> t1) to t (≥ t2)we have∫ t

t2

[
r(s)q(s)−

(r1(s))2

4CQ (s)

]
1s ≤ v(t)− v(t2) ≤ −v(t2),

a contradiction with (2.7). Thus, Case (1) in Lemma 3.1 is not true.
If Case (2) in Lemma 3.1 holds, then as before, limt→∞ x(t) exists (finite). The proof is complete. �

Using (3.7), similarly to the proof of Theorem 2.2 we can prove Theorem 2.4 and hence omit its proof.
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Appendix. Preliminaries on time scales

In this section, we present the basic concepts and results on time scales related to our work, which are contained in [4].

Definition A.1. A time scale is an arbitrary nonempty closed subset of the set R of real numbers with the topology and
ordering inherited fromR. LetT be a time scale, for t ∈ T the forward jump operator is defined by σ(t) := inf{s ∈ T : s > t},
the backward jump operator by ρ(t) := sup{s ∈ T : s < t}, and the graininess function by µ(t) := σ(t) − t , where
inf∅ := supT and sup ∅ := infT. If σ(t) > t , t is said to be right-scattered; otherwise, it is right-dense. If ρ(t) < t , t is said
to be left-scattered; otherwise, it is left-dense. The set Tκ is defined as follows: If T has a left-scattered maximum m, then
Tκ = T− {m}; otherwise, Tκ = T.

Definition A.2. For a function f : T→ R and t ∈ Tκ , we define the delta-derivative f 1(t) of f (t) to be the number (provided
it exists) with the property that given any ε > 0, there is a neighborhood U of t (i.e., U = (t − δ, t + δ)∩T for some δ) such
that ∣∣[f (σ (t))− f (s)] − f 1(t)[σ(t)− s]∣∣ ≤ ε|σ(t)− s| for all s ∈ U .

We say that f is delta-differentiable (or in short: differentiable) on Tκ provided f 1(t) exists for all t ∈ Tκ .

It is easily seen that if f is continuous at t ∈ T and t is right-scattered, then f is differentiable at t with

f 1(t) =
f (σ (t))− f (t)

µ(t)
.

Moreover, if t is right-dense then f is differential at t iff the limit

lim
s→t

f (t)− f (s)
t − s

exists as a finite number. In this case

f 1(t) = lim
s→t

f (t)− f (s)
t − s

.

In addition, if f 1 ≥ 0, then f is nondecreasing. A useful formula is

f σ (t) = f (t)+ µ(t)f 1(t), where f σ (t) := f (σ (t)).

We will make use of the following product and quotient rules for the derivative of the product fg and the quotient f /g
(where g gσ 6= 0) of two differentiable functions f and g:

(fg)1 = f 1g + f σ g1 = fg1 + f 1gσ ,(
f
g

)1
=
f 1g − fg1

ggσ
.

Definition A.3. Let f : T → R be a function, f is called right-dense continuous (rd-continuous) if it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. A function F : T → R is called
an antiderivative of f provided F1(t) = f (t) holds for all t ∈ Tk. By the antiderivative, the Cauchy integral of f is defined as∫ b
a f (s)1s = F(b)− F(a), and

∫
∞

a f (s)1s = limt→∞
∫ t
a f (s)1s.
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Let Crd(T,R) denote the set of all rd-continuous functions mapping T to R. It is shown in [4] that every rd-continuous
function has an antiderivative.
An integration by parts formula is∫ b

a
f (t)g1(t)1t = [f (t)g(t)]|ba −

∫ b

a
f 1(t)gσ (t)1t.
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