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Suppose that e2~121V E ReLp(lW3) for some p > 2 and for g E [w, H(g) = 
-A + gV. The main result, Theorem 3, uses Puiseaux expansions of the 
eigenvalues and resonances of H(g) to study the behavior of eigenvalues X(g) 
as they are absorbed by the continuous spectrum, that is X(g) f 0 as g L g, > 0. 
We find a series expansion in powers of (g - g,)‘/z, X(g) = ~~=a a,(g - gO)“lz 
whose values for g < g, correspond to resonances near the origin. These 
resonances can be viewed as the traces left by the just absorbed eigenvalues. 

Suppose that for some E > 0, epClzl V E ReLP( lF@) for some p > 2.r We study 
the dependence on g of the eigenvalues and resonances of 

H(g) = --pi& +gv, z 

the self-adjoint operator on L2(Iw3) with domain the Sobolev space Wz,2(lR3). 
An important use of the general results is to study the behavior of eigenvalues 
as they approach [0, co), the continuous spectrum of H. For example, suppose 
that gr > 0 and h(g,) < 0 is an eigenvalue of H(g). Rellich [l l] has proved that 
for g near g, , there is a holomorphic function X(g) whose values are negative 
eigenvalues of H(g). In addition, /\ is a decreasing function of g. In this way one 
obtains an analytic function h(g) on (g, , g,] such that X(g) 7 0 as g ‘X g, > 0. 
At g,, the eigenvalue arrives at the continuous spectrum and standard perturba- 
tion theory fails to describe the behavior of A(g) for g near g,, . For short range V, 
as above, we will obtain a convergent Puiseux expansion for h(g) in powers of 
(g - g,,)1/2 which is valid on a neighborhood of g,, . The series for g < g, gives 

* Research partially supported by the National Science Foundation under Grant 
NSF MCS 77 01748. 

i Some of the results, in particular Theorems 1 and 2, are valid without the reality 
assumption. In this case H(g) with domain Wa+(l?!“) is not self-adjoint but D(H*) = D(H) 
and H - H* is compact relative to H + H*. 
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the location of resonances (poles of an analytic continuation of the resolvent). 
Thus we have the pleasing result that h(g) does not disappear at g = g,, but 
merely becomes a resonance rather than a bound state. Turning the picture 
around, as g 7 g, a resonance converges toward 0 and for g > g,, emerges as 
a bound state. The framework of this paper is the same as the earlier work [IO] 
except that we have altered several sign conventions to agree with standard 
notation. 

To describe the results precisely we must recall some facts about H(g) and 
its resolvent. Let Ha = H(0). The spectrum, a(Q), is the positive real axis 
CO, CXJ) and the resolvent RO(z) = (z - Ho)-r of Ho is an integral operator with 

kernel I?(-[“) = - ,_e[~‘~~ , , Re 5 > 0. (1) 

Let E, E Hom(Lr(IW3)) be the operator I$$ = e-+$6 and let Rz = EJPE, .2 
Then, ri,O(-&‘“) is holomorphic for Re 5 > --E with values in the Hilbert- 
Schmidt operators on LT(W). The surprising thing is that as 5 crosses the 
imaginary axis, -5” crosses ~(23,) = [0, 00) so that even though RO(--t;“) is 
singular the localized resolvent has an analytic continuation (see Fig. 1). 

co, I 
(b) 

FIGURE 1 

Note that for a fixed point s E @\[O, a~) there may be two values 5, , c2 with 
Re & >- --E and z = -&” j = 1, 2. Such a situation is depicted in Fig. 1. 
Then if Re 5, > 0 we have RP(-c12) = E,(z - Ho)-lE, while R)Eo(--12) is not 
related immediately to the resolvent of H but arise by analytic continuation of 
E,(z - I&,)--rE~ across the spectrum as indicated in (b) of Fig. 1. In the physics 

* In [lo] it was convenient to modify / x / near 0 to be a smooth function of x. The 
associated operators EC are related by a similarity transformation as are the operators 
R,“, R, defined with their help. Thus the assertions proved in [lo] with 1 x 1 modified 
imply parallel results with E, as defined here. 
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literature these are called the values of the resolvent on the “unphysical sheet.” 
In our notation we see that the values of R‘a(-<*) for Re 5 > 0 correspond to 
the “physical sheet” and for Re 5 < 0 to the “unphysical” sheet. 

For any real g the spectrum of H(g) consists of [0, co) plus a finite number of 
negative eigenvalues of finite multiplicity. Thus for Re z < - 1, (z - H(g)))’ == 
R(a) exists3 and we have the resolvent identity 

R(z) - Ryz) = gR(z) VRO(a) (4 

relating R” and R. In addition, R(z) is meromorphic in the slit plane @\[O, co) 
with poles precisely at the negative eigenvalues of H(g). Multiplying (2) on the 
left and right by E, yields the localized equation for Re 5 > 0, -i’ & a(H), 

R&F) [I -1 K(g, 01 = R,O(-F), (3) 

where K(g, 5) is the integral operator with 

kernel K(g, 5) = + 
g&x, V(X) e-bly-=le-rl!/i 

4iTly--xl 

Assuming that e-zCizi I’EL*(IW~), it follows that the map (g, 5) w K(g, <) is 
holomorphic on C x {Re 5 > -c) with values in the Hilbert-Schmidt operators 

on L”(R3). For g fixed, il K(g, 01~ < /I K(g, S)/IHilbert-Sctnnidt- 0 as Re i - m, 
so the analytic Fredholm theorem implies that the function 

< ++ R,( -p) = R,O( -c’) [I + K(g, <)I-’ (5) 

is meromorphic on Re [ > --E with values in Hom(Lz(IW3)) and has no poles 
for Re [ > 1. As remarked above, the poles of R,( -12) in Re 1 > 0 correspond 
to negative eigenvalues of H. A generalization of this result to positive eigen- 
values is proved in [lo] assuming that ezrlzl V ED’( W) for some p > 2. Precisely, 
a point [o E ;rW\O is a pole of R,(-c2) if and only if -to2 E (0, co) is an eigenvalue 
of H. It is generally believed that for potentials this small at infinity- there can 
be no such eigenvalues embedded in the continuous spectrum but the proofs 
in the literature require additional regularity (see, for example, the proposition 
following Theorem 4). The singular behavior of R&t’) for Re 5 > 0, < +- 0 
is summarized in the following statements. 

(i) There are no poles in Re 5 > 0 except on the axis (0, TJ) 

(ii) co E (0, co) u (iIw\O) is a pole of R,(-{*) if and only if (6) 
-<02 is an eigenvalue of H. 

3 Sotice that the g dependence of R(z) is not apparent in this notation. 
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Since nullspace RP(- c2) = (Oj4 formula (5) implies 

(iii) 5 is a pole of RJ-5’) if and only if Z + K(g, 5) is not 
invertible. 

Our approach to studying the eigenvalues of H(g) is to describe, with precision, 
the singular set Y defined by 

Y = {(g, 5) E @ x (Re f > --E}: Z + K(g, 5) is not invertible). (7) 

For spherically symmetric potentials I/ a related idea was proposed by Ciafaloni 
and Menotti [I]. Their analysis began with the observation that for j;xed 5 
(g, 5) is in the set Y if and only if g-l is an eigenvalue of K(1, 5). They use 
results about the eigenvalues of integral operators and perturbation theory to 
study the dependence of g on c. This is to be contrasted with the usual perturba- 
tion theory which leads one to study the dependence of the eigenvalue -r;2 on g. 
Geometrically, Ciafaloni and Menotti study the dependence of the constant 5 
sections of .Y on 5 while in the usual theory with g as the parameter one studies 
the dependence on g of the constant g sections of 9. From this point of view 
it is clear that one stands to improve both pictures by studying the structure of 
the set 9’ as a subset of C2 rather than just its sections. 

Our analysis of Y falls into two parts. The first result asserts that Y is a 
variety. 

THEOREM 1. Zj K(g, 5) and Y aye defined by (4) and (7), respectively, then 
there is a nonzero holomorphic function f: C x {Re [ > --cl - @ such that 

27 = 0, L-):.&5 0 = 01. 

Proof 1. Both B. Simon [13] and A. Jensen [.5, 61 have observed that 
using the renormalized determinant det, the proof is immediate with f(z, 5) = 
det,(Z q = K(g, 5)). 

Proof 2. Since 9’ is a closed subset of @ x {Re 5 > -6) and, the coho- 
mology group ZZ*(@ x (Re 5 > -c>, Z) = 0 the solution of the Cousin II 
problem in several complex variables (see [3, Lemma 12, p. 251) implies that 
we need only prove that Y is locally the zero set of a holomorphic function. 
That is, we must show that for each (g, , &,) there is a neighborhood N of 
(g, , lo) in U? and a holomorphic function f on N such that .Y n N coincides 
with the zero set off. This, in turn, is an immediate consequence of the following 
lemma. 

4 For completeness we sketch a proof. If u E I,” and R,“( - j3)u = 0 then the convolution 
(e-rlzl/4rr 1 x 1) * (&u) vanishes. Take Fourier transform to find (I I I2 + [?)-I E$(l)=O 
for ail [ E l&P. Thus E$ vanishes on the dense open set (E: \ 5 I2 # ~ 5”:. Since .$L is 
continuous it follows that E$l = 0 and therefore that u = 0. 
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LEMMA. Let Z? be a Hilbert space and % an open set in @“. Suppose the map 
z = (Zl ,...) z,) F+ K(z) is holomorphic on % with values in the compact operators 
on X. Then for any Zo E %! there is an open @I C Q& with x0 E %I and a holomorphic 
function f: @I -+ @ such that for z E ql , I + K(z) is not invertible if and only if 
f(x) = 0. 

The proof is a straightforward generalization of the standard analytic Fredholm 
theorem. Choose K, an operator of finite rank such that 11 K(z0) - K, 1) < l/2. 
Then I/ K(z) - K, 11 < l/2 on an open neighborhood @r of x0 E @“. For z E %I 
let (I + K - K,)-l = I + S(x); then S: %r --f Horn(X) is a holomorphic 
compact operator-valued function and if C = K,(I + S) then 

I + K = (I + C)(I + K - K,). (8) 

Thus for x E @r , I + K is invertible if and only if I + C is invertible. Note that 
range CC range K, . Let b, ,..., b, be a basis for range K, ; then there exist 
uniquely determined vectors Q(Z) E X such that 

C(z)h = 1 (h, c&x)) bi . 

A straightforward calculation shows that I + C(z) is invertible if and only if 
det[& + (bi , ci(z)>] # 0. Th is p roves the lemma withf(z) = det[& + (bj , cJ]. 

A question that arises is how is one to interpret points (g, 5) E 9 with g E K! 
and Re 5 < 0. There are several reasons why this question is natural. From the 
point of view adopted here these points stand on an equal footing with the points 
(g, d/-h), X an eigenvalue of H(g), so they seem to be generalized eigenvectors 
of some sort. Second, we will see that ifg, is a threshold coupling constant, that is, 
if there is an eigenvalue A(g) with h(g) ,P 0 as g ‘x go > 0 then the associated 

b(g) = ~-4d will continue to g <g, with (g, c(g)) E 9’. Thus, after the 
eigenvalue, X(g), is absorbed by the continuous spectrum it persists as a point 
of Y. 

Fortunately, there are three distinct, though related, interpretations, each 
of which is informative. One begins with the identity (derived by solving 
Schrodinger’s equation by Laplace transform) 

(9) 

valid for a > 1 .5 The meromorphic continuation of R(--2) to Re 5 > --E 

6 See Rauch [lo] for the details of this first interpretation. For dilation-analytic poten- 
tials an analysis following similar lines has been carried out by Jensen [6]. 
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provides a meromorphic continuation of R,(k) across the line Re T = 0 into the 
slit plane @\R- . One can deform the contour in (9) to show that 

E,e-itHE, = c Res (eTtRE(. ): ZT T - T ) + & 1 I’R,(Cr) eTt dr + O(e--E/2t), - j (10) 

where the contour r starts at 42 - i0, proceeds along the “bottom of the real 
axis” to a point close to the origin, then encircles the origin and returns to 
42 + i0. The poles in the sum are finite in number and lie in the region Re 
7 > -e/2. Notice that under the map iT = --c2, points (g, 5) E 3’ with Re 
5 3 0 correspond to poles of R,(k) on the axis Re T = 0, and, these yield the 
yield the contribution CA, EEe-iajtrA,E, of the point spectrum of H. The poles 
with Re T < 0 correspond to points (g, 5) E Y with Re 5 < 0 and --t2 = ir. 
Their contribution to (10) has time dependence of the form (polynomial in t)erJt. 
When Re Tj is close to zero these are long-lived but decaying modes and this is 
one reason why the poles are called resonances. 

A second interpretation is that (g, 5) E ~7 if and only if there is a solution of 
the reduced wave equation 

--du+gVu+{2u =Oin Iw3 (11) 

which satisfies an appropriate radiation condition at infinity.6 The numbers -52 
are sometimes referred to as scattering eigenvalues because of this interpretation. 
Finally, if S: [w -+ Hom(L*(S)) is the scattering matrix for H(g) then S(u2) is 
the restriction to [w of a function meromorphic in Im 0 > --E with poles precisely 
the points it, where (g, 5) E Y, Re [ < 0. If 5 is close to the imaginary axis 
and S(a) has a pole at 1 then one expects S(S) to be large for a M Im 1, 
u2 M (Im 5)” M -Re(t2). Physically this corresponds to enhanced scattering, 
i.e., large total cross section, at energies close to -Re(t2), a second reason for 
the name resonance. 

Recall that Y is the zero set of a holomorphic functionf(g, 5) of two variables. 
This allows us to obtain Puiseux expansions for c(g). 

THEOREM 2 (perturbation theory for resonances). If (g,, , &,) E 9, then there 
is a dish D = (g E @: 1 g - g, 1 < r}, integers, hl , h, ,..., h, , a positiwe number p, 
and holomorphic functions hj : {a E C: / z 1 < rllkj> + @for j = 1, 2,..., 1, so that 
for g E D the point [ E 9’ n (5: 1 I; - [,, 1 < p} if and only if 5 = h*(w) for some j 
and w such that wkj = g -g,, . That is, the points of 9’ near (g,, , I$,) are given 
by the values of the Puiseux series h,((g - g,J1lkj), j = 1, 2,..., 1. 

6 For V more general than that considered here this result is proved by Jensen [5]. 
Less general results were obtained by Lax and Phillips [9] and Shenk and Thoe [12], the 
latter authors building on the earlier work of Dolph et al. [2]. 

58o/35/3-3 
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Theorems 1 and 2 resemble Theorems 1 .l and 1.2 of Howland’s paper [4]. 
In fact for 4 # 0 our theorems follow from his with the choice A = B = E, . 
However at 5 = 0, R,(l) (hisQ([)) h as a branch point. Howland gives an example 
where a branch point of Q(4) can lead to an absence of Puiseux expansions for 
i(g). The critical fact is that Howland’s example has a logarithmic branch point. 
When there is an algebraic branch point, composing with a suitable pow-er 
function unwinds the singularity and one obtains Puiseux expansions. In our 
problem this boils down to studying the continuation of (li, - 5’“) instead 
of R,(z). For completeness we give a self-contained proof valid at all [ with 
Re 5 > --E. 

Proof. Step I. We show that with f as in Theorem 1 the function 4 - 
f(gs , 5) is not identically zero. For fixed g, , 11 K(g, , ()]I-+ 0 as Re 5 ---f CC so 
[I + K(gs , [)I-’ exists for Re 5 large. Thus 5 = &, is an isolated zero off(g, , 5) 
so there is a smallest integer k > 0 so that (Z/a<)“f(ga , &,) # 0. 

Step 2. Weierstrass preparation. Using the result above the preparation 
theorem implies that there is a neighborhood N of (g, , &,) and functions aj(g) 
holomorphic near g, and /3(g, 5) holomorphic in N so that 

f(g, i) = B(g, 5)[(5 - 5,)” + %&)(S - &l)“-’ f .‘. -t %l(g)l, (W 

and p # 0 on N. 

Step 3. Puiseux expansion. It follows that the zeros offin N are identical 
to those of the Weierstrass polynomial in brackets on the right-hand side of (12). 
It is a classical fact7 that the roots of such an expression have Puiseux expansions 
as described in Theorem 2. 1 

Remark. The integers kj and functions h, may be chosen so that except for a 
discrete set of g the kj distinct roots (g - g,,)llkj yield kj distinct points (g, 
h,((g - g(p)) E Y. 

In some special cases the possible Puiseux series are severely restricted. The 
main restriction on such series arises from (6i); if g and g, are real then no matter 
what kth root zu = (g - gO)r/Jc is taken, x a,wn must not lie in the set {Z;: 
Re 5 > 0, Im 5 # O}. That is, in the right half-plane the only permissible 
values are on the real axis. 

As an example consider a negative eigenvalue h, of H(g,). Let C a,(g - g,)n:k 
be a Puiseux series describing points of 9 near (gs , m); thus, a,, = + mQ 
and for /g - g,, / small and all roots (g - gs)llk = w, (g, C anwn) E 9’. Since 
for g e g,, the point C a,wn m m, condition (6i) implies that for g real 
and for all roots (g - g,,)l/“, C a,(g - g,)nlk E [w, . Rellich [l I] observed that 
the only Puiseux series with this property are power series, that is, there are no 
fractional powers. Therefore, the points (g, 6) E Y near (g, , q/-ho) are des- 

‘See Jordan [7, Sects. 361-3691. 
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cribed by a finite number of holomorphic functions &(g). By (6) again, the 
eigenvalues of H(g) near h, for g near g, are given by the convergent power series 
-&l(g). In this way we recover Rellich’s theorem on the behavior of isolated 
eigenvalues. What we gain is that Theorem 2 applies equally well to embedded 
eigenvalues and resonances and this allows us to describe the behavior of eigen- 
values as they are absorbed into the continuous spectrum. 

THEOREM 3. Suppose that V is real valued and for some E > 0 and p > 2, 
eeElxl V ~Lp(lW3). Suppose h(g) is a negative eigenvalue which approaches the 
continuous spectrum as g L g,, > 0. Precisely, h is holomovphic on a neighborhood 

of (g, , go + 8) lim,\ 1O A(g) = 0 and for g E (go , go + a), h(g) is a negative 
eigenvalue of H(g). Then A(g) = -p(g), w ere h i(g) has a Puiseux expansion 
in powers of (g - go)l12. That is, 

W = Mg - go) + (g - goY’%k - go), (13) 

where hi is holomorphic on a neighborhood of go with real Taylor coeficients, 
hi(O) I= 0, and (g - go) 112 is the positive square root for g - go E R, . 

Remarks. (1) In Theorem 4 we will show that there are additional restrictions 
on the expansion (13). 

(2) An immediate consequence of (13) is that h = -c2 = O(i g - g, I), 
a result obtained in much greater generality by Simon [13]. 

Proof. For go + 6 > g > go define 5(g) > 0 by X(g) = -%(g) so that 
(g, t(g)) E Y by (6ii). Theorem 2 implies that 5 is given by a Puiseux series 

c(g) = 1 a,(g - g0)n’“. 

Altering the a, if necessary we may assume that c(g) is the value of this series 
when the positive kth root (g - go) ljk is taken. Since 5 is real valued for g E 
(go, go + 6) it follows that the coefficients a, are real. We must show that the 
Puiseux series has the form (13). The basic fact that we will use is that no matter 
what root (g - ga)ll” is taken the point (g, x a,(g - go)%lk) E 9; so by (6i), 
if g is real, 

~a,(g-go)n~k$(z:Rex>O,Imz#O}=B (1% 

(9 for prohibited). The analysis falls into two cases depending on whether the 
leading term in (14) is a fractional or integer power. 

Case (i). The Puiseux series (14) begins with an integer power, that is, 

5(g) = “k - &TOY” + o(l g - go I”“), (16) 
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where a! = unok E (0, co) and 7~~ is a positive integer. Assemble the integer 
powers of (g - g,,) in (13) into a power series and the half-integer powers into 
a second series so that 

i(g) = Mg - go) + k - go)1’2 h,(g - go) + dg - go>- (17) 

Precisely, if the a, are as in (14), 

h,(s) = f ankSn, 
7l=l 

h,(s) = f Gk12Sn 
?I=1 

nodd 

if k is even, h, = 0 if k is odd. 

We must show that p = 0. Suppose on the contrary that p f 0. Since the leading 
term of [ is an integer power we have 

P@ - go) = (g - ‘Yom - goY’krls + W)l, (18) 

where n > n, , ,6 TV Iw 0, 0 < j < k, and jyk # +. For g - g,, small and positive, 
Re t(g) = o1(g - gJ”o[l + o(l)] > 0 so (15) implies that all values of the 
Puiseux series (14) must be real. Since the first two terms on the right of (17) are 
real valued, p(g -8,) must be real so [(g - g#l”]j E [w for all kth roots of 
(g - go). Thus e?nimjlK E [FB for m = 0, 1,2,3,..., k - 1 which can only happen 
ifj = 0 or j/k = 4. Both of these possibilities were prohibited at the outset so 
we must have p = 0. 

Case (ii). The Puiseux series begins with a fractional power, that is, 

5(g) = (g - &Pk - &JY’“b + OU)l? (19) 

where j, k, and 9~~ are integers, 0 <j < k, and 01 E (0, co). 
We first show that j/k must be 4. The values of the Puiseux series (14) for 

g - g, < 0 are of the form 

I&?--& no+jl$ + o(1)] einmUk, m = 0, l,..., k - 1, (20) 

where I g - go I wlk > 0. If j/k is 0 or 4 it is possible for these values to lie 
outside B. However, if j/k is not equal to 0 or 3 at least one of these values lies 
in each of the first and fourth quadrants, which is prohibited by (15). Since 
j > 0 we must have j/k = i and k = 2j is even. 

Assemble the integer and half-integer powers as in (17). Again, we must 
show that p E 0. Since the leading term in the expansion is given by (19) with 
j/k = 4, if p $ 0 then it must be of the form (18) with j, n, k integers such that 
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n + j,‘k > n, + &, 0 < j < K, j/k # 4. We consider 5 for g - g, small and 
positive. Consider the Kth roots 1 g - g, I1&?nimlk m = 0, 1, 2. For the 
K/2 roots corresponding to even values of m we have [(g - g,,)11”]“/2 E R, . 
Sincej = k/2 it follows that the right-hand side of (19) has positive real part for 
these values of the root. By (15) the values of the Puiseux series must be reaI 
for these values of (g - g,,)il”. Since h,(g - g,) + (g - g,#&z,(g - g,) is real 
valued, the imaginary part of p(g - g,,) must vanish. Since p has the form (18), 
by reasoning as in Case (i) we conclude that j/k = 0 or j/k = & and both of 
these possibilities were prohibited at the outset, It follows that p = 0 and the 
proof of Theorem 3 is complete. 1 

Next we look more closely at the behavior of c(g) and h(g) = -c’(g) when 5 
has an expansion as described in Theorem 3. A first remark is that for 1 g - g,, 1 
small Mg - gd and (g - aF2h2k - 8,) h ave different orders of magnitude 
since for some integers n and m, 1 h,(s)] N csn and 1 ~l/~h~(s)l w csmf1j2 (we have 
excluded the trivial case hi = 0 or h, = 0). The next result shows that not all 
expansions are possible. In some sense only three qualitatively different forms 
for [ are possible and we describe them after the proof. 

THEOREM 4. Suppose that V, g, , A, 5, h, , and h, are as in Theorem 3. 

(1) 1f h, f 0 then for some a > 0 and odd integer n, h,(s) = as”[l + o(l)]. 

(2) If for some E > 0 and a sequence g” \ go the operators H(gn) have no 
eigenzlalues in the interwal(0, l ) then h, + 0. 

Remark. The folk wisdom holds that for V which are as small at infinity as 
those considered here, there can be no positive eigenvalues so the hypothesis 
of (2) is expected to hold. The proofs require some additional regularity of V. 
For example, we have the following consequence of the results of Kato [8]. 

PROPOSITION. Suppose V E Lf,,,(Iw3) and there exists a compact set KC IX3 
with Lebesgue measure zero and IW3\K connected such that V is continuous on 
R3\K, and V = o(/ x 1-l) as x+ w. Then, for any gE 88, --d + gV has no 
positive eigenvalues. 

Proof. If II E L2([w3) and (--d + gV) = I\u with X > 0 then a result of Kato 
[8] implies that there is an R > 0 so that u = 0 for I x / > R. The unique 
continuation principle for solutions of elliptic equations then implies that u = 0 
on the connected set R3\K. Thus u is an element of L2 supported on the null 
set K so u = 0. 1 

Proof of Theorem 4, part (1). Since h, -f 0 there is an a > 0 and an integer n 
so that hl(g -g,) = a(g - g,)“[l + o(l)] as g +g, . We must show that 72 is 
odd. The proof divides into two cases depending on whether h, is identically 
zero or not. 
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Suppose first that h, f: 0. Then there is an ‘7 > 0 so that for -7 < g - go --II 0 
(g - go)1~2h2(g, - g,) E iR\O. Since i(g) must not lie in the prohibited region 9 
in (15), we must have h,(g - g,,) < 0 for these values of g and it follows that n 
is odd. 

Suppose next that h, = 0 and that contrary to (I), n is even. Then, there is an 
7 > 0 so that for -7 <g - g, < 0, l(g) is a decreasing positive real-valued 
function of g. By (6i) it follows that h(g) = -c2(g) is a negative eigenvalue of 
H(g) with A’(g) > 0. H owever, it is a classical fact that 

= hl$12- Iv+12dx <o, s 
where 4 is a unit eigenvector of H(g) with eigenvalue A(g). This contradiction 
completes the proof. 1 

Proof of Theorem 4, part (2). Suppose that h, = 0. Then, h, $0 so there 
is an 7 > 0 so that for -7 <g - g,, < 0, t(g) E iR\O. By (6iii) -c2(g) is a 
positive eigenvalue of H(g) f or each such value of g. Since p(g) + 0 as g + 0 
the hypothesis in (2) is violated and the proof by contraposition is complete. 1 

Assuming that the hypothesis of Theorem 4, part (2), is satisfied there are 
three distinct qualitative pictures of the behavior of c(g) and X(g) for g m g,, . 

Case(ii) 
++-+f 

FIGURE 2 
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These correspond to the three situations (i) ha = 0; (ii) 0 + s~/%~(s) = o 
(I h,(s)l), and (iii) h,(x) = o (1 s~/%~(s)~), the last two relations holding as s -+ 0. 
The hehavior of 1 and A is depicted in Figure 2, where the dots represent the 
values of the functions and the arrows indicate the direction of motion of the dots 
as g decreases. When interpreting the diagrams in Fig. 2 it is important to reaiize 
that values of 5 with Re 4 < 0 correspond to the “unphysical sheet.” For 
example, in case (i) the function X(g) = --c”(g) is holomorphic and negative; 
however, for g <go , Re 5 < 0 so these negative values of A correspond to 
resonnances, not eigenvalues. In cases (ii) and (iii) there are two resonances for 
g > g, as traces of the eigenvalue which is absorbed into the continuous spectrum 
wheng =g,. 

Note that in case (ii) two eigenvalues arrive at the origin simultaneously and 
in case (iii) an eigenvalue and a resonance arrive simultaneously. 

REFERENCES 

I. M. CIAFALONI AXD P. MENOTTI, Analysis of a S-matrix singularities by means of 
operator techniques, NUOWO Cimento 35, No. 1 (1965), 160-193. 

2. C. DOLPH, J. MCLEOD, AND D. THOE, The analytic continuation of the resolvent 
kernel and scattering operator associated with the Schrijdinger operator, J. Math. 
And. Appl. 16 (1966), 311-332. 

3. R. GWNING AND H. Rossr, “Analytic Functions of Several Complex Variables,” 
Prentice-Hall, Englewood Cliffs, N. J., 1965. 

4. J. S. HOWLAND, Puiseux series for resonances at an embedded eigenvalue, Pacific J. 
Math. 55 (1974), 157-176. 

5. A. JENSEN, Local distortion technique, resonances, and poles of the S-matrix, J. 
Math. Anal. Appl. 59 (1977). 505-513. 

6. A. JENSEN, Local decay in time of solutions to Schrodinger’s equation with a dilation- 
analytic interaction, Manuscvipta Math. 25 (1978), 61-77. 

7. C. JORDAN, “Cours d’analyse,” Vol. I, Gauthier-Villars, Paris, 1909. 
8. T. KATO, Growth properties of solutions of the reduced wave equation with variable 

coefficients, Comm. Pure Appl. Math. 12 (1959). 403-425. 
9. P. D. LAX AND R. S. PHILLIPS, “Scattering Theory, ” Academic Press, New York, 1967. 

10. J. RAU~H, Local decay of scattering solutions to Schriidinger equations, Comm. Math 
Phys. 61 (1978), 149-168. 

Il. F. RELLICH, Storungstheorie der spektralzerlegung, I-V, Math. Ann. 113 (1937), 
600-619, 677, 685; 116 (1939), 555-570; 117 (1940), 356-382; 118 (1942), 462-484. 

12. N. SHENK AND D. THOE, Eigenfunction expansions and scattering theory for perturba- 
tions of A, Rocky Mtn. J. Math. 1 (1971), 89-125. 

13. R. SIMON, On the absorption of eigenvalues by continuous spectrum in regular 
perturbation problems, j. Functional Adysis 25 (1977), 338-344. 


