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Abstract

A tempered stable Lévy process combines both the α-stable and Gaussian trends. In a short time
frame it is close to an α-stable process while in a long time frame it approximates a Brownian motion.
In this paper we consider a general and robust class of multivariate tempered stable distributions and
establish their identifiable parametrization. We prove short and long time behavior of tempered stable Lévy
processes and investigate their absolute continuity with respect to the underlying α-stable processes. We
find probabilistic representations of tempered stable processes which specifically show how such processes
are obtained by cutting (tempering) jumps of stable processes. These representations exhibit α-stable and
Gaussian tendencies in tempered stable processes and thus give probabilistic intuition for their study. Such
representations can also be used for simulation. We also develop the corresponding representations for
Ornstein–Uhlenbeck-type processes.
c© 2006 Elsevier B.V. All rights reserved.

MSC: primary 60E07; 60G52; secondary 60E10; 60G51
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1. Introduction

Tempered stable processes were introduced in statistical physics to model turbulence and
are known in physics literature as the truncated Lévy flight model [14,13,15]. They were also
introduced in mathematical finance to model stochastic volatility (the CGMY model in [8,9]),
(the Ornstein–Uhlenbeck-based model in [3,4]); option pricing based on such processes was
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considered in [6], just to mention a few. Furthermore, these processes play an important role in
the construction of certain Poisson–Dirichlet laws studied in [16]. The importance of tempered
stable processes comes from the fact that they combine both the α-stable and Gaussian trends.

In this paper we introduce and study a more general and robust class of tempered stable
distributions. It contains previously investigated tempered stable distributions as a special
subclass. We show that tempered stable distributions admit parametrization similarly to stable
distributions. Namely, a multivariate tempered stable distribution is characterized by an index
α ∈ (0, 2), a spectral measure R, and a shift b (Theorems 2.3 and 2.9, Definition 2.11). Moreover,
this parametrization is identifiable in the subclass of proper tempered stable distributions. Unlike
stable distributions, tempered ones may have all moments finite, including exponential moments
of some order (Proposition 2.7). In Section 3 we give a rigorous proof of the statement that a
tempered stable Lévy process in a short time looks like a stable process while in a large time
scale it looks like a Brownian motion (Theorem 3.1). In Section 4 we show that a large class of
tempered stable Lévy processes can be obtained from stable processes by a change of measure
on the probability space (Theorem 4.1). The heart of this paper is in Section 5. We consider the
question of how does the tempering occur, that changes a sample path of a stable process into
a sample path of a tempered one? This question with a view toward simulation was posed to
the author by Ole E. Barndorff-Nielsen and Neil Shephard with the condition that in a possible
answer the tempering procedure should be continuous pathwise with respect to the parameters,
and thus it should not include any removal of jumps from a sample path of a stable process. We
answer this question in Theorem 5.3 obtaining shot noise representations of tempered stable
Lévy processes. Our representations exhibit stable and Gaussian trends in tempered stable
processes and give probabilistic insight into Theorems 3.1 and 4.1. They can also be used for
computer simulation. In Section 6 we give shot noise representations for Ornstein–Uhlenbeck-
type processes with tempered stable one-dimensional marginal distributions. A special case of
such representations has already been used in [3,4]; cf. [18].

Before going to formal definitions let us sketch some ideas leading to tempered infinitely
divisible distributions and processes, in general. The first one is an old idea of tilting density
functions. Let f be a probability density function on R+ whose Laplace transform is L(λ) =∫

∞

0 e−λx f (x)dx . For every θ > 0 define a tilted density fθ by

fθ (x) =
1

L(θ)
e−θx f (x) = exp{−θx + `(θ)+ k(x)}, (1.1)

where f (x) = exp{k(x)} and L(θ) = exp{−`(θ)}. We see that { fθ }θ forms a one-parameter
exponential family of distributions with the natural statistic T (x) = −x . The Laplace transform
Lθ of fθ is given by

Lθ (λ) = exp{−(`(λ+ θ)− `(θ))}. (1.2)

Assume additionally that f is infinitely divisible, so that we have

`(λ) =

∫
∞

0
(1 − e−λx )M(dx)+ λb,

where M is a Lévy measure on R+ and b ≥ 0. From (1.2) we get

Lθ (λ) = exp
[∫

∞

0
(e−λx

− 1)e−θx M(dx)− λb
]
.



J. Rosiński / Stochastic Processes and their Applications 117 (2007) 677–707 679

Therefore, tilting an infinitely divisible density f 7→ fθ leads to the tilting of the corresponding
Lévy measure M 7→ Mθ , where Mθ (dx) = e−θx M(dx).

The procedure of tilting is also related to the so-called Esscher transform. Namely, let
{X (t) : t ≥ 0} be the canonical process adapted to a natural filtration {Ft : t ≥ 0} (see Section 4).
Suppose that under probability P , X is a Lévy process with non-decreasing trajectories such that
X (1) has the density f (i.e., X is a subordinator). For θ > 0 define a probability measure Pθ by

dPθ
dP |Ft

= exp{−θX (t)+ `(θ)t}.

Then, under Pθ , X is a Lévy process such that X (1) has the density fθ ; see [22, Example 33.15].
Thus Esscher’s transform can be viewed as tilting (1.1) but on the level of stochastic processes.

Taking products of convolution powers f ∗ri
θi

of fθi with ri , θi > 0 ( f is infinitely divisible),
and then their limits, we obtain distributions having the Laplace transform of the form

exp
[∫

∞

0
(e−λx

− 1)q(x)M(dx)− λb
]
,

where q is a completely monotone function with q(∞) = 0. Such operation on Lévy
measures M , and their multidimensional generalizations, will be called tempering (or tilting
when q(x) = e−θx , x > 0). In this work we concentrate on tempered stable distributions
obtained by tempering stable Lévy measures. We show that tempered stable distributions and
related processes constitute rich classes with nice structural and analytical properties. They
can be used as an attractive alternative to stable distributions and processes in modeling and
theoretical considerations.

A preliminary version of these results was announced at the Second MaPhySto Conference on
Lévy Processes: Theory and Applications, Aarhus 2002, and is available as an extended abstract
in the Mini-proceedings [20].

2. Tempered stable distributions

In this section we will give the parametrization, the basic properties, and the canonical form
of characteristic functions of multivariate tempered stable distributions. It is well known that the
Lévy measure M0 of an α-stable distribution on Rd in polar coordinates is of the form

M0(dr, du) = r−α−1drσ(du), (2.1)

where α ∈ (0, 2) and σ is a finite measure on Sd−1. A tempered α-stable distribution is obtained
by tempering the radial component of M0 as follows.

Definition 2.1. A probability measure µ on Rd is called tempered α-stable (abbreviated as TαS)
if is infinitely divisible without Gaussian part and has Lévy measure M that can be written in
polar coordinates as

M(dr, du) = r−α−1q(r, u)drσ(du), (2.2)

where α and σ are as above, and q : (0,∞) × Sd−1
7→ (0,∞) is a Borel function such that

q(·, u) is completely monotone with q(∞, u) = 0 for each u ∈ Sd−1. µ is called a proper TαS
distribution if, in addition to the above, q(0+, u) = 1 for each u ∈ Sd−1.



680 J. Rosiński / Stochastic Processes and their Applications 117 (2007) 677–707

The complete monotonicity of q(·, u) means that (−1)n ∂n

∂rn q(r, u) > 0 for all r > 0,
u ∈ Sd−1, and n = 0, 1, 2, . . .. In particular, q(·, u) is strictly decreasing and convex.

Remark 2.2. (a) The class of TαS distributions contains β-stable distributions with β > α.
Indeed, one takes q(r, u) = rα−β in (2.2). However, proper TαS distributions do not contain any
stable distributions.
(b) TαS distributions are self-decomposable; this follows from [22, Theorem 15.10]. Moreover,
they constitute a proper subclass of the Thorin class of extended generalized gamma convolutions
(see [5, p. 105] and [2]). The Thorin class is obtained when α = 0 in (2.2).

The “tempering” function q in (2.2) can be represented as

q(r, u) =

∫
∞

0
e−rs Q(ds|u) (2.3)

where {Q(·|u)}u∈Sd−1 is a measurable family of Borel measures on (0,∞). Q(·|u) are probability
measures in the case of proper TαS distributions. Define a measure Q on Rd by

Q(A) :=

∫
Sd−1

∫
∞

0
IA(ru)Q(dr |u)σ (du), A ∈ B(Rd). (2.4)

Then Q({0}) = 0. We also define a measure R by

R(A) =

∫
Rd

IA

(
x

‖x‖2

)
‖x‖

αQ(dx), A ∈ B(Rd). (2.5)

This yields the change of variable formula∫
Rd

F(x)R(dx) =

∫
Rd

F
(

x
‖x‖2

)
‖x‖

αQ(dx)

for any Borel function F in the sense that when one of the sides exists then the other exists and
they are equal. Clearly R({0}) = 0 and Q can be obtained from R by the same transformation

Q(A) =

∫
Rd

IA

(
x

‖x‖2

)
‖x‖

αR(dx). (2.6)

As it turns out, distributional properties of a TαS measure are described most conveniently by
its measure R. The following result is fundamental for the rest of the development.

Theorem 2.3. The Lévy measure M of a TαS distribution can be written in the form

M(A) =

∫
Rd

∫
∞

0
IA(t x)t−α−1e−t dt R(dx), A ∈ B(Rd), (2.7)

where R is a unique measure on Rd such that

R({0}) = 0 and
∫
Rd
(‖x‖

2
∧ ‖x‖

α)R(dx) < ∞. (2.8)

If M is as in (2.2) then R is given by (2.5). Conversely, if R is a measure satisfying (2.8) then (2.7)
defines the Lévy measure of a TαS distribution. M corresponds to a proper TαS distribution if
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and only if∫
Rd

‖x‖
αR(dx) < ∞. (2.9)

Proof. First we will show that (2.7) holds when R is given by (2.5). We have

M(A) =

∫
Sd−1

∫
∞

0
IA(ru)r−α−1q(r, u) drσ(du)

=

∫
Sd−1

∫
∞

0

(∫
∞

0
IA(ru)r−α−1e−rsdr

)
Q(ds|u)σ (du)

=

∫
Sd−1

∫
∞

0

(∫
∞

0
IA(ts−1u)t−α−1e−t dt

)
sαQ(ds|u)σ (du)

=

∫
∞

0

(∫
Sd−1

∫
∞

0
IA(ts−1u)sαQ(ds|u)σ (du)

)
t−α−1e−t dt

=

∫
∞

0

(∫
Rd

IA

(
t

x
‖x‖2

)
‖x‖

αQ(dx)
)

t−α−1e−t dt

=

∫
∞

0

∫
Rd

IA(t y)R(dy)t−α−1e−t dt.

To prove (2.8) we use (2.7) as follows:

∞ >

∫
‖x‖≤1

‖x‖
2 M(dx) =

∫
Rd

‖x‖
2
∫

‖x‖
−1

0
t1−αe−t dt R(dx)

≥

∫
‖x‖≤1

‖x‖
2
∫ 1

0
t1−αe−t dt R(dx)+

∫
‖x‖>1

‖x‖
2
∫

‖x‖
−1

0
t1−αe−1 dt R(dx)

≥ e−1(2 − α)−1
∫

‖x‖≤1
‖x‖

2 R(dx)+ e−1(2 − α)−1
∫

‖x‖>1
‖x‖

αR(dx).

To prove the uniqueness of R, we suppose that two measures R1 and R2 satisfy (2.7) when
substituted in place of R. Such measures must satisfy (2.8), as demonstrated above. Define
measures Qi by (2.6), Qi ({0}) = 0, i = 1, 2. Consider representations of Qi in polar coordinates
in the form

Qi (dr, du) = Qi (dr |u)σ (du) i = 1, 2,

where σ is a probability measure on Sd−1 and {Qi (·|u)}u∈Sd−1 are measurable families of Borel
measures on (0,∞). Since

∞ >

∫
Rd
(‖x‖

2
∧ ‖x‖

α)Ri (dx) =

∫
Rd
(‖x‖

−2
∧ ‖x‖

−α)‖x‖
αQi (dx)

=

∫
Sd−1

∫
∞

0
(s−2+α

∧ 1)Qi (ds|u)σ (du),∫
∞

0 (s−2+α
∧ 1)Qi (ds|u) < ∞ for σ -almost every u. Hence, for σ -almost every u and all r > 0,

the Laplace transform

qi (r, u) =

∫
∞

0
e−rs Qi (ds|u)
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is finite and thus it defines completely monotone functions qi (·|u) : (0,∞) → [0,∞). Since the
Ri satisfy (2.7), the computations at the beginning of this proof show that∫

Sd−1

∫
∞

0
IA(ru)r−α−1qi (r, u) drσ(du) = M(A), A ∈ B(Rd), i = 1, 2.

From the uniqueness of the representation in polar coordinates of M and the continuity of qi (·, u)
we infer that for σ -almost all u, q1(r, u) = q2(r, u), r > 0. Thus Q1(·|u) = Q2(·|u), which
yields Q1 = Q2 and then (2.5) gives R1 = R2.

In the converse part, we will first prove that M is a Lévy measure when R satisfies (2.8).
Indeed,∫

‖x‖≤1
‖x‖

2 M(dx) =

∫
Rd

‖x‖
2
∫

‖x‖
−1

0
t1−αe−t dt R(dx)

≤ Γ (2 − α)

∫
‖x‖≤1

‖x‖
2 R(dx)+

1
2 − α

∫
‖x‖>1

‖x‖
αR(dx) < ∞

and ∫
‖x‖>1

M(dx) =

∫
Rd

∫
∞

‖x‖−1
t−α−1e−t dt R(dx)

≤ C
∫

‖x‖≤1

∫
∞

‖x‖−1
t−3 dt R(dx)+

∫
‖x‖>1

∫
∞

‖x‖−1
t−α−1 dt R(dx)

= 2−1C
∫

‖x‖≤1
‖x‖

2 R(dx)+ α−1
∫

‖x‖>1
‖x‖

αR(dx) < ∞,

where C := supt≥1 t2−αe−t . The fact that M can be written in the form (2.2) can be proved as
follows. Define Q by (2.6) and consider a decomposition Q(dr, du) = Q(dr |u)σ (dr), where
σ(Sd−1) < ∞. Then we define q(r, u) by (2.3). The computations given at the beginning of this
proof verify (2.2).

Finally, observe that∫
Rd

‖x‖
αR(dx) = Q(Rd). (2.10)

Furthermore, Q has a representation Q(dr, du) = Q(dr |u)σ (du), where Q(·|u) are probability
measures (equivalently, q(0+, u) = 1) and σ is a finite measure if and only if Q(Rd) < ∞. In
view of (2.10) the proof is complete. �

Definition 2.4. The unique measure R in (2.7) is called the spectral measure of the
corresponding TαS distribution.

We would like to mention that the necessity and sufficiency of (2.8) for M to be a Lévy
measure was also stated in [2] (without a proof). The next corollary explains the difference
between proper and general TαS distributions in terms of Lévy measures.

Corollary 2.5. Let M be a measure given by (2.7). Then the function s 7→ sαM({‖x‖ > s}),
s > 0, is decreasing with

lim
s→0+

sαM({‖x‖ > s}) = α−1
∫
Rd

‖x‖
αR(dx) and lim

s→∞
sαM({‖x‖ > s}) = 0.



J. Rosiński / Stochastic Processes and their Applications 117 (2007) 677–707 683

Hence M is a Lévy measure of a proper TαS distribution if and only if

lim
s→0+

sαM({‖x‖ > s}) < ∞.

Proof. From (2.7) we get for every s > 0

sαM({‖x‖ > s}) =

∫
Rd

∫
∞

‖x‖−1
v−α−1e−sv dvR(dx).

Hence the map s 7→ sαM({‖x‖ > s}) is decreasing to zero. By the monotone convergence
theorem

lim
s→0+

sαM({‖x‖ > s}) = α−1
∫
Rd

‖x‖
αR(dx).

The conclusion comes from the last part of Theorem 2.3. �

Corollary 2.6. In the subclass of proper tempered stable distributions the parametrization
(α, R) of the Lévy measures is identifiable.

TαS distributions may have moments of any order, even exponential moments of some order.
This simply depends on their spectral measures.

Proposition 2.7. Let µ be a TαS distribution with Lévy measure given by (2.7). Then

(i)
∫
Rd ‖x‖

pµ(dx) < ∞ for p ∈ (0, α);
(ii)

∫
Rd ‖x‖

αµ(dx) < ∞ ⇐⇒
∫
‖x‖>1 ‖x‖

α log ‖x‖R(dx) < ∞;
(iii)

∫
Rd ‖x‖

pµ(dx) < ∞ ⇐⇒
∫
‖x‖>1 ‖x‖

p R(dx) < ∞ when p > α;
(iv)

∫
Rd exp(θ‖x‖)µ(dx) < ∞ ⇐⇒ R({x : ‖x‖ > θ−1

}) = 0, where θ > 0.

Proof. The above moment conditions for µ are equivalent to the corresponding conditions for
M|{‖x‖>1}; cf. [22, p. 159]. We write for p > 0∫

‖x‖>1
‖x‖

p M(dx) =

∫
‖x‖≤1

‖x‖
p
∫

∞

‖x‖−1
t p−α−1e−t dt R(dx)

+

∫
‖x‖>1

‖x‖
p
∫

∞

‖x‖−1
t p−α−1e−t dt R(dx) =: I1 + I2.

Let C := supt≥1 t p+2−αe−t . Then

I1 ≤ C
∫

‖x‖≤1
‖x‖

p
∫

∞

‖x‖−1
t−3 dt R(dx) ≤ 2−1C

∫
‖x‖≤1

‖x‖
2 R(dx) < ∞

by (2.8). Therefore, the finiteness of
∫
‖x‖>1 ‖x‖

p M(dx) is decided by I2.
If p < α then

I2 ≤

∫
‖x‖>1

‖x‖
p
∫

∞

‖x‖−1
t p−α−1 dt R(dx) = (α − p)−1

∫
‖x‖>1

‖x‖
αR(dx) < ∞,

by (2.8). This proves (i).
If p > α, then (ii) follows from the following bounds:(∫

∞

1
t p−α−1e−t dt

)∫
‖x‖>1

‖x‖
p R(dx) ≤ I2 ≤ Γ (p − α)

∫
‖x‖>1

‖x‖
p R(dx).
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For p = α we have

I2 ≤

∫
‖x‖>1

‖x‖
α

∫ 1

‖x‖−1
t−1 dt R(dx)+

∫
‖x‖>1

‖x‖
α

∫
∞

1
e−t dt R(dx)

=

∫
‖x‖>1

‖x‖
α(log ‖x‖ + e−1)R(dx)

and

I2 ≥ e−1
∫

‖x‖>1
‖x‖

α log ‖x‖R(dx).

This completes the proof of (i)–(iii).
Suppose now that R({x : ‖x‖ > θ−1

}) = 0. Put C := supt≥2θ e−t/2t2−α . Then∫
‖x‖>1

eθ‖x‖M(dx) =

∫
‖x‖≤θ−1

∫
∞

‖x‖−1
e(θ‖x‖−1)t t−α−1 dt R(dx)

≤

∫
(2θ)−1<‖x‖≤θ−1

∫
∞

‖x‖−1
t−α−1 dt R(dx)

+

∫
‖x‖≤(2θ)−1

∫
∞

‖x‖−1
e−t/2t−α−1 dt R(dx)

≤ α−1
∫

‖x‖>(2θ)−1
‖x‖

αR(dx)+ 2−1C
∫

‖x‖≤(2θ)−1
‖x‖

2 R(dx) < ∞.

Conversely, if R({x : ‖x‖ > θ−1
}) > 0 then there is an ε > 0 such that R({x : ‖x‖ >

θ−1
+ ε}) > 0. We obtain∫

‖x‖>1
exp(θ‖x‖)M(dx) ≥

∫
‖x‖>θ−1+ε

∫
∞

‖x‖−1
exp(εθ t)t−α−1 dt R(dx) = ∞

which implies that
∫
Rd exp(θ‖x‖)µ(dx) = ∞. �

The “finite variation” case is characterized by the following.

Proposition 2.8. Let M and R be related by (2.7), where R satisfies (2.8). Then∫
‖x‖≤1

‖x‖M(dx) < ∞ ⇐⇒ α ∈ (0, 1) and
∫

‖x‖≤1
‖x‖R(dx) < ∞.

Proof. Suppose
∫
‖x‖≤1 ‖x‖M(dx) < ∞. Choose r ≥ 1 such that R({‖x‖ ≤ r}) 6= 0. Then

∞ >

∫
‖x‖≤1

‖x‖M(dx) ≥

∫
‖x‖≤r

‖x‖

∫
‖x‖

−1

0
t−αe−t dt R(dx)

≥

∫
‖x‖≤r

‖x‖R(dx)
∫ r−1

0
t−αe−t dt

which implies α < 1 and
∫
‖x‖≤1 ‖x‖R(dx) < ∞. The converse follows from the following

bounds:∫
‖x‖≤1

‖x‖M(dx) =

∫
‖x‖≤1

‖x‖

∫
‖x‖

−1

0
t−αe−t dt R(dx)
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+

∫
‖x‖>1

‖x‖

∫
‖x‖

−1

0
t−αe−t dt R(dx)

≤ Γ (1 − α)

∫
‖x‖≤1

‖x‖R(dx)+ (1 − α)−1
∫

‖x‖>1
‖x‖

αR(dx). �

The next theorem gives an explicit form of the characteristic function of TαS distributions
and justifies the term “spectral measure” for R.

Theorem 2.9. Let µ be a TαS distribution with Lévy measure given by (2.7), α ∈ (0, 2). If∫
Rd ‖x‖µ(dx) < ∞, then

µ̂(y) = exp
{∫
Rd
ψα(〈y, x〉)R(dx)+ i〈y, b〉

}
, (2.11)

where

ψα(s) =

{
Γ (−α)

[
(1 − is)α − 1 + iαs

]
, α 6= 1

(1 − is) log(1 − is)+ is, α = 1 (2.12)

and b =
∫
Rd xµ(dx). This is always the case when 1 < α < 2, or

α = 1 and
∫

‖x‖>1
‖x‖ log ‖x‖R(dx) < ∞, (2.13)

or

0 < α < 1 and
∫

‖x‖>1
‖x‖R(dx) < ∞. (2.14)

If 0 < α < 1 and∫
‖x‖≤1

‖x‖R(dx) < ∞, (2.15)

then

µ̂(y) = exp
{∫
Rd
ψ0
α(〈y, x〉)R(dx)+ i〈y, b0〉

}
, (2.16)

where

ψ0
α(s) = Γ (−α)

[
(1 − is)α − 1

]
(2.17)

and b0 ∈ Rd is the drift vector. In particular, if µ is a proper TαS distribution with α ∈ (0, 1),
then (2.16) applies.

Before the proof, we will state the limiting behavior of ψα’s at zero and infinity. The
computations are elementary, and thus omitted.
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Lemma 2.10. We have

lim
s→0

s−2ψα(s) = −
1
2
Γ (2 − α), α ∈ (0, 2);

lim
s→∞

s−1ψα(s) = −Γ (1 − α)i, α ∈ (0, 1);

lim
s→∞

(s−1ψ1(s)+ i log s) = −
π

2
+ i, α = 1;

lim
s→∞

s−αψα(s) = Γ (−α)e−iαπ/2, α ∈ (1, 2).

(2.18)

We also have for α ∈ (0, 1)

lim
s→0

s−1ψ0
α(s) = Γ (1 − α)i;

lim
s→∞

s−αψ0
α(s) = Γ (−α)e−iαπ/2.

(2.19)

Consequently, for each α there is a finite positive constant Cα such that for all s ∈ R

C−1
α (s2

∧ |s|α∨1) ≤ |ψα(s)| ≤ Cα(s2
∧ |s|α∨1), α 6= 1;

C−1
1 [s2

∧ |s|(1 + log+
|s|)] ≤ |ψ1(s)| ≤ Cα[s2

∧ |s|(1 + log+
|s|)], α = 1;

C−1
α (|s| ∧ |s|α) ≤ |ψ0

α(s)| ≤ Cα(|s| ∧ |s|α), α ∈ (0, 1).

(2.20)

Proof of Theorem 2.9. Notice that by (2.8) and (2.20) of Lemma 2.10 the integrals in (2.11) and
(2.16) are well defined. Now we will verify that

ψ0
α(s) =

∫
∞

0
(eist

− 1)t−α−1e−t dt α ∈ (0, 1) (2.21)

and

ψα(s) =

∫
∞

0
(eist

− 1 − ist)t−α−1e−t dt α ∈ (0, 2). (2.22)

Consider 0 < α < 1. Let w, z be two complex numbers with R(w),R(z) > 0. Integrating by
parts we get that∫

∞

0
(e−zt

− e−wt )t−α−1dt = Γ (−α)(zα − wα).

Putting z = 1 − is and w = 1 we obtain (2.21). Then∫
∞

0
(eist

− 1 − ist)t−α−1e−t dt = ψ0
α(s)− is

∫
∞

0
t−αe−t dt = ψα(s).

Now let 1 < α < 2. Integrating by parts twice we verify that for R(w),R(z) > 0,∫
∞

0
[e−zt

− e−wt
+ (z − w)t]t−α−1 dt = Γ (−α)(zα − wα).

Taking z = 1 − is and w = 1 we obtain∫
∞

0
(eist

− 1 − ist)t−α−1e−t dt =

∫
∞

0
[e−(1−is)t

− e−t
− ist]t−α−1 dt

+ is
∫

∞

0
(1 − e−t )t−α dt = Γ (−α)[(1 − is)α − 1] + is

Γ (2 − α)

α − 1
= ψα(s).
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There remains α = 1. Take α′
∈ (1, 2). We have just shown that

ψα′(s) =
Γ (2 − α′)

α′

(1 − is)α
′

− 1 + iα′s
α′ − 1

.

Using the dominated convergence theorem on the left hand side (see (2.22)) and differentiation
on the right hand side we pass to the limit as α′

↘ 1. This yields the desired formula for ψ1.
If
∫
Rd ‖x‖µ(dx) < ∞, then µ̂ can be written as

µ̂(y) = exp
(∫
Rd
(ei〈y,x〉

− 1 − i〈y, x〉)M(dx)+ i〈y, b〉

)
, (2.23)

where b =
∫

xµ(dx). Using (2.7), (2.22) and (2.20) we obtain (2.11). The sufficiency of (2.13)
and (2.14) follows from Proposition 2.7.

Now consider α ∈ (0, 1) and
∫
‖x‖≤1 ‖x‖R(dx) < ∞. By Proposition 2.8

∫
‖x‖≤1 ‖x‖M(dx) <

∞, in which case µ̂ can be written as

µ̂(y) = exp
(∫
Rd
(ei〈y,x〉

− 1)M(dx)+ i〈y, b0〉

)
, (2.24)

where b0 is a “natural” drift. Applying (2.7), (2.21) and (2.20) we conclude the proof. �

Definition 2.11. Let X be a random vector having a TαS distribution with the spectral measure
R. We will write X ∼ T Sα(R, b) to indicate that the characteristic function of X is given by
(2.11) and assumptions (2.13) and (2.14) are satisfied in the case α ∈ (0, 1]. If α ∈ (0, 1) and
(2.15) holds, then X ∼ T S0

α(R, b0) means that the characteristic function of X is of the form
(2.16).

Notice that if α ∈ (0, 1) and
∫
Rd ‖x‖R(dx) < ∞, then both forms (2.11) and (2.16)

of characteristic functions are valid for X , X ∼ T S0
α(R, b0) and X ∼ T Sα(R, b), where

b = b0 + Γ (1 − α)
∫
Rd x R(dx).

The above parametrization behaves nicely under convolutions and linear transformations.

Corollary 2.12. Let X, X1, X2 be random vectors in Rd and let V : Rd
7→ Rk be a linear map.

(i) If X i ∼ T Sα(Ri , bi ) are independent, then X1 + X2 ∼ T Sα(R1 + R2, b1 + b2).
(ii) If X ∼ T Sα(R, b) then V (X) ∼ T Sα((R ◦ V −1)|Rd\{0}, V (b)).

The analogous properties hold for the T S0
α parametrization.

Corollary 2.13. Let X ∼ T Sα(R, 0) and R({x : ‖x‖ > θ−1
}) = 0 for some θ > 0. Then for

every y ∈ Rd with ‖y‖ ≤ θ the moment generating function of X exists and is equal to

Ee〈y,X〉
=


exp

[
Γ (−α)

∫ [
(1 − 〈y, x〉)α − 1 + α〈y, x〉

]
R(dx)

]
, α 6= 1

exp
[∫ [

(1 − 〈y, x〉) log(1 − 〈y, x〉)+ 〈y, x〉
]

R(dx)
]
, α = 1.

(2.25)

If X ∼ T S0
α(R, 0) and R({x : ‖x‖ > θ−1

}) = 0, then

Ee〈y,X〉
= exp

[
Γ (−α)

∫
[(1 − 〈y, x〉)α − 1]R(dx)

]
. (2.26)
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Proof. By Proposition 2.7(iv), Eeθ‖X‖ < ∞. Theorem 25.17 in [22] justifies a formal
replacement of y ∈ Rd in (2.11) by −iy ∈ Cd such that ‖y‖ ≤ θ . This gives (2.25). (2.26)
follows by the same argument. �

Example 1. Let q(r, u) = e−r in (2.2). This is a uniform tilting of a stable Lévy measure
M0 in all directions, M(dx) = e−‖x‖M0(dx). It is easy to see that the measures Q and
R are concentrated on Sd−1 on which they coincide with σ . Let X ∼ T Sα(R, 0). By
Proposition 2.7(iv), Ee‖X‖ < ∞. The moment generating function of X is given by (2.25).

Example 2. Let d = 1 and X ∼ T S0
α(cδ1, 0), where 0 < α < 1 and c > 0. Then X is a

non-negative random variable and

Ee−λX
= exp{−Γ (−α)c[1 − (1 + λ)α]} λ ≥ −1.

When α = 1/2, X has the well known inverse Gaussian distribution; see [22, p. 233].

At the conclusion of this section we will relate parameters of proper TαS distributions to the
stable ones.

Lemma 2.14. Let M be a Lévy measure of a proper TαS distribution, as in (2.2), with the
spectral measure R. Let M0 be the Lévy measure of an α-stable distribution given by (2.1). Then

M0(A) =

∫
Rd

∫
∞

0
IA(t x)t−α−1 dt R(dx) A ∈ B(Rd). (2.27)

Furthermore,

σ(B) =

∫
Rd

IB

(
x

‖x‖

)
‖x‖

αR(dx), B ∈ B(Sd−1). (2.28)

Proof. Using (2.5) and (2.4) we get for every A ∈ B(Rd)∫
Rd

∫
∞

0
IA(t x)t−α−1 dt R(dx) =

∫
Rd

∫
∞

0
IA

(
t

x
‖x‖2

)
t−α−1

‖x‖
α dt Q(dx)

=

∫
Rd

∫
∞

0
IA

(
s

x
‖x‖

)
s−α−1 ds Q(dx)

=

∫
Sd−1

∫
∞

0
IA(su)s−α−1 dsσ(du) = M0(A).

Now we verify the second formula of the lemma:∫
Rd

IB

(
x

‖x‖

)
‖x‖

αR(dx) =

∫
Rd

IB

(
x

‖x‖

)
Q(dx)

=

∫
B

∫
∞

0
Q(ds|u)σ (du) = σ(B). �

Let µ0 be an α-stable distribution with Lévy measure M0 given by (2.1). We have

µ̂0(y) =


exp

[
−cα

∫
Sd−1

|〈y, u〉|
α
(

1 − i tan
πα

2
sgn〈y, u〉

)
σ(du)+ i〈y, a〉

]
α 6= 1,

exp
[
−c1

∫
Sd−1

(
|〈y, u〉| + i

2
π

〈y, u〉 log |〈y, u〉|

)
σ(du)+ it〈y, a〉

]
α = 1

(2.29)
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where cα = |Γ (−α) cos(πα2 )| when α 6= 1 and c1 = π/2. See [22, Theorem 14.10].

Definition 2.15. We will write Y ∼ Sα(σ, a) to indicate that Y is an α-stable random vector with
the characteristic function as in (2.29).

Notice that cασ (not σ ) is traditionally called the spectral measure of a stable distribution
µ [21, p. 66]. We will use the notation of Definition 2.15, however, for the sake of consistency
with the notation of tempered stable distributions.

3. TαS Lévy processes: Short and long time behavior

A Lévy process {X (t) : t ≥ 0} in Rd such that X (1) has a TαS distribution will be called a
TαS Lévy process. Proper TαS Lévy processes are defined analogously. To investigate the short
and long time behavior of X (t), we define the time rescaled process

Xh(t) = X (ht) h > 0, t ≥ 0. (3.1)

The following theorem justifies and quantifies the statement that a tempered stable process in a
short time looks as a stable process while in a large time scale it looks as a Brownian motion.

Below,
d
→ denotes the weak convergence of processes in the space D([0,∞),Rd), of functions

from [0,∞) into Rd right-continuous with left limits, equipped with the Skorohod topology.

Theorem 3.1. Let {X (t) : t ≥ 0} be a TαS Lévy process in Rd and let R be the spectral measure
of L(X (1)).
(i) Short time behavior. Suppose that∫

Rd
‖x‖

αR(dx) < ∞ (3.2)

and let σ be a finite measure on Sd−1 given by (2.28). Assume that X (1) ∼ T S0
α(R, 0) when

α ∈ (0, 1) and that X (1) ∼ T Sα(R, 0) when α ∈ (1, 2). Then

h−1/αXh
d
→ Y as h → 0,

where {Y (t) : t ≥ 0} is a strictly α-stable Lévy process with Y (1) ∼ Sα(σ, 0). If α = 1, assume
additionally that

∫
Rd ‖x‖| log ‖x‖|R(dx) < ∞ and X (1) ∼ T Sα(R, 0). Then

h−1 Xh − ah
d
→ Y as h → 0,

where

ah(t) = t log h
∫
Rd

x R(dx),

and {Y (t) : t ≥ 0} is a 1-stable Lévy process with Y (1) ∼ S1(σ, b) and

b =

∫
Rd

x(1 − log ‖x‖)R(dx).

(ii) Long time behavior. Suppose that∫
Rd

‖x‖
2 R(dx) < ∞ (3.3)
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and let X (1) ∼ T Sα(R, 0), α ∈ (0, 2). Then

h−1/2 Xh
d
→ B as h → ∞,

where {B(t) : t ≥ 0} is a Brownian motion with the characteristic function

Eei〈y,B(t)〉
= exp

{
−

t
2
Γ (2 − α)

∫
Rd

〈y, x〉
2 R(dx)

}
.

Proof. (i). First we consider α 6= 1. Since {h−1/αXh(t) : t ≥ 0} is a Lévy process, by a theorem
due to Skorohod [12, Theorem 15.17], it is enough to show the convergence in distribution of
h−1/αXh(1) to Y (1). We will show the convergence of the respective characteristic functions.
For α ∈ (0, 1) we have

E exp[i〈y, h−1/αXh(1)〉] = E exp[i〈h−1/α y, X (h)〉]

= exp
[∫
Rd

hψ0
α(h

−1/α
〈y, x〉)R(dx)

]
, (3.4)

and for α ∈ (1, 2) we have

E exp[i〈y, h−1/αXh(1)〉] = exp
[∫
Rd

hψα(h−1/α
〈y, x〉)R(dx)

]
. (3.5)

Using the upper bounds (2.20) of Lemma 2.10 and (3.2) we justify the passage h → 0 under the
above integrals. Since ψ0

α(−s) = ψ0
α(s) and ψα(−s) = ψα(s) (see (2.21) and (2.22)), we get by

(2.19)

lim
h→0

hψ0
α(h

−1/α
〈y, x〉) = Γ (−α)|〈y, x〉|

α exp
{
−i
απ

2
sgn〈y, x〉

}
= Γ (−α) cos

(απ
2

)
|〈y, x〉|

α
(

1 − tan
απ

2
sgn〈y, x〉

)
.

Therefore, the limit in (3.4) coincides with (2.29) for a = 0 and α ∈ (0, 1). Similarly we get the
limit in (3.5) as h → 0. This establishes (i) for α 6= 1.

If α = 1 then

E exp[i〈y, h−1 Xh(1)− ah(1)〉]

= exp
{∫
Rd

[hψ1(h−1
〈y, x〉)− i〈y, x〉 log h]R(dx)

}
. (3.6)

Putting v = 〈y, x〉 we can write

hψ1(h−1v)− iv log h = h log(1 + h−2v2)1/2 − v tan−1(h−1v)

+ i[v − v log(h2
+ v2)1/2 − h tan−1(h−1v)].

Therefore

|hψ1(h−1v)− iv log h| ≤ h log(1 + h−1
|v|)+ |v|

π

2
+ |v| max{| log |v||, | log(|v| + 1)|} + 2|v|

≤ C |v|(1 + | log |v||)

uniformly over h ∈ (0, 1], where C is a universal constant. In the first inequality we used
the monotonicity of the logarithm and that | tan−1 u| ≤ u, and in the second one, the bounds
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log(1 + u) ≤ u and | log(1 + u)| ≤ | log u| + log 2, for all u > 0. We have obtained a bound

|hψ1(h−1
〈y, x〉)− i〈y, x〉 log h| ≤ C |〈y, x〉|(1 + | log |〈y, x〉||).

Therefore, by the assumption on the integrability of R we may pass to the limit under the integral
sign in (3.6). Applying (2.18) and (2.28) we get

lim
h→0

E exp[i〈y, h−1 Xh(1)− ah(1)〉]

= exp
{∫
Rd

[
−
π

2
|〈y, x〉| + i(〈y, x〉 − 〈y, x〉 log |〈y, x〉|)

]
R(dx)

}
= exp

{
−c1

∫
Rd

(
|〈y, x〉| + i

2
π

〈y, x〉 log
∣∣∣∣〈y,

x
‖x‖

〉∣∣∣∣) R(dx)

+ i
∫
Rd

〈y, x〉(1 − log ‖x‖)R(dx)
}

= exp
{
−c1

∫
Sd−1

(
|〈y, u〉| + i

2
π

〈y, u〉 log |〈y, u〉|

)
σ(du)+ i〈y, b〉

}
.

This completes the proof of part (i).
Now we will prove (ii). We have

E exp[i〈y, h−1/2 Xh(1)〉] = exp
[∫
Rd

hψα(h−1/2
〈y, x〉)R(dx)

]
. (3.7)

Using the upper bounds (2.20) of Lemma 2.10 and (3.3) we justify the passage h → ∞ under
the integral. Applying (2.18) we get

lim
h→∞

hψα(h−1/2
〈y, x〉) = −

1
2
Γ (2 − α)〈y, x〉

2

which completes the proof. �

Remark 3.2. Under different and more complicated assumptions on the spectral measure R it
is possible to obtain β-stable behavior of X at zero and/or infinity, where β ∈ (α, 2). These
extensions will be considered elsewhere.

4. Absolute continuity with respect to stable processes

In the previous section we have shown that in a short time a proper tempered stable Lévy
process looks like a stable one. In this section we relate the distributions of these two processes.

A process {X (t) : t ≥ 0} in Rd is said to be canonical if X (t, ω) = ω(t), t ≥ 0, ω ∈ Ω ,
where Ω = D([0,∞),Rd); Ω is equipped with the σ -field F = σ {X (s) : s ≥ 0} and
the right-continuous natural filtration Ft =

⋂
s>t σ {X (u) : u ≤ s}, t ≥ 0. The canonical

process is completely described by a probability measure P on (Ω ,F). As usual, we set
1X (t) = X (t)− X (t−). By P|Ft we will denote the restriction of P to the σ -field Ft .

Theorem 4.1. In the above setting consider two probability measures P0 and P on (Ω ,F) such
that the canonical process {X (t) : t ≥ 0} under P0 is a Lévy α-stable process while under P
it is a proper TαS Lévy process. Specifically, assume that under P0, X (1) ∼ Sα(σ, a), where σ
is related to R by (2.28) and α ∈ (0, 2), while under P, X (1) ∼ T S0

α(R, b) when α ∈ (0, 1)
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and X (1) ∼ T Sα(R, b) when α ∈ [1, 2). Let M, the Lévy measure corresponding to R, be as in
(2.2), where q(0+, u) = 1 for all u ∈ Sd−1. Then
(i) P0|Ft and P|Ft are mutually absolutely continuous for every t > 0 if and only if∫

Sd−1

∫ 1

0
[1 − q(r, u)]2 r−α−1 drσ(du) < ∞ (4.1)

and

b − a =


0, 0 < α < 1,∫
Rd

x(log ‖x‖ − 1)R(dx), α = 1,

Γ (1 − α)

∫
Rd

x R(dx), 1 < α < 2.

(4.2)

Condition (4.1) implies that the integrals in (4.2) exist. Furthermore, if either (4.1) or (4.2) fails,
then P0|Ft and P|Ft are singular for all t > 0.
(ii) If (4.1) and (4.2) hold, then for each t > 0

dP
dP0 |Ft

= eZ(t), (4.3)

where {Z(t) : t ≥ 0} is a Lévy process on (Ω ,F, P0) given by

Z(t) = lim
ε↓0

{ ∑
{s≤t :‖1X (s)‖>ε}

log q
(

‖1X (s)‖,
1X (s)

‖1X (s)‖

)

+ t
∫

Sd−1

∫
∞

ε

[1 − q(r, u)] r−α−1 drσ(du)

}
.

The above convergence is P0-a.s., uniform in t on any bounded interval. The Lévy measure ν of
L{Z(1)} is concentrated on (−∞, 0) and determined by∫ 0

−∞

F(s)ν(ds) =

∫
Sd−1

∫
∞

0
F(log q(r, u))r−α−1 drσ(du) (4.4)

for every Borel function F. The characteristic function of Z(1) is of the form

EP0eiθ Z(1)
= exp

{
iθa0 +

∫ 0

−∞

[eiθv
− 1 − iθv I[−1,0)(v)]ν(dv)

}
, (4.5)

where

a0 = −

∫ 0

−∞

[ev − 1 − v I[−1,0)(v)]ν(dv).

Proof. Part (i). Let M0 and M be as in (2.1) and (2.2). We have

dM
dM0

(x) = q
(

‖x‖,
x

‖x‖

)
, x ∈ Rd

\ {0}. (4.6)

Indeed, for every A ∈ B(Rd)∫
A

q
(

‖x‖,
x

‖x‖

)
M0(dx) =

∫
Sd−1

∫
∞

0
IA(ru)q(r, u)r−α−1 drσ(du) = M(A).



J. Rosiński / Stochastic Processes and their Applications 117 (2007) 677–707 693

Put φ(x) = log q(‖x‖, x
‖x‖
). According to Theorem 33.1 in [22], P0|Ft and P|Ft are mutually

absolutely continuous for every t > 0 if and only if∫
Rd
(eφ(x)/2 − 1)2 M0(dx) < ∞ (4.7)

and

Bα = 0. (4.8)

Here

Bα =



b +

∫
‖x‖≤1

x M(dx)−

(
a +

∫
‖x‖≤1

x M0(dx)
)

−

∫
‖x‖≤1

x(M − M0)(dx),

0 < α < 1,

b −

∫
‖x‖>1

x M(dx)−

(
a − c

∫
Sd−1

uσ(du)
)

−

∫
‖x‖≤1

x(M − M0)(dx),

α = 1,

b −

∫
‖x‖>1

x M(dx)−

(
a −

∫
‖x‖>1

x M0(dx)
)

−

∫
‖x‖≤1

x(M − M0)(dx),

1 < α < 2.

In the case α = 1, c = 1 − γ , where γ is the Euler constant. (This is the same constant c as
in [22, Lemma 14.11]; to see that, use integration by parts and [10, 8.2301–8.2302].)

(4.7) can be written as∫
Rd

[
1 − q1/2

(
‖x‖,

x
‖x‖

)]2

M0(dx) < ∞.

Since the integrand is bounded by 1, we may consider only integration over {‖x‖ ≤ 1}. Applying
elementary inequalities 1

4 (1− x)2 ≤ (1−
√

x)2 ≤ (1− x)2 for x ∈ [0, 1], we infer that the above
condition is equivalent to∫

‖x‖≤1

[
1 − q

(
‖x‖,

x
‖x‖

)]2

M0(dx) < ∞. (4.9)

This yields (4.1), after a change of variable.
Now we will prove that (4.2) is equivalent to (4.8). First we remark that by (4.9)∫

‖x‖≤1
‖x‖(M0 − M)(dx) < ∞. (4.10)

Indeed,∫
‖x‖≤1

‖x‖(M0 − M)(dx) =

∫
‖x‖≤1

‖x‖

[
1 − q

(
‖x‖,

x
‖x‖

)]
M0(dx)

≤

(∫
‖x‖≤1

‖x‖
2 M0(dx)

)1/2
(∫

‖x‖≤1

[
1 − q

(
‖x‖,

x
‖x‖

)]2

M0(dx)

)1/2

< ∞.

If 0 < α < 1, then Bα = b − a = 0 by (4.2). Let 1 < α < 2. In this case∫
‖x‖>1

‖x‖M(dx) ≤

∫
‖x‖>1

‖x‖M0(dx) < ∞.
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Combining this with (4.10) we get∫
Rd

‖x‖(M0 − M)(dx) < ∞.

Then, using (2.7) and (2.27) and the integration by parts, we obtain∫
Rd

‖x‖(M0 − M)(dx) =

∫
Rd

∫
∞

0
‖x‖t−α(1 − e−t )dt R(dx)

= −Γ (1 − α)

∫
Rd

‖x‖R(dx).

Thus
∫
Rd ‖x‖R(dx) < ∞. Applying the same steps we get

Bα =

∫
Rd

x(M0 − M)(dx)+ b − a = −Γ (1 − α)

∫
Rd

x R(dx)+ b − a = 0,

where the last equation follows from (4.2), proving (4.8).
It remains to prove (4.8) in the case α = 1. We will evaluate parts of B1 and then combine

them to show that B1 = 0. By (4.10) we have

∞ >

∫
‖x‖≤1

‖x‖(M0 − M)(dx) =

∫
Rd

‖x‖

∫
‖x‖

−1

0
t−1(1 − e−t )dt R(dx)

≥
1
2

∫
‖x‖≤1

‖x‖

∫
‖x‖

−1

1
t−1 dt R(dx) =

1
2

∫
‖x‖≤1

‖x‖| log ‖x‖|R(dx).

Combining this with (2.13), we get
∫
Rd ‖x‖| log ‖x‖|R(dx) < ∞. This makes the integral in

(4.2) well defined and validates the following computation.∫
‖x‖≤1

x(M0 − M)(dx) =

∫
Rd

x
∫

‖x‖
−1

0
t−1(1 − e−t )dt R(dx)

=

∫
Rd

x(E1(‖x‖
−1)− log ‖x‖ + γ )R(dx)

where E1(v) =
∫

∞

v
t−1 exp(−t) dt is the exponential integral function [1, 5.1.39]. Next we

notice that by (2.13),
∫
‖x‖>1 ‖x‖M(dx) < ∞ (see Proposition 2.7(ii)). Moreover,∫

‖x‖>1
x M(dx) =

∫
Rd

x
∫

∞

‖x‖−1
t−1e−t dt R(dx) =

∫
Rd

x E1(‖x‖
−1)R(dx).

Combining these evaluations we get

B1 = b −

∫
Rd

x E1(‖x‖
−1)R(dx)− a + (1 − γ )

∫
Sd−1

uσ(du)

+

∫
Rd

x(− log ‖x‖ + E1(‖x‖
−1)+ γ )R(dx)

= b − a + (1 − γ )

∫
Rd

x R(dx)−

∫
Rd

x log ‖x‖R(dx)+ γ

∫
Rd

x R(dx) = 0.

The conclusion of the proof of part (i) comes from the dichotomy result of [7] which says that,
since M and M0 are mutually absolutely continuous by (4.6), P0|Ft and P|Ft are either mutually
absolutely continuous or singular for all t > 0.
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Part (ii) is a direct application of Theorem 33.2 in [22], where the form of Radon–Nikodym
derivative is specified for two mutually absolutely continuous Lévy processes. �

Remark 4.2. Condition (4.1) fails when the function q(· , u) decreases too rapidly near zero.
Intuitively, this means that the tempering is too strong to preserve the almost sure local structure
of sample paths of the stable process. In the next section we will give a more tangible probabilistic
interpretation of this phenomenon.

We will consider two examples as an illustration of Theorem 4.1. The first one is a
continuation of Example 1 of Section 2.

Example 3. Let q(r, u) = e−r and let σ be any finite measure on Sd−1. It is easy to see
that condition (4.1) holds. Therefore, the density transformation (4.3) changes a Lévy α-stable
process {X (t) : t ≥ 0} with X (1) ∼ Sα(σ, a) into a TαS Lévy process with X (1) ∼ T Sα(σ, b)
having finite exponential moments. (4.2) yields

b − a =


Γ (1 − α)

∫
Sd−1

uσ(du) α 6= 1,

−

∫
Sd−1

uσ(du) α = 1.

(See Definition 2.11 for the relation between the two parametrizations in the case α ∈ (0, 1).)
The process {Z(t) : t ≥ 0} of (4.3) is an α-stable process in R with only negative jumps and its
Lévy density specified by (4.4) equals

dν
ds

= σ(Sd−1)|s|−α−1 I(−∞,0)(s).

Example 4. Let q(r, u) = e−rβ , where 0 < β ≤ α/2. Then (4.1) fails for any non-zero measure
σ . Indeed,∫ 1

0
[1 − q(r, u)]2 r−α−1dr ≥

1
4

∫ 1

0
r2β−α−1dr = ∞.

5. Shot noise representation of proper TαS laws and processes

In this section we give probabilistic representations of proper TαS distributions and the
corresponding Lévy processes. They reveal the nature of tempering of stable jumps. These are
shot-noise-type series based on marked Poisson point processes [19] (cf. [17]). The difficulty of
getting such representations for tempered stable laws is that the tail of the radial component
of Lévy measure M in (2.2) does not have an explicit inverse. This is the case even in the
simplest situation with d = 1, σ = δ1 and q(r, u) = e−r , when the tail is of the form
x 7→

∫
∞

x e−rr−α−1 dr . Therefore, the usual method with the inverse of Lévy measure is hard to
practically implement (cf. [19]). The representation given below does not require making such
an inverse, works for any function q(r, u), and is more revealing about the structure of TαS laws.

We will now fix the notation. Let M be the Lévy measure of a proper tempered α-stable
distribution on Rd as in (2.2). Let Q and R be the measures on Rd associated with M , given by
(2.4) and (2.5). By (2.10) and (2.28) the following holds:

‖σ‖ := σ(Sd−1) = Q(Rd) =

∫
Rd

‖x‖
αR(dx) < ∞.
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Let {v j } be an iid sequence of random vectors in Rd with the common distribution Q/‖σ‖.
Let {u j } be an iid sequence of uniform random variables on (0, 1) and let {e j } and {e′

j } be iid
sequences of exponential random variables with parameter 1. Assume that {v j }, {u j }, {e j }, and
{e′

j } are independent. Put γ j = e′

1 + · · · + e′

j ; {γ j } forms a Poisson point process on (0,∞) with
the Lebesgue intensity measure. As usual, x ∧ y := min{x, y}.

Theorem 5.1. Under the above assumptions we have the following.
(i) If α ∈ (0, 1), or if α ∈ [1, 2) and Q is symmetric, set

S0 =

∞∑
j=1

((
αγ j

‖σ‖

)−1/α

∧ e j u
1/α
j ‖v j‖

−1

)
v j

‖v j‖
. (5.1)

Then the series converges a.s.; S0 ∼ T S0
α(R, 0) for α ∈ (0, 1) and S0 ∼ T Sα(R, 0) for

α ∈ [1, 2).
(ii) If α ∈ [1, 2) and Q is non-symmetric, assume additionally that

∫
Rd ‖x‖| log ‖x‖|R(dx) < ∞

when α = 1 and that
∫
Rd ‖x‖R(dx) < ∞ when α ∈ (1, 2). Put

S1 =

∞∑
j=1

[((
αγ j

‖σ‖

)−1/α

∧ e j u
1/α
j ‖v j‖

−1

)
v j

‖v j‖
−

(
α j
‖σ‖

)−1/α

x0

]
+ b (5.2)

where

x0 = E
v j

‖v j‖
= ‖σ‖

−1
∫

Sd−1
uσ(du),

b =


α−1/αζ

(
1
α

)
‖σ‖

1/αx0 − Γ (1 − α)x1, 1 < α < 2,

(2γ + log ‖σ‖)x1 −

∫
Rd

x log ‖x‖R(dx), α = 1,
(5.3)

ζ denotes the Riemann zeta function, γ = 0.577 . . . is the Euler constant, and

x1 =

∫
Rd

x R(dx).

Then the series (5.2) converges a.s. and S1 ∼ T Sα(R, 0).

Before the proof let us comment on a practical issue of a simulation of v j ’s.

Remark 5.2. It is easier to use Q for the purpose of simulation than the measure R. Indeed,
if {(η j , ξ j )} is an iid sequence such that L{ξ j } = σ/‖σ‖ and conditionally on ξ j = u, the
distribution of η j is Q(·|u) (as in (2.4)), then v j := η jξ j are iid with the common distribution
Q/‖σ‖.

However, one can also use measure R for simulation in the following way. Define a probability
measure R1 by R1(dx) = ‖σ‖

−1
‖x‖

αR(dx), x ∈ Rd . Let {w j } be an iid sequence with the
common distribution R1. Then v j := w j/‖w j‖

2 are iid with the common distribution Q/‖σ‖.
Substituting such v j ’s into the corresponding series we obtain representations of TαS random
vectors in terms of w j , as in [20].

Proof of Theorem 5.1. To prove this theorem, we use [19, Theorem 4.1] in the case of

H(γ j , (v j , e j , u j )) :=

((
αγ j

‖σ‖

)−1/α

∧ e j u
1/α
j ‖v j‖

−1

)
v j

‖v j‖
.
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To this end we first need to show that for every 0 6∈ A ∈ B(Rd)∫
∞

0
P(H(s, (v1, e1, u1)) ∈ A) ds = M(A),

that is,∫
∞

0
P

{((
αs
‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

)
v1

‖v1‖
∈ A

}
ds = M(A). (5.4)

It is enough to verify this equation for the sets of the form A = {x ∈ Rd
: ‖x‖ > a, x

‖x‖
∈ B},

where a > 0 and B ∈ B(Sd−1). For such A the left hand side of (5.4) can be written as

E
∫

∞

0
I

((
αs
‖σ‖

)−1/α

> a, e1u1/α
1 > a‖v1‖,

v1

‖v1‖
∈ B

)
ds

= α−1
‖σ‖a−αE I

(
e1u1/α

1 > a‖v1‖,
v1

‖v1‖
∈ B

)
= α−1a−α

∫
B

∫
∞

0
P(e1u1/α

1 > as)Q(ds|u)σ (du)

=

∫
B

∫
∞

0

∫
∞

a
e−rsr−α−1 dr Q(ds|u)σ (du)

=

∫
B

∫
∞

a
q(r, u)r−α−1 drσ(du) = M(A).

This proves (5.4).
If α ∈ (0, 1), then by Proposition 2.8

∫
‖x‖≤1 ‖x‖M(dx) < ∞. Equivalently, by (5.4),∫

∞

0
E(‖H(s, (v1, e1, u1))‖I (‖H(s, (v1, e1, u1))‖ ≤ 1)) ds =

∫
‖x‖≤1

‖x‖M(dx) < ∞.

Therefore, Theorem 4.1(A) in [19] applies and proves part (i) when α ∈ (0, 1).
If α ∈ [1, 2), then∫

∞

0
E(‖H(s, (v1, e1, u1))‖I (‖H(s, (v1, e1, u1))‖ > 1)) ds =

∫
‖x‖>1

‖x‖M(dx) < ∞.

Therefore, from Theorem 4.1(B) in [19] we infer that

S2 =

∞∑
j=1

[((
αγ j

‖σ‖

)−1/α

∧ e j u
1/α
j ‖v j‖

−1

)
v j

‖v j‖
− c j

]
(5.5)

converges a.s. and S2 ∼ T Sα(R, 0), where

c j =

∫ j

j−1
E

[((
αs
‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

)
v1

‖v1‖

]
ds. (5.6)

In general, the right hand side in (5.6) does not seem to have a closed form. However, when Q is
symmetric then trivially we have c j = 0. In this case (5.5) coincides with (5.1). This completes
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the proof of (i). To establish (ii), it remains to show that

∞∑
j=1

[(
α j
‖σ‖

)−1/α

x0 − c j

]
= b, (5.7)

where b is given by (5.3).
First we consider the case α ∈ (1, 2). Define for j ≥ 1

c′

j =

∫ j

j−1
E

[(
αs
‖σ‖

)−1/α
v1

‖v1‖

]
ds =

α1−1/α
‖σ‖

1/α

α − 1
[ j1−1/α

− ( j − 1)1−1/α
]x0. (5.8)

We have

‖c′

j − c j‖ ≤

∫ j

j−1
E

{(
αs
‖σ‖

)−1/α

−

[(
αs
‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

]}
ds.

Observe that for every θ > 0∫
∞

0

{(
αs
‖σ‖

)−1/α

−

[(
αs
‖σ‖

)−1/α

∧ θ

]}
ds =

‖σ‖

α(α − 1)
θ1−α. (5.9)

Using this identity for θ = e1u1/α
1 ‖v1‖

−1 pointwise, we get

∞∑
j=1

‖c′

j − c j‖ ≤ E
∫

∞

0

{(
αs
‖σ‖

)−1/α

−

[(
αs
‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

]}
ds

=
‖σ‖

α(α − 1)
E[e1−α

1 u−1+1/α
1 ‖v1‖

α−1
]

=
Γ (2 − α)

α − 1
‖σ‖E‖v1‖

α−1
=

Γ (2 − α)

α − 1

∫
Rd

‖x‖R(dx) < ∞. (5.10)

Using (5.9) again we get

∞∑
j=1

(c′

j − c j ) = E

{∫
∞

0

((
αs
‖σ‖

)−1/α

−

[(
αs
‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

])
ds

v1

‖v1‖

}

= E
{

‖σ‖

α(α − 1)
e1−α

1 u−1+1/α
1 ‖v1‖

α−1 v1

‖v1‖

}
=

Γ (2 − α)

α − 1

∫
Rd

x‖x‖
α−2 Q(dx)

=
Γ (2 − α)

α − 1

∫
Rd

x R(dx) = −Γ (1 − α)x1.

Then we have

n∑
j=1

[(
α j
‖σ‖

)−1/α

x0 − c′

j

]
=

(
n∑

j=1

j−1/α
−

α

α − 1
n1−1/α

)
α−1/α

‖σ‖
1/αx0.
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From a classical formula [1, 23.2.9],

n∑
j=1

j−z
−

n1−z

1 − z
= ζ(z)+ z

∫
∞

n

s − [s]
sz+1 ds, R(z) > 0, R(z) 6= 1, (5.11)

we obtain
∞∑
j=1

[(
α j
‖σ‖

)−1/α

x0 − c′

j

]
= ζ

(
1
α

)
α−1/α

‖σ‖
1/αx0.

Consequently,

∞∑
j=1

[(
α j
‖σ‖

)−1/α

x0 − c j

]
=

∞∑
j=1

[(
α j
‖σ‖

)−1/α

x0 − c′

j

]
+

∞∑
j=1

(c′

j − c j )

= ζ

(
1
α

)
α−1/α

‖σ‖
1/αx0 − Γ (1 − α)x1 = b

which proves (5.7) in the case α ∈ (1, 2). We will also record the following estimate for later
use:

∞∑
j=1

∥∥∥∥∥
(
α j
‖σ‖

)−1/α

x0 − c j

∥∥∥∥∥ ≤

∞∑
j=1

∥∥∥∥∥
(
α j
‖σ‖

)−1/α

x0 − c′

j

∥∥∥∥∥+

∞∑
j=1

‖c′

j − c j‖

=

∞∑
j=1

(
α

α − 1
[ j1−1/α

− ( j − 1)1−1/α
] − j−1/α

)

×α−1/α
‖σ‖

1/α
‖x0‖ +

∞∑
j=1

‖c′

j − c j‖

≤ α−1/α
|ζ(1/α)|‖σ‖

1/α
+

Γ (2 − α)

α − 1

∫
Rd

‖x‖R(dx)

= C1‖σ‖
1/α

+ C2

∫
Rd

‖x‖R(dx). (5.12)

The first equality we deduce from the mean value theorem for s 7→
α
α−1 s1−1/α; the last inequality

holds because ‖x0‖ ≤ 1, (5.10) and (5.11).
Now we consider the case α = 1. Proceeding like we did above, define for j ≥ 2

c′

j =

∫ j

j−1
E

[(
s

‖σ‖

)−1
v1

‖v1‖

]
ds = (log j − log( j − 1))‖σ‖x0 (5.13)

and put c′

1 = 0. Observe that for every θ > 0∫
∞

1

{(
s

‖σ‖

)−1

−

[(
s

‖σ‖

)−1

∧ θ

]}
ds

= {θ − ‖σ‖ log θ + ‖σ‖ log ‖σ‖ − ‖σ‖} I (θ ≤ ‖σ‖)

≤ ‖σ‖ log+

(
‖σ‖

θ

)
. (5.14)



700 J. Rosiński / Stochastic Processes and their Applications 117 (2007) 677–707

Thus,

∞∑
j=2

‖c′

j − c j‖ ≤ E
∫

∞

1

{(
s

‖σ‖

)−1

−

[(
s

‖σ‖

)−1

∧ e1u1‖v1‖
−1

]}
ds

≤ ‖σ‖E log+

(
‖σ‖‖v1‖

e1u1

)
≤ ‖σ‖ (| log ‖σ‖| + E | log ‖v1‖| + E | log e1u1|)

= ‖σ‖| log ‖σ‖| +

∫
Rd

| log ‖x‖|‖x‖R(dx)+ K‖σ‖ < ∞ (5.15)

where K = E | log e1u1| < ∞. We will now compute
∑

∞

j=1(c
′

j − c j ). Observe that for θ > 0∫ 1

0

(
s

‖σ‖

)−1

∧ θ ds = θ I (θ ≤ ‖σ‖)+ {‖σ‖ − ‖σ‖ log ‖σ‖ + ‖σ‖ log θ} I (θ > ‖σ‖).

Combining this identity with (5.14) we get

−

∫ 1

0

(
s

‖σ‖

)−1

∧ θ ds +

∫
∞

1

{(
s

‖σ‖

)−1

−

[(
s

‖σ‖

)−1

∧ θ

]}
ds

= ‖σ‖(log ‖σ‖ − log θ − 1).

Using this formula for θ = e1u1‖v1‖
−1 pointwise, we get

∞∑
j=1

(c′

j − c j ) = E

{[
−

∫ 1

0

((
s

‖σ‖

)−1

∧ e1u1‖v1‖
−1

)
ds

+

∫
∞

1

((
s

‖σ‖

)−1

−

[(
s

‖σ‖

)−1

∧ e1u1‖v1‖
−1

])
ds

]
v1

‖v1‖

}

= ‖σ‖E
{
(log ‖σ‖ + log ‖v1‖ − log(e1u1)− 1)

v1

‖v1‖

}
.

Now we find that the density of e1u1 is the exponential integral function E1(x) =∫
∞

x t−1 exp(−t) dt . Hence

E {log(e1u1)} =

∫
∞

0
log x E1(x) dx = −1 − γ

where γ is the Euler constant [10, 6.234]. Consequently,

∞∑
j=1

(c′

j − c j ) = ‖σ‖E
{
v1

‖v1‖
(log ‖σ‖ + log ‖v1‖ + γ )

}
=

∫
Rd

x
‖x‖

[log ‖σ‖ + log ‖x‖ + γ ]Q(dx)

=

∫
Rd

x[γ + log ‖σ‖ − log ‖x‖]R(dx)

= (γ + log ‖σ‖)x1 −

∫
Rd

x log ‖x‖R(dx).
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On the other hand, for every n ≥ 1
n∑

j=1

[(
j

‖σ‖

)−1

x0 − c′

j

]
=

(
n∑

j=1

j−1
− log n

)
‖σ‖x0.

Since

lim
n→∞

(
n∑

j=1

j−1
− log n

)
= γ, (5.16)

we get
∞∑
j=1

[(
j

‖σ‖

)−1

x0 − c′

j

]
= γ ‖σ‖x0 = γ x1.

Consequently,
∞∑
j=1

[(
j

‖σ‖

)−1

x0 − c j

]
=

∞∑
j=1

[(
j

‖σ‖

)−1

x0 − c′

j

]
+

∞∑
j=1

(c′

j − c j )

= (2γ + log ‖σ‖)x1 −

∫
Rd

0

x log ‖x‖R(dx) = b.

This establishes (5.7) and completes the proof. For future use we also record the following
estimate:

∞∑
j=1

∥∥∥∥∥
(

j
‖σ‖

)−1

x0 − c j

∥∥∥∥∥ ≤

∞∑
j=1

∥∥∥∥∥
(

j
‖σ‖

)−1

x0 − c′

j

∥∥∥∥∥+

∞∑
j=1

‖c′

j − c j‖

=

(
1 +

∞∑
j=1

(log j − log( j − 1)− j−1)

)
‖σ‖‖x0‖

+

∞∑
j=1

‖c′

j − c j‖

≤ C‖σ‖ + ‖σ‖| log ‖σ‖| +

∫
Rd

| log ‖x‖|‖x‖R(dx) (5.17)

where C is a numerical constant. In the last bound we used that ‖x0‖ ≤ 1 and (5.15). �

The main difficulty in part (ii) of Theorem 5.1 was to find an explicit centering of the series.
Besides the theoretical interest, explicit centers are needed for practical implementation of the
representations, e.g., for simulation. Once we have a shot noise representation of an infinitely
divisible law it is easy to give a shot noise representation of the corresponding Lévy process.

Theorem 5.3. With the notation and assumptions of Theorem 5.1, let {τ j } be an iid sequence of
uniform random variables in [0, T ], where T > 0 is fixed. Assume that {τ j } is independent of the
random sequences {v j }, {u j }, {e j }, and {γ j }. Let x0, x1, ζ , and γ be as in Theorem 5.1.
(i) If α ∈ (0, 1), or if α ∈ [1, 2) and Q is symmetric, set

X0(t) =

∞∑
j=1

I(0,t](τ j )

((
αγ j

T ‖σ‖

)−1/α

∧ e j u
1/α
j ‖v j‖

−1

)
v j

‖v j‖
, t ∈ [0, T ]. (5.18)
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Then the series converges a.s. uniformly in t ∈ [0, T ] to a Lévy process such that X0(t) ∼

T S0
α(t R, 0) when α ∈ (0, 1) and X0(t) ∼ T Sα(t R, 0) when α ∈ [1, 2).

(ii) If α ∈ [1, 2) and Q is non-symmetric, assume additionally that
∫
Rd ‖x‖| log ‖x‖|R(dx) < ∞

when α = 1 and that
∫
Rd ‖x‖R(dx) < ∞ when α ∈ (1, 2). Put

X1(t) =

∞∑
j=1

[
I(0,t](τ j )

((
αγ j

T ‖σ‖

)−1/α

∧ e j u
1/α
j ‖v j‖

−1

)
v j

‖v j‖

−
t
T

(
α j

T ‖σ‖

)−1/α

x0

]
+ tbT (5.19)

where

bT =


α−1/αζ

(
1
α

)
T −1(T ‖σ‖)1/αx0 − Γ (1 − α)x1, 1 < α < 2

(2γ + log(T ‖σ‖))x1 −

∫
Rd

x log ‖x‖R(dx), α = 1.
(5.20)

Then the series (5.19) converges a.s. uniformly in t ∈ [0, T ] to a Lévy process such that
X1(t) ∼ T Sα(t R, 0).

Proof. It is enough to show the convergence in distribution of series (5.18) and (5.19) for a
fixed t ; see [19, Theorem 5.1]. The proof goes along the same lines as the proof of the previous
Theorem 5.1. For every 0 6∈ A ∈ B(Rd) we have∫

∞

0
P

{
I(0,t](τ1)

[(
αs

T ‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

]
v1

‖v1‖
∈ A

}
ds

=
t
T

∫
∞

0
P

{[(
αs

T ‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

]
v1

‖v1‖
∈ A

}
ds

= t
∫

∞

0
P

{[(
αs
‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

]
v1

‖v1‖
∈ A

}
ds = t M(A).

The last equality comes from (5.4). The case α ∈ (0, 1) can be proven in exactly the same way
as in Theorem 5.1. If α ∈ [1, 2), then

∫
‖x‖>1 ‖x‖M(dx) < ∞. From Theorem 4.1(B) in [19] we

infer that

X2(t) =

∞∑
j=1

[
I(0,t](τ j )

((
αγ j

T ‖σ‖

)−1/α

∧ e j u
1/α
j ‖v j‖

−1

)
v j

‖v j‖
− aT

j (t)

]
(5.21)

converges a.s. and X2(t) ∼ T Sα(t R, 0), where

aT
j (t) =

∫ j

j−1
E

[
I(0,t](τ1)

((
αs

T ‖σ‖

)−1/α

∧ e1u1/α
1 ‖v1‖

−1

)
v1

‖v1‖

]
ds.

If Q is symmetric then aT
j (t) = 0 and in this case (5.21) coincides with (5.18). This concludes

the proof of (i).
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To establish (ii), it will be helpful to view c j of (5.6) as a sequence depending on Q,
c j := c j (Q). With this notation

aT
j (t) =

t
T

c j (T Q). (5.22)

From (5.7) and (5.3) (with TQ and TR in place of Q and R, respectively) we have
∞∑
j=1

[(
α j

T ‖σ‖

)−1/α

x0 − c j (TQ)

]

=


α−1/αζ

(
1
α

)
(T ‖σ‖)1/αx0 − Γ (1 − α)T x1, 1 < α < 2,

(2γ + log(T ‖σ‖))T x1 − T
∫
Rd

x log ‖x‖R(dx), α = 1.

From (5.22) we now have
∞∑
j=1

[
t
T

(
α j

T ‖σ‖

)−1/α

x0 − aT
j (t)

]
= tbT

which completes the proof. �

If we drop e j u
1/α
j ‖v j‖

−1 from (5.18) and (5.19), the resulting series represents stable
processes. We give their parametrization for the sake of comparison.

Proposition 5.4. Let σ be given by (2.28). Then, with the notation of Theorem 5.3, we have the
following.
(i) If α ∈ (0, 1), or if α ∈ [1, 2) and Q is symmetric, set

Y0(t) =

∞∑
j=1

I(0,t](τ j )

(
αγ j

T ‖σ‖

)−1/α v j

‖v j‖
. (5.23)

Then the series converges a.s. uniformly in t ∈ [0, T ] to a strictly α-stable Lévy processes with
Y0(t) ∼ Sα(tσ, 0).
(ii) If α ∈ [1, 2) and Q is non-symmetric, put

Y1(t) =

∞∑
j=1

[
I(0,t](τ j )

(
αγ j

T ‖σ‖

)−1/α v j

‖v j‖
−

t
T

(
α j

T ‖σ‖

)−1/α

x0

]
+ tbT , (5.24)

where bT is given in (5.20) of Theorem 5.3. Then the series converges a.s. uniformly in t ∈ [0, T ]

to a α-stable Lévy processes with Y1(t) ∼ Sα(tσ, ta), where

a =

−Γ (1 − α)x1, 1 < α < 2,∫
Rd

x(1 − log ‖x‖)R(dx), α = 1. (5.25)

Proof. This result has been known for a long time. It can also be verified along the lines of the
proofs of Theorems 5.1 and 5.3. �

Remark 5.5. Jumps of processes X0 and X1 in Theorem 5.3 are equal to either
(
αγ j

T ‖σ‖

)−1/α v j
‖v j ‖

(stable jumps as in (5.23) and (5.24)) or e j u
1/α
j

v j
‖v j ‖2 . If T is small then, under the operation
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minimum in (5.18) and (5.19), stable jumps prevail and we observe a stable process in a short
time. Conversely, if T is large then the iid terms e j u

1/α
j

v j
‖v j ‖2 prevail and the central limit

theorem explains the Gaussian behavior of TαS processes in a large time frame. Therefore,
representations (5.18) and (5.19) capture the interplay between α-stable and Gaussian trends in
TαS processes.

Remark 5.6. Theorem 5.3 in conjunction with Proposition 5.4 reveals the nature of tempering

of stable jumps that leads to tempered α-stable processes. Stable jumps
(
αγ j

T ‖σ‖

)−1/α v j
‖v j ‖

are cut

at the level of e j u
1/α
j ‖v j‖

−1 but their direction is retained. The level of cut (tempering) does
not depend on the magnitude of a stable jump, only on its direction, v j

‖v j ‖
. Indeed, given that

v j
‖v j ‖

= u, the conditional distribution of ‖v j‖ is Q(·|u).

Remark 5.7. We may also give a probabilistic interpretation of condition (4.1) in Theorem 4.1
(see also Remark 4.2). Roughly speaking, (4.1) fails when q(·, u) decreases rapidly in the
neighborhood of zero in which case Q(·|u) is heavy tailed. However, when Q(·|u) is heavy
tailed, large values of ‖v j‖ will appear often in (5.18) and (5.19) and so these series will have
many iid terms. This, in turn, produces strong Gaussian trend (under appropriate conditions on
R) which makes the process significantly different from the underlying stable process (5.23) and
(5.24). Theorem 4.1 confirms that intuition.

6. Ornstein–Uhlenbeck-type tempered stable processes

Tempered stable laws are self-decomposable, as we have remarked in Section 2. Therefore, if
µ is a tempered stable distribution on Rd , then there exists a Lévy process Z = {Z(t) : t ∈ R}

with E log+
‖Z(1)‖ < ∞ such that

µ = L
{∫

∞

0
e−s dZ(s)

}
; (6.1)

see [11]. Consequently, one can define an Ornstein–Uhlenbeck-type process (OU process)

X (t) =

∫ t

−∞

e−(t−s) dZ(s) t ∈ R, (6.2)

such that L(X (t)) = µ for every t ∈ R. The process Z in (6.2) is called the background driving
Lévy process (BDLP) of the OU process X . Our goal is to obtain a shot noise representation
of X which will give an insight into its structure and can be used for simulation of sample
paths. Special cases of tempered stable OU processes have been used extensively in mathematical
finance; cf. [3,4].

There is a one-to-one correspondence between Lévy characteristics of µ and L{Z(1)} given
in [11]. A direct computation gives the following.

Lemma 6.1. Let µ be a TαS distribution with spectral measure R. Then the Lévy measure MZ
of L{Z(1)} in (6.1) is given by

MZ (A) =

∫
Rd

∫
∞

0
IA(sx)(αs−α−1

+ s−α)e−s ds R(dx) A ∈ B(Rd).
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Notice a similarity between MZ above and M in (2.7). Using estimates similar to those in the
proofs of Propositions 2.7 and 2.8 we establish the following.

Lemma 6.2. Let Z be a Lévy process as in (6.1), where µ is a TαS distribution with the spectral
measure R. If α ∈ (0, 1) and µ ∼ T S0

α(R, 0), then
∫
‖x‖≤1 ‖x‖MZ (dx) < ∞ and

Eei〈y,Z(1)〉
= exp

(∫
Rd
(ei〈y,x〉

− 1)MZ (dx)
)
. (6.3)

If α ∈ [1, 2) and µ ∼ T Sα(R, 0), then
∫
‖x‖>1 ‖x‖MZ (dx) < ∞ and

Eei〈y,Z(1)〉
= exp

(∫
Rd
(ei〈y,x〉

− 1 − i〈y, x〉)MZ (dx)
)
. (6.4)

In what follows we will assume the notation of Section 5. It appears that the series
representation of the process Z is very similar to (5.18) and (5.19).

Proposition 6.3. Let Z be a Lévy process as in (6.1), where µ is a proper TαS distribution with
the spectral measure R. Assume that µ ∼ T S0

α(R, 0) when α ∈ (0, 1) and µ ∼ T Sα(R, 0) when
α ∈ [1, 2). Let T > 0 be fixed.
(i) If α ∈ (0, 1), or if α ∈ [1, 2) and Q is symmetric, set

Z0(t) =

∞∑
j=1

I(0,t](τ j )

((
γ j

T ‖σ‖

)−1/α

∧ e j‖v j‖
−1

)
v j

‖v j‖
. (6.5)

Then the series converges a.s. uniformly in t ∈ [0, T ] and Z0 is a version of Z restricted to
[0, T ].
(ii) If α ∈ [1, 2) and Q is non-symmetric, assume additionally that

∫
Rd ‖x‖| log ‖x‖|R(dx) < ∞

when α = 1 and that
∫
Rd ‖x‖R(dx) < ∞ when α ∈ (1, 2). Put

Z1(t) =

∞∑
j=1

[
I(0,t](τ j )

((
γ j

T ‖σ‖

)−1/α

∧ e j‖v j‖
−1

)
v j

‖v j‖

−
t
T

(
j

T ‖σ‖

)−1/α

x0

]
+ tcT (6.6)

where

cT =


ζ

(
1
α

)
T −1(T ‖σ‖)1/αx0 − Γ (1 − α)x1, 1 < α < 2

(2γ − 1 + log(T ‖σ‖))x1 −

∫
Rd

x log ‖x‖R(dx), α = 1.
(6.7)

Then series (6.6) converges a.s. uniformly in t ∈ [0, T ] and Z1 is a version of Z restricted to
[0, T ].

Proof. The proof follows exactly the same line of arguments as the proofs of Theorems 5.1 and
5.3 and thus is omitted. �

Theorem 6.4. Let X be an OU process in Rd with L(X (t)) = µ, where µ is a proper TαS
distribution having the spectral measure R. Assume that µ ∼ T S0

α(R, 0) when α ∈ (0, 1) and
µ ∼ T Sα(R, 0) when α ∈ [1, 2). Let T > 0 be fixed,and let {τ j }, {v j }, {e j }, and {γ j } be random
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sequences as in Theorem 5.3. Let ξ0 be a random vector with L(ξ0) = µ and independent of the
random sequences {τ j }, {v j }, {e j }, and {γ j }. Let x0, x1, ζ , and γ be as in Theorem 5.1.
(i) If α ∈ (0, 1), or if α ∈ [1, 2) and Q is symmetric, set

X0(t) = ξ0 +

∞∑
j=1

e−(t−τ j ) I(0,t](τ j )

((
γ j

T ‖σ‖

)−1/α

∧ e j‖v j‖
−1

)
v j

‖v j‖
. (6.8)

Then the series converges a.s. uniformly in t ∈ [0, T ] and X0 is a version of X restricted to
[0, T ].
(ii) If α ∈ [1, 2) and Q is non-symmetric, assume additionally that

∫
Rd ‖x‖| log ‖x‖|R(dx) < ∞

when α = 1 and that
∫
Rd ‖x‖R(dx) < ∞ when α ∈ (1, 2). Put

X1(t) = ξ0 +

∞∑
j=1

[
e−(t−τ j ) I(0,t](τ j )

((
γ j

T ‖σ‖

)−1/α

∧ e j‖v j‖
−1

)
v j

‖v j‖

−
1 − e−t

T

(
j

T ‖σ‖

)−1/α

x0

]
+ (1 − e−t )cT (6.9)

where cT is given by (6.7). Then series (6.6) converges a.s. uniformly in t ∈ [0, T ] and X1 is a
version of X restricted to [0, T ].

Proof. For any f ∈ D([0, T ],Rd) we have
∫ t

0 e−(t−s) d f (s) = f (t) − e−t f (0) −∫ t
0 f (s)e−(t−s) ds. Hence, if fn, f ∈ D([0, T ],Rd) and fn → f uniformly on [0, T ], then∫ t
0 e−(t−s) d fn(s) →

∫ t
0 e−(t−s) d f (s) uniformly in t ∈ [0, T ] (n → ∞). Applying this fact to

series (6.5) of Proposition 6.3(i) we get∫ t

0
e−(t−s)ds

[
n∑

j=1

I(0,s](τ j )

((
γ j

T ‖σ‖

)−1/α

∧ e j‖v j‖
−1

)
v j

‖v j‖

]
→

∫ t

0
e−(t−s) dZ0(s)

a.s. uniformly in t ∈ [0, T ] as n → ∞. That is
∞∑
j=1

e−(t−τ j ) I(0,t](τ j )

((
γ j

T ‖σ‖

)−1/α

∧ e j‖v j‖
−1

)
v j

‖v j‖
=

∫ t

0
e−(t−s) dZ0(s)

a.s. and the series converges a.s. uniformly in t ∈ [0, T ]. This proves part (i) of the theorem
because Z0 is a version of Z on [0, T ] and by (6.2), X (0) ∼ µ is independent of

∫ t
0 e−(t−s) dZ(s).

Using the same argument in conjunction with Proposition 6.3 (ii) we prove (ii) of the theorem
and conclude the proof. �

Acknowledgements

This research was supported by a grant from the National Science Foundation.
The author is grateful to Ole E. Barndorff-Nielsen, Christian Houdré, Neil Shephard, and
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