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1. Introduction

In [1] Bellamy answered the long outstanding question of the existence of a (necessarily) non-metric indecomposable
continuum with only one composant. A natural question arising from this result is whether or not there exists a heredi-
tarily indecomposable continuum with only one composant. Lewis stated this as Question 36 in his recent paper in Open
Problems in Topology II (2007) [13]. This is the problem that began this investigation. Bellamy constructed his example by
first constructing an indecomposable continuum with exactly two composants as an inverse limit indexed by ω1 and then
identifying two points, one from each composant [1]. One of us has used inverse limits indexed by ω1 to construct a hered-
itarily indecomposable continuum with two composants [22]. If the technique of Bellamy, in which he identifies two points
from different composants, is used, then a continuum is produced that contains a decomposable subcontinuum. In consid-
ering this question the authors have endeavored to develop techniques to construct non-metric hereditarily indecomposable
continua and to determine the number of composants of these continua. Results [18,20,21,10] show that, in many situations
potentially promising techniques imply that hereditary indecomposable continua so constructed are metric.

Since the continua in these settings were first countable, Gruenhage asked (at the dissertation defense of one of us –
Greiwe) if a first countable hereditarily indecomposable continuum is necessarily metric. After some investigation of the
problem, it was conjectured that an example constructed by one of us [23] was likely a counterexample. He then asked
if this example has the additional property of being perfectly normal. This question led to the main result of this paper.
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It addresses a question posed by Daniel, Nikiel, Treybig, Tuncali and Tymchatyn in [8] in which they use inverse limits to
construct special non-metric perfectly normal spaces.

We construct an example of a non-metric perfectly normal hereditarily indecomposable continuum; the example will also
be shown to be first countable. Non-trivial inverse limits of continua do not typically produce perfectly normal continua
simply because the non-perfect normality of ω1 is carried over into the inverse limit space. Metric spaces are perfectly
normal, and in a sense perfectly normal spaces are “close” to metric spaces. Our example then is one answer to the more
general question: “How close to metric can a non-metric hereditarily indecomposable continuum be?”

2. Background definitions and theorems

Definition 1. A set is said to be a Gδ set if it is the common part of a countable collection of open sets.

Definition 2. The space X is said to be perfectly normal iff it is normal and every closed set is Gδ .

A main component of our example is built upon the so called “double arrow” space which we denote by Z . For ease of
notation we will use a subscript notation in lieu of product notation to describe this space; we do this in order to avoid
confusion that could occur with a product space one coordinate of which is another product space. Toward that end, for
x ∈ [0,1] and i ∈ {0,1} we let (x)i denote a point of our space Z ; let Z = {(x)i | x ∈ [0,1], i = 0,1} − {(0)0, (1)1}. Define
the following order on Z : (x)i <Z (y) j iff x < y or x = y and i < j. The space Z with the order topology is called the
double arrow space. Note that Z is a non-metric compact linearly ordered topological space. For the sake of completeness
we justify the needed properties of the space Z relevant to our work.

Theorem 1. The double arrow space Z is perfectly normal.

Proof. It is straightforward to verify that with the order topology Z is a compact Hausdorff space; the normality of Z
follows from compactness.

Let h : Z → [0,1] denote the function defined by h((x)i) = x. We claim that h is continuous.
Let (a,b) = {y ∈ [0,1] | a < y < b} be a basic open set in [0,1] that contains neither 0 nor 1. Then h−1((a,b)) =

{z ∈ Z | (a)1 <Z z <Z (b)0} is open in Z . For the basic open set [0,b) in the interval, we have h−1([0,b)) = {z ∈ Z | (0)1 �Z

z <Z (b)0} is open in Z ; similarly for the basic open set (a,1]. Therefore h is continuous.
Let M be a closed subset of Z ; we will show that M is a Gδ set. Since Z is compact, M is compact and h(M) is compact

which is closed in [0,1]. Since the unit interval [0,1] is perfectly normal, there is a countable collection {Ui}∞i=1 of open
sets in [0,1] so that h(M) = ⋂∞

i=1 Ui . Thus, M ⊂ ⋂∞
i=1 h−1(Ui). Let K be the set to which (t) j belongs if and only if (t) j ∈ M

and only one member of the set {(t)0, (t)1} lies in M . Thus h|K is one-to-one and h|M−K is two-to-one; h(K ) is the set to
which x belongs if and only exactly one of (x)0 or (x)1 is in M . Let K0 = {(x)i ∈ K | i = 0} and K1 = {(x)i ∈ K | i = 1}.

We claim that K is countable. Suppose not, then since K = K0 ∪ K1, either K0 or K1 is uncountable. Without loss of
generality assume K0 is uncountable, and hence h(K0) is an uncountable subset of the reals. This set must contain a point
y which is a limit point of the set of points of h(K0) both to the left and to the right of it; that is: y is a limit point of both
[0, y) ∩ h(K0) and (y,1] ∩ h(K0). Since y ∈ h(K0), (y)0 ∈ M but (y)1 /∈ M . Since y is a limit point of (y,1] ∩ h(K0) it follows
that for every t > y, the basic open set {z ∈ Z | (y)1 �Z z < (t)1} contains a point of K0. So (y)1 is a limit point of K0 and
hence a limit point of M . Since M is closed (y)1 ∈ M . But then both (y)0 and (y)1 are points of M and that contradicts the
definition of K . Hence K is countable.

For each k ∈ K there is an element xk ∈ [0,1] so that only one of {(xk)0, (xk)1} lies in M and let zk denote whichever of
this two element set is not in M . Therefore

M =
∞⋂

i=1

h−1(Ui) − {
zk

∣∣ k ∈ K
} =

∞⋂
i=1

h−1(Ui) ∩
( ⋂

k∈K

(
Z − {

zk})).

So M is the common part of two countable collections of open sets: namely the collections {h−1(Ui) | i is a positive integer}
and {Z − {zk} | k ∈ K }. Thus M is Gδ . �
Theorem 2. The product space X = Z × [0,1] is perfectly normal.

Proof. Let πZ and πI be the projections of X onto the Z and [0,1] coordinates respectively. Let M be a closed set in X . In
order to prove perfect normality we break up the [0,1] coordinate into finer and finer collections of overlapping intervals
{[ i−1

2n − 1
4n , i+1

2n + 1
4n ]}2n

i=1 and use these to break up Z × [0,1] into finer and finer overlapping strips (see Fig. 1).

For each positive integer n and each positive integer i � 2n , πZ (M ∩ Z × [ i−1
2n − 1

4n , i
2n + 1

4n ]) is closed in Z . It is the
common part of a countable collection of open sets {V n

i, j}∞j=1.
Let Sn be the set of all functions from the finite set {1,2,3, . . . ,2n} into the positive integers.
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Fig. 1. πZ (M ∩ Z × [ i−1
2n − 1

4n , i
2n + 1

4n ]).

For each integer n and ρ ∈ Sn let

W n
ρ =

2n⋃
i=1

V n
i,ρ(i) ×

(
i − 1

2n
− 1

4n
,

i

2n
+ 1

4n

)
.

We claim that

M =
∞⋂

n=1

( ⋂
ρ∈Sn

W n
ρ

)

which represents M as the common part of a countable union of countable open sets in X .
Since [0,1] = ⋃2n

i=1[ i−1
2n , i

2n ] and for each positive integers n and i and ρ ∈ Sn:

M ∩
(

Z ×
[

i − 1

2n
,

i

2n

])
⊂ V n

i,ρ(i) ×
(

i − 1

2n
− 1

4n
,

i

2n
+ 1

4n

)
it follows that

M ⊂
∞⋂

n=1

( ⋂
ρ∈Sn

W n
ρ

)
.

Suppose that the subset relation does not go in the other direction and that there is a point

(
(z)k, t

) ∈
( ∞⋂

n=1

( ⋂
ρ∈Sn

W n
ρ

))
− M.

Then, since M is closed, there is a basic open set in the form S × (r, s) that contains ((z)k, t) and does not intersect M .
There is an integer n and an integer i � 2n so that t ∈ [ i−1

2n , i
2n ] ⊂ (r, s); furthermore, n and i can be chosen so that we also

have [ i−2
2n − 1

4n , i+1
2n + 1

4n ] ⊂ (r, s). There is a compact interval [a,b] in Z so that (z)k ∈ [a,b] ⊂ S . Since S × (r, s) misses M
it follows that

πZ

(
M ∩

(
Z ×

[
i − 2

2n
− 1

4n
,

i − 1

2n
+ 1

4n

]))
∩ [a,b] = ∅,

πZ

(
M ∩

(
Z ×

[
i − 1

2n
− 1

4n
,

i

2n
+ 1

4n

]))
∩ [a,b] = ∅,

πZ

(
M ∩

(
Z ×

[
i

2n
− 1

4n
,

i + 1

2n
+ 1

4n

]))
∩ [a,b] = ∅.

So there exist integers j1, j2 and j3 so that (modulo the case when i = 1 or i = 2n):

V n
i−1, j1

∩ [a,b] = ∅,

V n
i, j2

∩ [a,b] = ∅,

V n ∩ [a,b] = ∅.
i+1, j3
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Then let ρ ∈ Sn be chosen such that ρ(i − 1) = j1, ρ(i) = j2 and ρ(i + 1) = j3. Since the only integers k so that [ k
2n − 1

4n ,
k

2n + 1
4n ] intersects [ i−1

2n − 1
4n , i

2n + 1
4n ] are k = i − 1, i, i + 1 it follows that W n

ρ does not intersect [a,b] × [ i−1
2n − 1

4n , i
2n + 1

4n ]
and so x /∈ W n

ρ . And this verifies

M =
∞⋂

n=1

( ⋂
ρ∈Sn

W n
ρ

)
. �

Theorem 3. Let Q denote the Hilbert cube [0,1]∞ and Z the double arrow space. Then Z × Q is perfectly normal.

Proof. Let f : [0,1] → Q be an onto continuous map. Then F = idZ × f : Z × [0,1] → Z × Q is an onto continuous map.
Suppose M ⊂ Z × Q is closed, then W = F −1(Z × Q − M) is open and Z × [0,1] − W is closed. Since Z × [0,1] is perfectly
normal there is a countable collection {Ui}∞i=1 of open sets so that Z × [0,1] − W = ⋂∞

i=1 Ui . Then

W =
∞⋃

i=1

(
Z × [0,1] − Ui

)
,

F (W ) = F

( ∞⋃
i=1

(
Z × [0,1] − Ui

))
,

Z × Q − M =
∞⋃

i=1

F
(

Z × [0,1] − Ui
)
,

M = Z × Q −
∞⋃

i=1

F
(

Z × [0,1] − Ui
)
.

So M is the complement of an Fσ set and hence is Gδ . �
Corollary 1. If P is a subcontinuum of the Hilbert cube Q then Z × P is perfectly normal.

It follows from this theorem that Z × pseudo-arc is also perfectly normal.
By a continuum we mean a compact and connected Hausdorff space. We define some special types of continua below.

See [16,12,17] for background on the properties of these types of continua.

Definition 3. A continuum is said to be decomposable if it is the union of two proper subcontinua.

Definition 4. A continuum is said to be indecomposable if it is not the union of two proper subcontinua.

The existence of a non-degenerate indecomposable continuum has been known for about 100 years, important properties
of these continua as well as additional references can be found in [14,12,16]. It has been shown that there are many non-
metric such continua. For example see Bellamy [1] and Smith [19].

Definition 5. A continuum is said to be hereditarily indecomposable if every subcontinuum of it is indecomposable.

The existence of a non-degenerate hereditarily indecomposable continuum was first shown by Knaster in [11]. Bing
showed that they are a very common occurrence in the metric case [3]. He showed that all metric continua of dimension 2
or greater contain non-degenerate hereditarily indecomposable continua [2]. He also showed that in the case when X is
Euclidean n-space for n � 2 that the set of all such continua form a dense Gδ subset in the space C(X) of subcontinua (with
the Vietoris topology). As we have indicated, the existence of non-metric hereditarily indecomposable continua may be a
more rare phenomenon.

Definition 6. If X is a continuum and p ∈ X then the composant of X at the point p is the set to which x belongs if and only
if there is a proper subcontinuum of X containing p and x. A composant of a continuum is a composant of the continuum
at some point of the continuum.

The continuum constructed by Knaster has since been called a pseudo-arc. See Moise [15] and Bing [4] for some essential
properties of this continuum. It is now characterized as follows:

Definition 7. A pseudo-arc is a non-degenerate metric chainable hereditarily indecomposable continuum.
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Every point of the pseudo-arc is an “end” point [5]. A straightforward application of the techniques developed by Bing [4]
and Moise [15] can be used to prove the fact that the pseudo-arc can be mapped onto any metric chainable continuum.
Moise’s technique can be used to prove the following more specific result: If for i = 1,2,3, Pi and Q i are points in two
different composants of the pseudo arc Mi and M1 is glued to M2 so that Q 1 is identified with P2, then there is a mapping
f from the pseudo-arc M3 to M1 ∪ M2 so that f (P3) = P1 and f (Q 3) = Q 2.

3. Main results

The example will be constructed in three steps.

Step 1. We construct a product of the double arrow space and a pseudo-arc.

Step 2. Then an upper semi-continuous decomposition of the space constructed in Step 1 is formed. This decomposition
space will be obtained by “gluing” components of the space obtained in Step 1.

Step 3. Finally, an inverse limit indexed by ω0 of copies of the space constructed in Step 2 is formed.

In the example it is only necessary to insure at each step of the construction that perfect normality is preserved. First
we state the theorems that insure this is so. The proofs of these theorems are straightforward, and we include them for
completeness.

Theorem 4. If X is a compact perfectly normal space and G is an upper semi-continuous decomposition of X then X/G is perfectly
normal.

Proof. Suppose M ⊂ X/G is closed in the decomposition space. Then M∗ = ⋃{g ∈ G | g ∈ M} is closed (and compact) in X .
Since X is perfectly normal, there is a collection {Ui}∞i=1 of open sets in X so that M∗ = ⋂∞

i=1 Ui . But Û i = {g ∈ G | g ⊂ Ui}
is open in X/G and M = ⋂∞

i=1 Û i , so M is a Gδ set. �
Theorem 5. If for each i the space Xi is perfectly normal, then the inverse limit space with continuous bonding maps X =
lim←−{Xn, fn}∞n=1 is also perfectly normal.

Proof. Let M be a closed subset of X . For x ∈ X , let xi denote the ith coordinate of x so that x = {xi}∞i=1. If R is an open set
in some Xi then

←−
R = {x ∈ X | xi ∈ R} is an open set in X . Then for each integer n let {Un

i }∞i=1 be a collection of open sets so
that πn(M) = ⋂∞

i=1 Un
i . Then

M =
∞⋂

n=1

( ∞⋂
i=1

←−
Un

i

)
.

Thus M is a Gδ set. �
3.1. Description of example

The first step of the construction is to form the product of Z and a pseudo-arc. Let P denote the pseudo-arc and a and
b be two points of P so that P is irreducible from a to b.

Let X = Z × P . Then since the pseudo-arc is compact metric, X is perfectly normal.
We now define the function F : Z → Z needed for the identification for the decomposition space of Step 2. This function

serves as a non-metric analog to an adding machine as defined by Block and Coppel [6] (see Fig. 2).
Let F : Z → Z be defined by

F
(
(t)k

) =
(

t + 1

2

)
k

for (0)1 �Z (t)k �Z

(
1

2

)
0
, k = 0,1,

F
(
(t)k

) =
(

t − 1

4

)
k

for

(
1

2

)
1
�Z (t)k �Z

(
3

4

)
0
, k = 0,1,

F
(
(t)k

) =
(

t − 5

8

)
k

for

(
3

4

)
1
�Z (t)k �Z

(
7

8

)
0
, k = 0,1,

...
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Fig. 2. The “Non-metric Adding Machine” F : Z → Z .

F
(
(t)k

) =
(

t − 2n − 3

2n

)
k

for

(
2n−1 − 1

2n−1

)
1
�Z (t)k �Z

(
2n − 1

2n

)
0
, k = 0,1,

...

and

F
(
(1)0

) = (0)1.

Claim 1. The function F is continuous.

Proof. From the definition of the function we see that F is 1–1, onto and order preserving on each of the defining intervals,
thus [

(0)1,

(
1

2

)
0

]
→

[(
1

2

)
1
, (1)0

]
,

[(
1

2

)
1
,

(
3

4

)
0

]
→

[(
1

4

)
1
,

(
1

2

)
0

]
,

[(
3

4

)
1
,

(
7

8

)
0

]
→

[(
1

8

)
1
,

(
1

4

)
0

]
,

...[(
2n−1 − 1

2n−1

)
1
,

(
2n − 1

2n

)
0

]
→

[(
1

2n

)
1
,

(
1

2n−1

)
0

]
,

...

(1)0 → (0)1.

Since for each n, F maps the clopen set [( 2n−1−1
2n−1 )1, (

2n−1
2n )0] with an order preserving map onto [( 1

2n )1, (
1

2n−1 )0] it
follows that F restricted to the union of these clopen sets is continuous. It only remains to prove that F is continuous at
the point ((1)0). Continuity at this point follows from the fact that for each positive integer n the clopen set[(

2n − 1

2n

)
1
, (1)0

]

is mapped onto[
(0)1,

(
1

2n

)
0

]
. �

The orbit of each point under F is dense in Z . We will prove this below. In order to assist the reader, we indicate the
orbit of (1)0 and (0)1:



R. Greiwe et al. / Topology and its Applications 159 (2012) 1277–1287 1283
· · ·
(

5

8

)
0
→

(
3

8

)
0
→

(
7

8

)
0
→

(
1

4

)
0
→

(
3

4

)
0
→

(
1

2

)
0
→ (1)0 → (0)1 →

(
1

2

)
1
→

(
1

4

)
1

→
(

3

4

)
1
→

(
1

8

)
1
→

(
5

8

)
1
→

(
3

8

)
1
→

(
7

8

)
1
· · · .

In order to prove this, we examine how F operates on blocks of intervals in Z . Let H1
1 = [(0)1, (

1
2 )0]; H1

2 = [( 1
2 )1, (1)0]

and in general

Hn
k =

[(
k − 1

2n

)
1
,

(
k

2n

)
0

]
for k = 1,2,3, . . . ,2n.

Thus: Hn
k = Hn+1

2k−1 ∪ Hn+1
2k .

These sets serve the same role in the double arrow space Z as the complementary intervals to the middle thirds seg-
ments in the Cantor set. Note that, in an analogous way to how the Cantor set is self-similar, each Hn

k is homeomorphic
to Z .

Claim 2. For each z ∈ Z , {F n(z)}∞n=1 is dense in Z .

Proof. We note that for each n:

1. F maps each block Hn
i , i �= 2n homeomorphically with an order preserving map onto another block Hn

j , j �= 1;

2. F permutes all the blocks {Hn
i }2n

i=1 at the nth level so by repeated applications of F each block eventually maps onto
every block;

3. F maps Hn
2n onto Hn

1;

4. F maps the sub-blocks Hn+1
2n−1, Hn+1

2n onto the sub-blocks Hn+1
1 , Hn+1

2 but reverses their order.

Let z ∈ Z . The consideration of the action of F on these blocks implies that if z ∈ Hn
k for some k, then {F i(z)}n

i=1 will
intersect each of the blocks: {Hn

i }n
i=1. Since every open set in Z contains some block Hn

i for sufficiently large n and F
permutes all the blocks, then the set {F i(z)}∞i=1 will be dense in Z . �

Define G to be the upper semi-continuous decomposition of X = Z × P that identifies the point (z,b) with the point
(F (z),a). Recall that a and b are chosen so that P is irreducible from a to b. Thus G = {g | g = {(z,b), (F (z),a)} for z ∈ Z} ∪
{g | g = {(z, p)} for p /∈ {a,b}}. Then since F is continuous the collection G is an upper semi-continuous decomposition of X .

Definition 8. Let X be a Hausdorff continuum and let C(X) denote the space of subcontinua of X with the Vietoris topology.
Then μ : C(X) → [0,∞) is said to be a generalized Whitney map if and only if μ is a continuous function into the non-
negative reals so that:

μ(H) = 0 if and only if H ∈ C(X) is a degenerate continuum,
μ(H) < μ(K ) if and only if H � K .

Suppose that in the construction each pseudo-arc is replaced with a metric arc. Then the space is a non-metric indecom-
posable continuum that admits a Whitney map. A description of the example can be found in Stone [23]. It is a non-metric
analog of the solenoid which is built on the double-arrow space rather then the Cantor set. The example described by
J.J. Charatonik and W.J. Charatonik in [7] appears to be homeomorphic to it. As in the metric solenoid, each composant is
the union of a countable collection of arcs as in a ray. Thus the example X/G is a non-metric solenoid-like continuum each
composant of which is a countable collection of pseudo-arcs attached end to end in a long ray going to ±∞.

We define a map between copies of X/G to produce an inverse limit space. Let P1 = {p1 | p ∈ P } and P2 = {p2 | p ∈ P }
be two copies of the pseudo arc. Suppose that Q = Q 1 is the continuum obtained by identifying the point b1 with the
point a2.

Since Q is a chainable continuum, there is a mapping φ : P → Q which maps a onto a1 and b onto b2 and furthermore
so that: φ−1(b2) = b and φ−1(a1) = a. [See Fearnley [9] for details on the construction of such a map.] Similarly, define Q n

to be the continuum obtained by gluing together two copies of Q n−1 end to end (connecting an “a” end to a “b” end).
Then it is straightforward to verify the four enumerated statements below. In each case the homeomorphisms can be

constructed as a product of homeomorphisms on the factor spaces Z and P that preserves the identification of the decom-
position:

1. H1
1 × P with the identification (z,b) � (F 2(z),a) is homeomorphic to X/G . Let us call the decomposition induced by

this identification J . Thus (H1
1 × P )/ J is homeomorphic to X/G . Call this homeomorphism kP . Similarly (H1

2 × P )/ J is
homeomorphic to X/G .
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Fig. 3. H1
1 × O .

2. Also (H1
1 × Q )/ J is homeomorphic to X/G .

3. The homeomorphism of 2 can be obtained in the form h × Id where h is a “linear map” of Z onto H1
1 and Id is the

identity on the pseudo-arc elements of the product where the identifications of G are preserved. Call this homeomor-
phism kQ .

4. The function IdZ × φ maps (H1
1 × P )/ J continuously onto (H1

1 × Q )/ J (where IdZ is the identity on H1
1 ⊂ Z ).

We encapsulate these facts in the following diagram where Φ = kQ ◦ IdZ ×φ ◦k−1
P is the function that makes the diagram

commute

H1
1 × Q

≈ kQ

H1
1 × P

IdZ ×φ

≈ kP

X/G X/G.
Φ

Thus for each z ∈ Z , {z} × P is mapped onto {z} × Q .
Although condition 1 is not necessary to the construction, it allows us to see that our inverse limit space is composed of

factor spaces all homeomorphic to X/G .
For each integer i let Si = X/G and f i = Φ . Let M = lim←−{Si, f i}∞i=1 = lim←−{X/G,Φ}∞i=1. Let πi denote the projection of M

onto the ith factor space.
In preparation for the proof that M is hereditarily indecomposable we need to examine how subcontinua of X/G sit in

the space. Define the projections πZ ,πP on the space (Z × P )/G = X/G as follows

πZ
(
(z, p)

) = z,

πP
(
(z, p)

) = p.

Claim 3. If L is a proper subcontinuum of X/G then πZ (L) is finite and L is a subset of finitely many pseudo-arcs glued end to end.

Proof. If L is a proper subcontinuum of X/G then there exists an open set O of the pseudo-arc and integers n and i
so that L ∩ (Hn

i × O ) = ∅. For ease of understanding, let us examine the case where Hn
i = H1

1. Observe that since H1
1 is

totally disconnected and G only glues points of H1
1 to points of H1

2 that H1
1 × O separates H2

3 × P from H2
4 × P and so L

can intersect at most one of H2
3 × P or H2

4 × P . Without lose of understanding suppose L does not intersect H2
4 × P . So

L ⊂ X − Int(H2
4 × P ). But if P3 denotes three pseudo-arcs glued b-end to a-end then X − Int(H2

4 × P ) is homeomorphic to
H2

1 × P3, and each component of this set is homeomorphic to P3, so L is a subset of the union of three pseudo arcs glued
end to end. In this case, πZ (L) has at most three elements. The same argument works if L ∩ (H1

2 × O ) = ∅ (see Fig. 3).
If n > 1 then without lose of understanding assume there is an open subset O of the pseudo-arc so that L ∩(Hn

1 × O ) = ∅.
Since X/G is homeomorphic to Hn−1

1 × Q n−1 we can repeat the argument of the first paragraph with the continuum P
replaced with Q n−1. In this case πZ (L) cannot have more than 2n+1 points. The argument works similarly for i �= 1. �
Claim 4. The continuum M is hereditarily indecomposable.
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Proof. Let πn denote the projection X → Sn . Suppose that L is a proper decomposable subcontinuum of M . There is an
integer N so that πn(L) is a proper subcontinuum of X/G and is decomposable for all n � N . By the above claim it follows
that πN (L) lies in a copy of Q k for some integer k. By the construction of the bonding maps, Φ−1(πN (L)) lies in a copy
of Q k−1. So πN+1(L) lies in a copy of Q k−1. Repeating this process one eventually obtains πN+k(L) lying in a copy of P ,
contradicting the fact that πN+k(L) is supposed to be decomposable. �

Since Z is non-metric and M contains a copy of Z , the above claims together with Theorems 1 and 2 show that:

Theorem 6. The continuum M is a non-metric perfectly normal hereditarily indecomposable continuum.

We now consider the separability and first countability of the example.

Theorem 7. The continuum M is separable and first countable.

Proof. We need to verify that these properties are preserved at each step of the construction.

Step 1. The product Z × P of two separable first countable spaces Z and P is separable and first countable.

Separability: Let D Z be a countable dense set in Z and D P a countable dense set in P then D Z × D P is dense in
Z × P .

First countability: Let Bz be a countable basis at the point z ∈ Z and let B p be a countable basis at the point p ∈ P . Then
{b1 × b2 | b1 ∈ Bz, b2 ∈ B p} is a countable basis for the point (z, p) ∈ Z × P . So a product of these two spaces is separable
and first countable.

Step 2. The decomposition space Z × P/G is separable and first countable.

Separability: Let D be dense in Z × P . Let DG = {g ∈ G | d ∈ g for some d ∈ D}. Then DG is dense in the decomposition
space.

First countability: First countability at each of the degenerate elements of G follows easily. If g ∈ G is one of the non-
degenerate elements then g is of the form {w, F (w)} for some w ∈ Z × P . Let B1 be a countable local basis for w ∈ Z × P
and let B2 be a countable local basis for F (w). For each b1 ∈ B1 and b2 ∈ B2 let C(b1,b2) = {g ∈ G | g ⊂ b1 ∪ b2}. Then
{C(b1,b2) | b1 ∈ B1, b2 ∈ B2} is a countable local basis for (w, F (w)). (In general the upper semi-continuous decomposition
of a first countable space is not first countable. The first uncountable ordinal ω1 with the order topology is first countable.
But the decomposition space formed which has only one non-degenerate element g consisting of all the limit points of ω1
produces a decomposition space which is not first countable at g .)

Step 3. The inverse limit with onto bonding maps of a separable first countable space is first countable.

Let X = lim←−{Xi, f i}∞i=1 be an inverse limit of separable first countable spaces so that for each positive integer i, f i is an
onto bonding map.

Separability: For each i let Di be a countable dense set in Xi . For each i and for each d ∈ Di construct inductively the
sequence xi+1, xi+2, . . . so that xi = d and xi+k+1 ∈ f −1

i+k(xi+k) for each positive integer k; since fn+k is onto this can be done.

Then let wd = {wn}∞n=1 be the point of X defined as follows

wn = f i
n(d) for n < i,

wn = d for n = i,

wn = xn for n > i.

Let W i = {wd | d ∈ Di}. Then the set W = ⋃∞
i=1 W i is a countable dense set in the inverse limit space. (We note that the

onto condition is necessary: the inverse limit constructed with Xi = β([i,∞)) with the inclusion maps as bonding maps
is an inverse limit of compact separable spaces whose inverse limit is homeomorphic to β([0,∞)) − [0,∞) which is not
separable.)

First countability: Let x = {xi}∞i=1 be a point of X . For each xi ∈ Xi let Bi be a countable local basis for xi in Xi . Then
B = {←−b | b ∈ Bi for some i} is a countable local basis for x. �

We note that the example described was first constructed by one of us, Stone [23] as an example of a non-metric
hereditarily indecomposable continuum that supports a generalized Whitney map. It is also easy to see that if a continuum
supports a generalized Whitney map then each order arc in the hyperspace C(M) must be metric and hence separable.
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Greiwe and Smith have studied the question, “When is a non-metric hereditarily indecomposable continuum embeddable
in the product of Hauddorff arcs?” The following two theorems are relevant to this question. Both theorems are applicable
to continua like M .

Theorem 8. If X is non-metric and separable then X cannot be embedded in a countable product of Hausdorff arcs.

Proof. Let
∏∞

n=1 αn denote the countable product of Hausdorff arcs and suppose X lies in this product. Let πn denote the
projection onto the nth coordinate space. Let In = πn(X). Since X is separable, then so is In . So X ⊂ ∏∞

n=1 In , which is just a
copy of the Hilbert cube. Since X embeds in the Hilbert cube, then X is metric which contradicts the fact that X is assumed
to be non-metric. �
Definition 9. An order arc in C(X) is a Hausdorff arc α so that one non-cut point is a degenerate continuum and the other
non-cut point is X , and so that if H, K ∈ α, then either H ⊂ K or K ⊂ H .

Theorem 9. If X is a non-metric continuum so that some order arc in the hyperspace C(X) of subcontinua of X is metric, then X is not
embeddable in a countable product of Hausdorff arcs.

Proof. Let α be a metric order arc in C(X) from the point P to the continuum X in C(X). We can consider α as a function
from [0,1] into C(X) so that α(0) is the singleton pointset {P } in X and α(1) = X . We use the same notation as in the
previous theorem. Let In = πn(α) and let < denote the order on An . By the metrizability of α there is a countable set
{Mk}∞k=1 of subcontinua of X dense in α. Let M0 = {P }. For each k = 0,1,2, . . . , let ck � dk denote the endpoints of πn(Mk).
(Note that c0 = d0 and that it is possible for c j = d j for other j.) Let C = {x | x = ck for some k} and let D = {x | x =
dk for some k}. We claim that the countable set E = C ∪ D is dense in In .

Claim: C is connected. Suppose not, then there exist two points y1 and y2 not in C and two points c1 and c2 in C so
that

c1 < y1 < y2 < c2.

But then{
M ∈ α

∣∣ the lower end point of πn(M) � y1
}

and {
M ∈ α

∣∣ the higher end point of πn(M) � y2
}

form a separation of α.

Similarly D is connected and the two sets C and D both contain c0 = d0.
Claim: In = C ∪ D . If not then there is a continuum L ∈ α so that if d is the higher endpoint of πn(L) then d /∈ C ∪ D and

without lose of generality is above all the points of D . Let (y1, y2) be an open segment in In containing d and no point of
C ∪ D . Then {M ∈ α | πn(M) ∩ (y1, y2) �= ∅} is an open set intersecting α and so must contain some M j . But then d j � d,
which is a contradiction.

Therefore In is separable. Since α(1) = X it follows that πn(X) = In . Thus, as in the previous theorem, X embeds in the
Hilbert cube and we have a contradiction. So the theorem holds. �
Theorem 10. If X is a non-metric continuum and supports a generalized Whitney map then X cannot be embedded in a countable
product of lexicographic arcs.

Proof. For such a continuum, every order arc in C(X) is metric since the generalized Whitney map restricted to the arc
is a homeomorphism. If X is non-metric and embeds in a countable product of lexicographic arcs, then the projection on
some coordinate is not metric and contains uncountably many disjoint open sets. Thus some order arc must map onto a
non-metric order arc of the lexicographic arc and hence cannot be separable. �

We showed that the example is separable and ask the following:

Question. Is every non-metric hereditarily indecomposable perfectly normal continuum separable?
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