On the Tau-Cycle Condition

Wei-Chang Shann ${ }^{1}$ and Chien-Chang Yen ${ }^{2}$
Communicated by Albert Cohen on August 19, 1997

Abstract

There is a set of equivalence conditions for the orthonormality of the compactly supported scaling functions. Among them, there is the Cohen's τ-cycle condition. In order to answer the question whether it is enough to check this condition by a finite number of points, we study the τ-cycles in more detail. © 1998 Academic Press

Cohen's τ-cycle condition is one of the equivalence conditions for the orthonormality of the compactly supported scaling functions. It is known that if the associate function $m_{0}(\xi) \neq 0$ for all $|\xi| \leq \pi / 3$, then the τ-cycle condition is satisfied. We notice that if $m_{0}(\xi) \neq 0$ for all $|\xi| \leq \pi / 5$ and for $\xi=\pi / 3$, then the τ-cycle condition is satisfied. This leads us to ask the question that, when $m_{0}(\xi) \neq 0$ in a certain interval, whether it is enough to check the τ-cycle condition by a finite number of points.

Given a real number ξ, let [ξ] be the (unique) number in $[-\pi, \pi$) such that $[\xi]$ $=\xi(\bmod 2 \pi)$, and let τ be the operator such that $\tau \xi=2 \xi(\bmod 2 \pi)$. The set $\boldsymbol{\xi}=$ $\left\{\xi_{i} \mid \xi_{i} \in[-\pi, \pi), 0 \leq i \leq k-1\right\}$ is a τ-cycle of length k if (1) $\xi_{i+1}=\tau \xi_{i}$, (2) ξ_{i} $=\tau^{k} \xi_{i}$, and (3) $\xi_{i} \neq \xi_{j}$ for any $i \neq j$. It is clear that if $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ are two τ-cycles and their intersection is nonempty, then $\boldsymbol{\xi}=\boldsymbol{\eta}$. The only τ-cycle of length 1 is ([0]); we call it the trivial cycle.

Let $\phi(x) \in L^{2}(\mathbb{R})$ be a compactly supported scaling function that satisfies the scaling equation $\phi(x)=\sum c_{k} \phi(2 x-k)$ with the scaling coefficients c_{k}. Let

$$
m_{0}(\xi)=\frac{1}{2} \sum_{k} c_{k} e^{i k \xi}
$$

be the corresponding filter characteristic function for $\phi(x)$. Then $m_{0}(\xi)$ is a 2π periodic trigonometric polynomial.

[^0]Recall that the Cohen's τ-cycle condition is the following statement:
There is no nontrivial τ-cycle $\boldsymbol{\xi}$ such that $m_{0}\left(\left[\xi_{k}-\pi\right]\right)=0 \quad$ for all $\xi_{k} \in \boldsymbol{\xi}$. (C)
This is one of the conditions for orthonormal wavelets of compact supports. (See ''Ten Lectures' by Daubechies [1] and Cohen's original works cited therein.)

It is known that every nontrivial τ-cycle has an element in $\left[-\pi,-\frac{2}{3} \pi\right] \cup\left[\frac{2}{3} \pi, \pi\right]$. Therefore, if $m_{0}(\xi) \neq 0$ in the interval $[-\pi / 3, \pi / 3]$, then the cycle condition (C) is satisfied. Let us now consider the intervals of the form

$$
[-\alpha \pi, \alpha \pi] \text { for } 0<\alpha<1
$$

The above fact amounts to saying that when $m_{0}(\xi) \neq 0$ inside of $[-\alpha \pi, \alpha \pi]$ and $\frac{1}{3}$ $\leq \alpha \leq 1$, then the τ-cycle condition (C) is satisfied. We now ask the following question: when $m_{0}(\xi) \neq 0$ inside of $[-\alpha \pi, \alpha \pi]$, are there finitely many points ξ_{1}, ξ_{2}, \ldots, ξ_{n} such that if $m_{0}\left(\xi_{i}\right) \neq 0$ for $1 \leq i \leq n$ then the τ-cycle condition (C) is satisfied? We will see that the answer is positive if α is not too small, and the answer is negative if α is too small.

Now we claim that any τ-cycle of length $k \geq 3$ has an element $\left[\xi_{i}\right] \in\left[-\pi,-\frac{4}{5} \pi\right]$ $\cup\left[\frac{4}{5} \pi, \pi\right]$ (see also [2]). Assume the contrary, let $\boldsymbol{\xi}=\left(\left[\xi_{i}\right]\right)$ be a τ-cycle of length $k \geq 3$ and

$$
\begin{equation*}
\left[\xi_{i}\right] \notin\left[-\pi,-\frac{4}{5} \pi\right] \cup\left[\frac{4}{5} \pi, \pi\right] \quad \forall i . \tag{1}
\end{equation*}
$$

Then

$$
\left[\xi_{i+1}\right] \notin\left[\frac{-2}{5} \pi, \frac{2}{5} \pi\right], \quad\left[\xi_{i-1}\right] \notin\left[-\frac{3}{5} \pi,-\frac{2}{5} \pi\right] \cup\left[\frac{2}{5} \pi, \frac{3}{5} \pi\right] .
$$

Since i is arbitrary, we conclude that [ξ_{i}] cannot fall into a "wider" region than that claimed in (1):

$$
\begin{equation*}
\left[\xi_{i}\right] \notin\left[-\pi,-\frac{4}{5} \pi\right] \cup\left[-\frac{3}{5} \pi, \frac{3}{5} \pi\right] \cup\left[\frac{4}{5} \pi, \pi\right] \quad \forall i . \tag{2}
\end{equation*}
$$

Using (2) and considering the possible locations for $\left[\xi_{i-1}\right]$ and $\left[\xi_{i+1}\right]$, we see that in fact $\left[\xi_{i}\right]$ cannot fall into an even "wider" region than that claimed in (2). We continue with this process and we find that in addition of (2) we also have

$$
\begin{aligned}
& {\left[\xi_{i}\right] \notin \underset{n}{\cup}\left\{\left[-\frac{4}{5} \pi,-b_{n} \pi\right] \cup\left[-a_{n} \pi,-\frac{3}{5} \pi\right]\right\},} \\
& {\left[\xi_{i}\right] \notin \underset{n}{\cup}\left\{\left[\frac{3}{5} \pi, a_{n} \pi\right] \cup\left[b_{n} \pi, \frac{4}{5} \pi\right]\right\} \forall i,}
\end{aligned}
$$

where

$$
a_{0}=\frac{3}{5}, \quad b_{0}=\frac{4}{5}, \quad b_{n}=\frac{a_{n-1}+b_{n-1}}{2}, \quad a_{n}=\frac{a_{n-1}+b_{n}}{2} .
$$

We take the limit and we can conclude that the only points where $\left[\xi_{i}\right]$ can be are $\left[-\frac{2}{3} \pi\right]$ and $\left[\frac{2}{3} \pi\right]$. But these two points form a τ-cycle of length 2 which contradicts the assumption that $k \geq 3$.

By the property of τ-cycles claimed above and the fact that the only τ-cycle of length 2 is $\left(\left[-\frac{2}{3} \pi\right],\left[\frac{2}{3} \pi\right]\right)$, we have the following proposition for $\frac{1}{5} \leq \alpha<\frac{1}{3}$.

Proposition A. If $m_{0}(\xi) \neq 0$ in the interval $[-\pi / 5, \pi / 5]$, and if $m_{0}(\pi / 3) \neq 0$, then the τ-cycle condition (C) is satisfied.

Similarly, we have the following proposition for $\frac{3}{17} \leq \alpha<\frac{1}{5}$.
Proposition B. If $m_{0}(\xi) \neq 0$ in the interval $\left[-\frac{3}{17} \pi, \frac{3}{17} \pi\right]$, and if $m_{0}(\pi / 3) \neq 0$ and $m_{0}(\pi / 5) \neq 0$, then the τ-cycle condition (C) is satisfied.

But, we will see that the parameter α cannot be less than $\frac{1}{7}$. Note that

$$
\left(\left[\frac{4}{7} \pi\right],\left[-\frac{6}{7} \pi\right],\left[\frac{2}{7} \pi\right]\right),\left(\left[\frac{6}{7} \pi\right],\left[-\frac{2}{7} \pi\right],\left[-\frac{4}{7} \pi\right]\right)
$$

are two τ-cycles of length 3 . We let

$$
\beta=\frac{2}{7\left(2^{3 m}+1\right)} \pi
$$

Consider

$$
\boldsymbol{\xi}_{m}:=\left\{\left[2^{i}\left(\frac{4}{7} \pi+\beta\right)\right]: 0 \leq i \leq 6 m-1\right\} .
$$

One can show that $2^{i}\left(\frac{4}{7} \pi+\beta\right)$ are all distinct for $0 \leq i \leq 3 m-1$. Note that

$$
\left[2^{3 m}\left(\frac{4}{7} \pi+\beta\right)\right]=\left[\frac{4}{7} \pi+\frac{2 \cdot 2^{3 m}}{7\left(2^{3 m}+1\right)}\right]=\left[\frac{4}{7} \pi+\frac{2}{7} \pi-\beta\right]=\left[\frac{6}{7} \pi-\beta\right] .
$$

One can also show that $2^{i}\left(\frac{6}{7} \pi-\beta\right)$ are all distinct for $0 \leq i \leq 3 m-1$. But

$$
\left[2^{3 m}\left(\frac{6}{7} \pi-\beta\right)\right]=\left[\frac{6}{7} \pi-\frac{2 \cdot 2^{3 m}}{7\left(2^{3 m}+1\right)}\right]=\left[\frac{6}{7} \pi-\frac{2}{7} \pi+\beta\right]=\left[\frac{4}{7} \pi+\beta\right] .
$$

We conclude that $\boldsymbol{\xi}_{m}$ is a τ-cycle of length $6 m$ for any $m>0$. The elements of $\boldsymbol{\xi}_{m}$ are

$$
\begin{aligned}
& {\left[\left(\frac{4}{7}+\frac{2 \cdot 2^{3 i}}{7\left(2^{3 m}+1\right)}\right) \pi\right]\left[\left(-\frac{6}{7}+\frac{2 \cdot 2^{3 i+1}}{7\left(2^{3 m}+1\right)}\right) \pi\right]\left[\left(\frac{2}{7}+\frac{2 \cdot 2^{3 i+2}}{7\left(2^{3 m}+1\right)}\right) \pi\right],} \\
& {\left[\left(\frac{6}{7}-\frac{2 \cdot 2^{3 i}}{7\left(2^{3 m}+1\right)}\right) \pi\right]\left[\left(-\frac{2}{7}-\frac{2 \cdot 2^{3 i+1}}{7\left(2^{3 m}+1\right)}\right) \pi\right]\left[\left(-\frac{4}{7}-\frac{2 \cdot 2^{3 i+2}}{7\left(2^{3 m}+1\right)}\right) \pi\right],}
\end{aligned}
$$

for $0 \leq i \leq m-1$. Therefore, all elements for all $\boldsymbol{\xi}_{m}$ are inside of the interval ($-\frac{6}{7} \pi$, ${ }_{7}^{6} \pi$). In other words, all of these τ-cycles of length $6 m$ (for any integer $m>0$) do not fall into the intervals $\left[-\pi,-\frac{6}{7} \pi\right]$ and $\left[\frac{6}{7} \pi, \pi\right]$.

The foregoing example shows that, after a shift of π, there are infinitely many τ cycles whose elements do not fall into the interval $\left[-\frac{1}{7} \pi, \frac{1}{7} \pi\right]$. We then have the following conclusion.

Proposition C. If $m_{0}(\xi) \neq 0$ for $\xi \in[-\alpha \pi, \alpha \pi]$ with $\alpha \leq \frac{1}{7}$, then infinitely many points must be checked to show the validity of the τ-cycle condition (C).

REFERENCES

1. I. Daubechies, '‘Ten Lectures on Wavelets,'" SIAM, Philadelphia, 1992.
2. W.-C. Shann and C.-C. Yen, ''Cohen's Cycles and Orthonormal Scaling Functions,' Technical Report 9703, Department of Mathematics, National Central University, Taiwan. [http://www.math.ncu. edu.tw/ shann/Math/pre.html]

[^0]: ${ }^{1}$ Department of Mathematics, National Central University, Chung-Li, Taiwan, R.O.C. E-mail: shann@ math.ncu.edu.tw.
 ${ }^{2}$ Department of Mathematics, National Taiwan University, Taipei, Taiwan, R.O.C. E-mail: yccen@ math.ntu.edu.tw.

