JOURNAL OF COMBINATORIAL THEORY, Series B 63, 125-135 (1995}

Universal Graphs without Large Cliques*
P. KomsatH'

Eétvés University, Budapest, 1088 Hungary

AND
S. SHELAH?

Hebrew University, Givat Ram, Jerusalem, Israel

Received January 5, 1993

DEDICATED TO THE MEMORY OF ALAN MEKLER

INTRODUCTION

The theory of universal graphs originated from the observation of
R. Rado [4, 5] that a universal countable graph X exists; i.e., X is count-
able and isomorphically embeds every countable graph. He also showed
that under GCH there is a universal graph in every infinite cardinal. Since
then, several results have been proved about the existence of universal
elements in different classes of graphs. For example, a construction similar
to Rado’s shows that for every natural number n > 3, there is a universal
K(n)-free countable graph, or, if GCH is assumed, there is one in every
infinite cardinal (K(») denotes the complete graph on n vertices). This
result, at least for uncountable cardinals, also follows from the existence
theorem of universal and special models.

The following folklore observation shows that this cannot be extended to
K(w). Assume that X = (V, E) is a K(w)-free graph of some cardinal 4 that
embeds every K(w)-free graph of cardinal 4. Let a¢ V, and define the new
graph X' on V' =V u {a} as follows. X' on V is identical with X, and a is
joined to every vertex of V. Clearly, X’ is K(w)-free. So, by assumption,
there is an embedding g: V' — V of X’ into X. Put a,=a, and, by induc-
tion, a, , , = g(a,). As g is edge preserving, we get, by induction on #, that
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a, is joined to every a, with 1> n, so they are distinct and form a K(w) in
X', a contradiction.

In Section 1 we give some existence/nonexistence statements on universal
graphs, which under GCH give a necessary and sufficient condition for the
existence of a universal graph of size 2 with no K(x), namely, if x is finite
or cf(x)>cf(4). The special case when A<*=4 was first proved by
F. Galvin [6].

In Section 2 we investigate the question, when there is no universal K(x)-
free graph of size 4, of how many of these graphs embed all the others. It
was proved in [1] that if A=*=4 (e.g, if 4 is regular and the GCH holds
below 1) and k =, then this number is A*. We show that this holds for
every k < A of countable cofinality. On the other hand, even for x = w, and
any regular i3> w,, it is consistent that the GCH holds below 4, 2* is as
large as we wish, and this number is either A% or 24, so both extremes can
actually occur.

Notation. We use the standard axiomatic set theory notation. If fis a
function then Dom( /), Ran(f} denote the domain, range of f, respectively.
For A= Dom(f), f[A]l={f(x):xeA}. If X is a set and « is a cardinal,
[(X]*={YsX:|Y|=x}, [X]“*={Y<=X:|Y|<k}. A graph is a pair
X=(V, E), where V is some set and E< [V]? ie., we exclude loops and
parallel edges. If |V| =/, we call X a A-graph, and whenever possible, we
assume outright that V=24, A graph X =(V, E) is K(k)-free, it there is no
clique of cardinal «, i.e., [T]* € £ holds for every Te [V]*. A (4, k)-graph
is a K(x)-free A-graph. If X,=(V,, E;) (i<2) are graphs, the one-to-one
function f* ¥V — V| is a weak (strong) embedding if {x, y} € E, implies that
LSO € Ey (f {x, ¥} € Eo it {f(x).f(3)} € E,). A weakly (strongly)
(4, x)-universal graph is a (4, k)-graph X that weakly (strongly) embeds
every (4, k)-graph.

1. WHEN GCH HoLbps

LEMMA 1. If J is a strong limit, A> k> w, and cf(x)>cf(1), then there
exists a strongly (A, k)-universal graph.

Proof. Let A=sup{l,:a<cf(i)}, where the sequence is continuous,
2% <A, ., and 2,=0. Let T be a tree of height cf(4) in which every
a-branch has 4, , extensions on the xth level. Clearly, [T} =4i~<""= 4
The vertex set of the universal graph X will be the disjoint union of some
sets {A(z):1e T}, where |A(t)] =4, ,, if te T is on the xth level. No edge
of X will go between A(z) and A(r') when ¢, ¢ are incomparable in 7. By
induction on o < cf(4), we determine for each re T of height « how to build
X on A(¢) and how to join the vertices of A(¢) into {J {A4(¢'): ¢’ <t}. This
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latter set is of cardinal A, with a graph on it, and we make sure that it will
be extended to a set of cardinal 4, ,, i.e., to some A(¢), in all possible
ways, such that the graph on A(r) is K(x)-free. This is possible, as for every
branch we have enough extensions reserved. It is immediately seen that
every {/, k)-graph embeds into X; one only has to select the right branch.

The vertex set is of cardinal < |74 = A. Finally, a K{(x) could only be
produced along a branch {A(s):teb}, but as |b| < cf()) < cf(x), some A(¢)
must contain a K(k), a contradiction; i.e.,, X is a (4, k)-graph. |}

LemMma 2. (F. Galvin). If 2<%= A, then there is no weakly (4, k)-univer-
sal graph.

Proof. Assume that X'= (4, E) is (4, k)-universal. Let ¥ =(V, G) be the
following graph. The elements of ¥ are those functions f with Dom( /) an
ordinal <k such that Ran(f) is a clique in E. {f,g}eG iff fcg; ie, g
end-extends /. Clearly, |V|=A<*=A If {f, :a<«x} form a K(x), then they
are compatible functions, and their union f=\)J {f,:a<«} injects x into
a clique of X, a contradiction, as X is K(«x)-free.

Assume that g: IV — 4 is a weak embedding of Y into X. By induction on
x <k we define x, <4, f, €V, such that for f<a, {x4, x,}€E, fy=f, (so
{ /3, f.} € G) should hold. If we succeed, we are done, as {x,:a<k} is a
clique again. If {x,, f3: B <a} are defined, let f, be the following function:
Dom(f,) =2, [,(B)=x, (B<a); f,€V, as its range, {x;: B <a} is a clique.
Put x, = g(f,). As by the way f, is constructed, fy=f, (f<a)and gis a
weak embedding, x, will, indeed, be joinded to x, for f<a, and so the
inductive step is succesfully completed. |

LEMMA 3. If 4 is a strong limit, and k < A, cf(x) < cf(A), then there is no
weakly (4, k)-universal graph.

Proof. We can assume that x > cf(1), as otherwise Lemma 2 gives the
result. Assume that X = (4, E) is (4, x)-universal. Let {x,:a<cf(x)} be an
increasing sequence of regular cardinals, cofinal in k, with Kk, > cf(4). Let F
be the set of those functions f/ which satisfy the following requirements:
Dom(f) is an ordinal <cf(x), for « e Dom(f), f(2) is a bounded subset of
4 with | fla)| =«,, and | {f(2): 2 <Dom(J)} is a clique in X. Let V, the
vertex set of the graph Y =(V, G), be the disjoint union of the sets
{A(f):.fe F}, where |A(f)| =, if Dom(f)=a. Two distinct vertices are
joined iff one of them is in A(f) and the other is in A(f") for some f<f".

Clearly, |V| <k |F|=4. Assume that T spans a clique in Y and that
|T|=«. Then T<J {A(f,):yeI'} for a collection of pairwise compatible
/.’s; sup(Dom(f,)) = cf{(x), as otherwise | 7| < k, but then {J {Ran(f,): ye r}
is a K(x) in X, a contradiction. We have therefore established that Y is a
(4, k)-graph.
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Assume that g: V' — 1 is a weak embedding of Y into X. By induction on
a <cf(k) we are going to define f, € F such that Dom(f,)=ua, [, (2)S
gl A(f)], and fy<f, whenever <. If this can be carried out, we reach
a contradiction, as then {J {Ran(f,):x<cf(x)} is a K(x) in X. There
is no problem with the definition of f, if a=0 or is a limit. Assume
that £, is given. g[ A(f,)] is a clique in X of size x, = cf(x,) > cf(1), so there
is a bounded (in 1) subset of it of cardinal k., say, S. We can define
fucr(@)=Sand f, ., (B)=£,(B) for B<w. By induction £, (B) =y, (B)<
gl A(f;)]. Since fy<f,, A(fp) is joined to A(f,). Therefore, since g is a
weak embedding, the vertices in f, () will be joined to S, and the induction
continues. |

From the known results and Lemmas 1-3 we can deduce the following.

TueoreM 1. (GCH). Given A=k, Az w, there is a weakly/strongly
(A, k)-universal graph iff k <w or cf(x)> cf(4).

2. THE STRUCTURE OF THE CLASS OF (A, k)-GRAPHS

In this section we investigate the complexity of the class of (4, x)-graphs
when there is no universal element in it.

DermNITION.  For A2k, CF(4, k) is the minimal cardinal g such that
there is a family {X,:a<u} of (4, k)-graphs with the property that every
(4, k)-graph is weakly embedded into some X,. CF*(4, k) is the same but
with strong embeddings.

Clearly, CF(4, k) <CF *(4, k) < 2% Also, CF(4, k) <A iff CF(4, k)= 1iff
there is a weakly (4, k)-universal graph, and likewise for CF (4, x). It was
observed in [1] that CF*(w, w)=w,. We slightly extend that result.

THEOREM 2. [If Az «k, cf(k)=w, and A is either a strong limit or of the
Jorm A=pu* =2* then CF* (1, x)=21".

Proof. From Lemmas 2-3, CF(4, k)2 A*. Fix an increasing sequence
K, K, ko=0. Call a structure (4, <, X, R) a ranked graph if (4, <)is a
well-ordered set, X is a graph on A4, and R is a function mapping those
bounded cliques of X with order-type some k, into the ordinals with
the property that if clique C’ end-extends clique C, then R(C'}< R(C).
Obviously, then, X will be K(x)-free. On the other hand, if a K(i)-free
graph X is given on a well-ordered set (4, <), then the tree

T(X)={C< A4 :type(C)=«, (some n), C clique},
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endowed with end-extension as the partial order, will be w-branchless, so
an ordinal-valued function R as above exists. If |4| =4, then |T]| =4, so
only 4 ordinals are used; therefore R(0)<A* holds. We call the minimal
possible R(0) the rank of X.

Assume first that 4 is a strong limit. Fix a continuous, cofinal sequence
{4, a<cf(4)} of cardinals with A, =0 and 2**< 4, , . Forevery ¢ <1 we
are going to construct a graph that embeds all graphs with rank ¢&; this will
clearly conclude the proof.

Let T be a tree with height cf(4), with one root, such that whenever
0 <a <cf(4) every a-branch has 4, , extensions to the ath level. For te T
on the ath level, let A(¢) be an ordered set of order-type 4, ., such that
the sets {A(¢):te T} are pairwise disjoint. The vertex set J of our graph
will be the union V of these sets. We partially order V' by assuming
that A(t) < A(¢') for t<t’; 1e, all elements of A(r) precede all elements
of A(1').

For every re T, put B(1)=1{J {A(¢'): ' <t}. By induction on the height
of t we define S(r), a ranked graph with ranks < ¢ on B(f)w A(¢) such that
if b is an a-branch, then all possible end-extensions (if there are any) of the
already defined structure on {J {A(¢): 1€ b} actually occur. This is possible,
as there are enough extensions of b to be the ath level.

It is now obvious that all (4, x)-graphs of rank < & embed into our tree.
One only has to select the appropriate branch through 7. Also, |V|=
IT|A=A4<<%" =2 We need to show that there is no K(x) in the resulting
graph. Assume that U is a clique and that [U|=x. As we joined vertices
only in comparable A(t)s, U= ) {A(¢): te b} for some branch b. For some
1,eb (n=0,1,..), it is true that the first x, elements of U are bounded
in S(z,), so they get a decreasing sequence of ordinals as ranks, a
contradiction.

The case A =pu* = 2#is actually simpler; we need one-element A4(¢)’s, and
we need only u* extensions of every branch of length <u*. |

Finally we show that under k <* =k, CF(x, w,) can be as small as k™,
or as large as 2%, and this latter value can be as large as we wish.

THEOREM 3.  Assume that in V, a model of GCH, u, x > w are cardinals
and cf(p) >k =cl(k). Then in a cardinal and cofinality preserving forcing
extension V', the GCH holds below x and CF(k, w,)=2"=p.

Proof. 1f k=4%, with cf(4) = w, then we first add a [J;-sequence, i..,
a sequence {C,:a <k, limit} with the following properties:
(1) C,<uais closed, unbounded;
(2) if y is a limit point of C,, then C. =y C,;
(3) ICI<A
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It is well known that such a sequence can be added by a cardinal and
cofinality preserving forcing of size x, so we may assume that it exists in V.
Fix such a sequence, a sequence of cardinals 4, — A, and a one-to-one
mapping @, 5:[% fi})— 2 for each a<f<x. Here [, f) denotes the
ordinal interval {&:a< &< f3}.

We call a countable set 4 =k low, if tp(4) is a limit, and if we put
d=sup(A4), Cs={c;: £ <tp(C;)}, the increasing enumeration of Cj;, then
for some n<w, ¢, .., (a)<4, holds for ae 4 satisfying c,<a<c;, .

If k>, is not of the form x=/4i"* with cf(1)=w, then we call every
countable subset of limit type low.

CLAIM 1. The number of low subsets of any a <k is <K.

Proof. 1If k is not of the form A* with cf(1)=w, then |x|” < k. In the
other case the statement follows from property (3). |

CLamM 2. If B<k is of order-type w,, then for some cofinal subset
B < B it is true that if y <sup(B’) is a limit point of B, then B' 7y is low.

Proof. If k is of the form k =A* with cf(1) = w, put é = sup(8B). Shrink
B to a cofinal B’ = B, such that the elements of B’ are separated by C;, and
there is an n <w, such that if ¢, <b<c, . for some ¢, then o, . (h) <4,
(be B'). Then the claim follows from property (2) of the (J-sequence.

If ¥ is not of the form k=A% with cf(1) =w then the choice B'=B
works. |

The poset (P, <) of the proof of the theorem will be the < support
product of u copies of some poset (Q, <) to be described below.

geQ if g=(8, X, o), where 6 <k, X< [8]% X is K(w,)-free; if x>,
then o/ is a family of low subsets of ¢; if x=w,, then & is a countable
family of countable subsets of d of limit type. Moreover, we require that if
Ae sl sup(d)<x <, then Ax {x} g X.

We define extensions as follow: ¢'= (6, X', &)< g= (5, X, &/} iff §' =9,
X=X n[6]% =" n[6]

CLamm 3. Q| =«k.

Proof. For every 0 <k there are at most x many possibilities of
selecting X, .«7, such that (6, X, &/)e Q. 1

CLAM 4. Forcing with (Q, <) does not introduce new sequences of
ordinals of length <k.

Proof. If xk=w,, then (Q, <) is <w,~closed. If k> w,, assume that
g f:7— OR, 1<k. We construct the decreasing sequence of conditions
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{q,=(0,, X,, &) <1}, such that g, =¢q, q,,, -f(a)=g(x), and if « is
limit, then J,=sup{d;:f<a}, X,=U {X;:f<a}. If cf(a)#w then
o, =) {&: p<a}; otherwise we add the low subsets that are cofinal in
d,. as well. If we can carry out the construction, we are done; ¢, determines
all the values of f. The only problem is if one of the X’s is not K(w),)-free.
Let « <t be minimal such that there exists an uncountable clique T<4,.
Clearly, cf(x) = w,. For some cofinal 7' = T, if y <4, is a limit point of T",
then T' 7y is low. There is a limit <« such that J, is a limit point of T”,
so by our construction 7' nd,e.o, so T'nd, may not have been later
extended to an w,-clique. |

We now start investigating (P, <)

CrLamm 5. Forcing with (P, <) does not introduce new sequences of
ordinals of length < k.

Proof. Similar to the previous proof. |

CLamm 6. (P, <) isk™ —cc.
Proof. By Claim 3 and 4-system arguments. ||

As every factor of (P, € ) adds a subset of x, 2= u will hold in the
extension. On the other hand, by Claim 6 and the fact that |P|=py, 2" <pu
will also hold.

If, in V7, CF(k, w,) < u, then a family of graphs witnessing this is in a
< p-sized subproduct of P. By the product lemma we only need to show
that forcing with (Q, <) introduces a (x,w;)-graph that cannot be
embedded into any ground model (k, w,)-graph. If G< @ is generic, put
Y=U{X: (6, X, Z)eG}.

CLamM 7. Y is K(w,)-free.

Proof. If k=w,, q | T is an w,-clique, select a decreasing sequence
4=qo=4q,= --- such that ¢, , =0, , X, 1, %, ) I-1,eT, 6,<1,<
d..1, and then put ¢'=(4, X, o), where 6=1limé,, X=1) {X,:n<w},
and &/ = {A, n<ow}lu{{t,:n<w}} Thenq |- T<J, a contradiction.

If k > w,, then by Claim 4 some ¢ = (3, X, <) determines all elements of
7, the alleged w,-clique. We can assume that T< 9, but then X is not
K(w,)-free, a contradiction. |

CLaM 8. Y does not embed into any ground model (x, »,)-graph.

Proof. Assume that g {f:k —x 1s an embedding of Y into some
ground model (k, w,)-graph, Z. By induction on o<, construct the
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decreasing sequence ¢,= (d,, X,, &) such that g,=¢q, q,., Hf(3,)=
g(a), for o limit 6, =1lim{d,: f<a}, X,=U {Xs: f<a}, {65, 0,}€X, .,
for f<a, and o, =) {o: <o} The only problem with the definition
could be that 4= {J,: f<a} for some A4 €.« But then, sup(A4) is of the
form 6, for some limit y < «, and no set set of that form was added to <.

We can therefore define the sequence, but then the range of g will be a
K(®,) in Z, a contradiction. |

THEOREM 4. If, in a model of GCH, u, x> w are cardinals with cf(u) >
Kk =cf(x), then, in some cardinal and cofinality preserving extension the GCH
holds below k, 2" =y and CF* (k, w,)=k".

Proof. Again, as in the proof of Theorem 3, we can assume that if
k=A%, with A>cf(1)=w, then [J, holds in the ground model. We also
assume that the GCH holds below x and 2% = p.

In a <«k-support iteration of length %, we add a family witnessing
CF*(k, w,)=«". Factor Q, will add a (x, w,)-graph that strongly embeds
every (x, w,)-graph of V*: Note that if the forcing does not collapse
cardinals, then [J, will still hold at every stage.

We first define and investigate one step of the iteration. Let (Q, <) be
the following poset. ¢ = (3, X, o/, Z, F)e Q, if d<x, X=[6]° is a K(w,)-
free graph, o < [6]™ is a family of low sets (x > w,) is a countable family
of limit-type subsets of § (k=w,). & is a family of <k many (x, w,)-
graphs; F: Z xd— ¢ is a function such that if Ze Z; then the mapping
x+—> F(Z, x) is a strong embedding of Z]J into X; and the following
further conditions hold:

(1) If Ae s/, sup(4)<x <4, then A% {x} & X;
(2) ifAdest, ZeZ, then AL F[{Z} x4].
g=0 X, X F)<q=(6,X, o, Z,F) if 826, X=Xn[s]%
F'2F, o =" n[6]%, F'2 F; and, moreover,
(3) if Zy£Z,eZ, 5<x,y<d, then F'(Z,, x)# F(Z,, y).

Cramm L. (Q, <) is transitive.

Proof. Assume that ¢,>q,=¢q,, ¢,=(0,, X;, o, %, F;) (i<3). In
establishing ¢g,>= ¢, only condition (3) could cause problems, but it wiil
not: if Zy#Z,€ 2, o< x <6, <y<0d,, then F)(Z,, x)#F,(Z,, y) as the
first element is in {J,, 6,) and the second is in [, §,). |

CLam 2. Ife<k, D={{(8, X, o, Z, F):0>=¢} is dense.

Proof. We can extend a given (4, X, o/, &, F) to a large enough ¢’ by
mapping Z | [d,9") (Ze Z) onto disjoint sets, not extending .«/, &, and
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adjusting X. Condition (1) will not cause a problem, as by (2) no A€ o/
will be forced to be joined to a vertex. |

Cramm 3. If Zis a (x, w,)-graph, then D= {(6, X, o#, X, F): Ze X} is
dense.

Proof. A similar argument works. ]

CrLamm 4. Forcing with (Q, <) does not introduce new sequences of
ordinals of length <k.

Proof. (Q, <) is <w-closed, and this is enough if x =w,. Assume
that k > w,. Let g |-/ : 17— OR, 7 < k. By induction on a < t we define the
decreasing sequence {¢,=(d,, X,, ¥, Z,, F,):a<t} such that ¢, |-
Sf(o) = g(a), and for limit «, 6, =sup{dg:f<a}, X,={) {X;: f<a}, Z,=
U{Zp:B<u}, F,=U {Fp: f<a}. If cf(a) > w, we take o, =) {o;: f<a};
otherwise we add all the cofinal in é, low subsets A4 for which there is no
Ze Z, with A= F,[{Z} x6,]. The only thing we have to show is that no
K(w,) wil be created. We may assume that o<t is a limit, that T<§, is
cofinal, and that T is a clique in X,. We can assume that segments of T of
limit type are low sets. As T could grow for a club subset C =« of order
type w,, it is true that if BeC, then Tndy,S Fy[{Z} xd;] for some
Z € Z;. By condition (3), there can be only one such Z. If, morcover, f is
a limit point of the limit points of C, then there is an A(f) < f, such that
for h(B)<y <P this Z for y is the same. By the pressing down lemma, A
is bounded on an unbounded subset, so Tné,=F,[{Z}xd;] for
uncountably many f < x, but then the inverse image of T will be a K(w,)
in Z, a contradiction. [

Let Y be the graph added by Q; ie, if GSQ is generic, then
Y=U{X:(3,X, 4,2 FeG].

Cramm 5. Y is K(w,)-free.

Proof. If k=w,, q T is an w,~clique in Y, then an argument as
above shows that there is a decreasing sequence {q,:a <w,;} determining
more and more elements of 7, and we can freeze T unless it is covered by
UF,[{Z}%x6,]:2<w,} for some Z, which again gives a K(w,) in Z.

If k> w,, by the above claim, the supposed clique 7 is in the ground
model and some g € G contains it in its X-part, a contradiction. ||

The iteration (P,, Q,:a<k") is defined as a < k-support iteration,
with Q, as the above Q, defined in V"= In Q,, let D, be the set of those
conditions of the form ¢= (4, X, &/, Z, F) for which it is true that
Zo#Z €% implies that Z, | d #Z, | d.

582b:63:1-10
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CLAM 6. D, is dense in Q..
Proof. Using Claim 2, with ¢ large enough. ||

If g=(0. X, o, & F)eQ, we put liq)=(, X, o, Z |6, F). Let E, be
the following subset of P_; pe P, if for all f<a, p| S determines /(p(f))
and forces that p(f)e Dy,

Cram 7. For every a<x™*

(a) E, is dense in P,

(b) forcing with P, does not add sequences of ordinals of length < k.

Proof. Assume first that k > w,. The proof is by induction on a <k ™.
If (b) holds for «, then it holds for « + 1, by Claim 4. Assume that (a) and
(b) hold for x and that pe P, . ,. We may assume that p | o |- p(a}e D,. As
(b) holds for «, there is a ¢ < p | x which determines p(x). Extend ¢ to an
re E,; then take rup(x)eE, .

Assume that o is a limit, pe P,. In order to prove (a) for z, we may
assume that supp(p) is cofinal in « and let {a.:¢ <7t} converge to . We
define {p.: <}, a decreasing sequence of conditions. Put p, = p. Define
p:€P, in such a way that p.la.eE,, and p.<p, p:|[a:, a)=
prl [os, o) hold for { <& If £ is a limit and fi > «;, the names p.(f) are
identical ({ < &), so we can take it as p.(f). If f<x., we take p.(f) as
U {p.(B)} by adding all the low subsets which can be added, as in Claim 4.
We show that p: is a condition. To this end, we show by induction on
f <o that p.| B is a condition. The limit case is trivial. The problem with
p:(p) can only be that its X part contains a K(w,), but then, as in the
proof of Claim 4, we get that p.|f |- Z is not K(w,)-free for some Ze Z.

If « is a limit and we are to show (b) for @ and p |- /: 7 — OR for some
T <k, we can define a decreasing, continuous sequence {p.:{ <1} with
pelHf1€)=g(é), p.€ E,. This can be carried out, as above, and then p,
decides f.

For k =w,, (b) follows from the fact that we iterate a countably closed
poset with countable supports, and for (a) an easy inductive proof can be
given, as for the other case above. |

CLam 8. P, isk™ —c.ec.

Proof. Given k™ conditions, we can assume that they are from £,_.. By
the usual 4-system arguments we can find two of them, p and p’, such that
(p(x))=1(p'(2)) holds for every xesupp(p)supp(p’). We show that
pup is a condition (though not necessarily in E, ).

To this end, we show that (pup’)| 2€ P, by induction on «. All cases
are trivial, except when a=f+ 1, f esupp(p) nsupp(p’). What we have to
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show is that the F part of (pu p’ )} ) is well defined; 1.e,, if Z=Z" are from
the & part, then F(Z, x})=F(Z', x) (x < ). But this will hold (or, more
precisely, will be forced to hold by (pu p’) | B) as F(Z, x) is determined by
Z | and by x, and 1t is determined the same way in p and p". |

From the last claim, every (x, w,)-graph appears in some intermediate
extension, and so it is embedded into the next graph, Y,, by Q,. We still
have to show that Y remains K(w,)-free under the further extensions. This
follows from Claim 7(b) if k>, and {rom the following statement for
K=a),.

Cramm 9. If, in V., Y is a K(w,)-free graph and P is an < w,-closed
forcing, then, in VT, Y is still K(w,)-free.

Proof. If p|—T is an uncountable clique, select {p,:x<w,} fixing
more and more elements of T, p,=p. |

Remark.  With the technique of Theorem 4 it is possible to show that if
w=zv>k, cf(u)>k, and v, k are regular, then it is consistent that 2% =g,
CF(x, w;)=v, and GCH holds below x. Add a sequence {Y,:x<v},
rather than of length k™, as in Theorem 4. One has only to observe that Y,
does not embed into any K(w,)-free graph in V%= this can be proved
similarly to Claim § in Theorem 3.
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