Universal Graphs without Large Cliques* # P. Komjáth[†] Eötvös University, Budapest, 1088 Hungary #### AND ## S. Shelah[‡] Hebrew University, Givat Ram, Jerusalem, Israel Received January 5, 1993 #### DEDICATED TO THE MEMORY OF ALAN MEKLER #### Introduction The theory of universal graphs originated from the observation of R. Rado [4, 5] that a universal countable graph X exists; i.e., X is countable and isomorphically embeds every countable graph. He also showed that under GCH there is a universal graph in every infinite cardinal. Since then, several results have been proved about the existence of universal elements in different classes of graphs. For example, a construction similar to Rado's shows that for every natural number $n \ge 3$, there is a universal K(n)-free countable graph, or, if GCH is assumed, there is one in every infinite cardinal (K(n)) denotes the complete graph on n vertices). This result, at least for uncountable cardinals, also follows from the existence theorem of universal and special models. The following folklore observation shows that this cannot be extended to $K(\omega)$. Assume that X = (V, E) is a $K(\omega)$ -free graph of some cardinal λ that embeds every $K(\omega)$ -free graph of cardinal λ . Let $a \notin V$, and define the new graph X' on $V' = V \cup \{a\}$ as follows. X' on V is identical with X, and a is joined to every vertex of V. Clearly, X' is $K(\omega)$ -free. So, by assumption, there is an embedding $g: V' \to V$ of X' into X. Put $a_0 = a$, and, by induction, $a_{n+1} = g(a_n)$. As g is edge preserving, we get, by induction on n, that ^{*} Publication No. 492 on second author's list. Research partially supported by the U.S.-Israel Binational Science Foundation. ^{*} E-mail: kope@cs.elte.hu. [‡] E-mail: shelah@math.huii.ac.il. a_n is joined to every a_t with t > n, so they are distinct and form a $K(\omega)$ in X', a contradiction. In Section 1 we give some existence/nonexistence statements on universal graphs, which under GCH give a necessary and sufficient condition for the existence of a universal graph of size λ with no $K(\kappa)$, namely, if κ is finite or $cf(\kappa) > cf(\lambda)$. The special case when $\lambda^{<\kappa} = \lambda$ was first proved by F. Galvin [6]. In Section 2 we investigate the question, when there is no universal $K(\kappa)$ -free graph of size λ , of how many of these graphs embed all the others. It was proved in [1] that if $\lambda^{<\lambda} = \lambda$ (e.g., if λ is regular and the GCH holds below λ) and $\kappa = \omega$, then this number is λ^+ . We show that this holds for every $\kappa \leq \lambda$ of countable cofinality. On the other hand, even for $\kappa = \omega_1$ and any regular $\lambda \geqslant \omega_1$, it is consistent that the GCH holds below λ , 2^{λ} is as large as we wish, and this number is either λ^+ or 2^{λ} , so both extremes can actually occur. Notation. We use the standard axiomatic set theory notation. If f is a function then Dom(f), Ran(f) denote the domain, range of f, respectively. For $A \subseteq Dom(f)$, $f[A] = \{f(x) : x \in A\}$. If X is a set and κ is a cardinal, $[X]^{\kappa} = \{Y \subseteq X : |Y| = \kappa\}$, $[X]^{<\kappa} = \{Y \subseteq X : |Y| < \kappa\}$. A graph is a pair X = (V, E), where V is some set and $E \subseteq [V]^2$; i.e., we exclude loops and parallel edges. If $|V| = \lambda$, we call X a λ -graph, and whenever possible, we assume outright that $V = \lambda$. A graph X = (V, E) is $K(\kappa)$ -free, it there is no clique of cardinal κ , i.e., $[T]^2 \nsubseteq E$ holds for every $T \in [V]^{\kappa}$. A (λ, κ) -graph is a $K(\kappa)$ -free λ -graph. If $X_i = (V_i, E_i)$ (i < 2) are graphs, the one-to-one function $f: V_0 \to V_1$ is a weak (strong) embedding if $\{x, y\} \in E_0$ implies that $\{f(x), f(y)\} \in E_1$ (if $\{x, y\} \in E_0$ iff $\{f(x), f(y)\} \in E_1$). A weakly (strongly) (λ, κ) -universal graph is a (λ, κ) -graph X that weakly (strongly) embeds every (λ, κ) -graph. ### 1. When GCH Holds LEMMA 1. If λ is a strong limit, $\lambda > \kappa \geqslant \omega$, and $cf(\kappa) > cf(\lambda)$, then there exists a strongly (λ, κ) -universal graph. **Proof.** Let $\lambda = \sup\{\lambda_{\alpha} : \alpha < \operatorname{cf}(\lambda)\}$, where the sequence is continuous, $2^{\lambda \alpha} \le \lambda_{\alpha+1}$, and $\lambda_0 = 0$. Let T be a tree of height $\operatorname{cf}(\lambda)$ in which every α -branch has $\lambda_{\alpha+2}$ extensions on the α th level. Clearly, $|T| = \lambda^{<\operatorname{cf}(\lambda)} = \lambda$. The vertex set of the universal graph X will be the disjoint union of some sets $\{A(t) : t \in T\}$, where $|A(t)| = \lambda_{\alpha+1}$ if $t \in T$ is on the α th level. No edge of X will go between A(t) and A(t') when t, t' are incomparable in T. By induction on $\alpha < \operatorname{cf}(\lambda)$, we determine for each $t \in T$ of height α how to build X on A(t) and how to join the vertices of A(t) into $\bigcup \{A(t') : t' < t\}$. This latter set is of cardinal λ_{α} , with a graph on it, and we make sure that it will be extended to a set of cardinal $\lambda_{\alpha+1}$, i.e., to some A(t), in all possible ways, such that the graph on A(t) is $K(\kappa)$ -free. This is possible, as for every branch we have enough extensions reserved. It is immediately seen that every (λ, κ) -graph embeds into X; one only has to select the right branch. The vertex set is of cardinal $\leq |T| \lambda = \lambda$. Finally, a $K(\kappa)$ could only be produced along a branch $\{A(t): t \in b\}$, but as $|b| \leq cf(\lambda) < cf(\kappa)$, some A(t) must contain a $K(\kappa)$, a contradiction; i.e., X is a (λ, κ) -graph. LEMMA 2. (F. Galvin). If $\lambda^{<\kappa} = \lambda$, then there is no weakly (λ, κ) -universal graph. *Proof.* Assume that $X = (\lambda, E)$ is (λ, κ) -universal. Let Y = (V, G) be the following graph. The elements of V are those functions f with Dom(f) an ordinal $<\kappa$ such that Ran(f) is a clique in E. $\{f,g\} \in G$ iff $f \subset g$; i.e., g end-extends f. Clearly, $|V| = \lambda^{<\kappa} = \lambda$. If $\{f_\alpha : \alpha < \kappa\}$ form a $K(\kappa)$, then they are compatible functions, and their union $f = \bigcup \{f_\alpha : \alpha < \kappa\}$ injects κ into a clique of X, a contradiction, as X is $K(\kappa)$ -free. Assume that $g: V \to \lambda$ is a weak embedding of Y into X. By induction on $\alpha < \kappa$ we define $x_{\alpha} < \lambda$, $f_{\alpha} \in V$, such that for $\beta < \alpha$, $\{x_{\beta}, x_{\alpha}\} \in E$, $f_{\beta} \subset f_{\alpha}$ (so $\{f_{\beta}, f_{\alpha}\} \in G$) should hold. If we succeed, we are done, as $\{x_{\alpha} : \alpha < \kappa\}$ is a clique again. If $\{x_{\beta}, f_{\beta} : \beta < \alpha\}$ are defined, let f_{α} be the following function: $\operatorname{Dom}(f_{\alpha}) = \alpha$, $f_{\alpha}(\beta) = x_{\beta}$ ($\beta < \alpha$); $f_{\alpha} \in V$, as its range, $\{x_{\beta} : \beta < \alpha\}$ is a clique. Put $x_{\alpha} = g(f_{\alpha})$. As by the way f_{α} is constructed, $f_{\beta} \subset f_{\alpha}$ ($\beta < \alpha$) and g is a weak embedding, x_{α} will, indeed, be joinded to x_{β} for $\beta < \alpha$, and so the inductive step is successfully completed. LEMMA 3. If λ is a strong limit, and $\kappa \leq \lambda$, $cf(\kappa) \leq cf(\lambda)$, then there is no weakly (λ, κ) -universal graph. *Proof.* We can assume that $\kappa > \mathrm{cf}(\lambda)$, as otherwise Lemma 2 gives the result. Assume that $X = (\lambda, E)$ is (λ, κ) -universal. Let $\{\kappa_{\alpha} : \alpha < \mathrm{cf}(\kappa)\}$ be an increasing sequence of regular cardinals, cofinal in κ , with $\kappa_0 > \mathrm{cf}(\lambda)$. Let F be the set of those functions f which satisfy the following requirements: $\mathrm{Dom}(f)$ is an ordinal $< \mathrm{cf}(\kappa)$, for $\alpha \in \mathrm{Dom}(f)$, $f(\alpha)$ is a bounded subset of λ with $|f(\alpha)| = \kappa_{\alpha}$, and $\bigcup \{f(\alpha) : \alpha < \mathrm{Dom}(f)\}$ is a clique in X. Let V, the vertex set of the graph Y = (V, G), be the disjoint union of the sets $\{A(f) : f \in F\}$, where $|A(f)| = \kappa_{\alpha}$ if $\mathrm{Dom}(f) = \alpha$. Two distinct vertices are joined iff one of them is in A(f) and the other is in A(f') for some $f \subseteq f'$. Clearly, $|V| \le \kappa |F| = \lambda$. Assume that T spans a clique in Y and that $|T| = \kappa$. Then $T \subseteq \bigcup \{A(f_{\gamma}): \gamma \in \Gamma\}$ for a collection of pairwise compatible f_{γ} 's; $\sup(\mathrm{Dom}(f_{\gamma})) = \mathrm{cf}(\kappa)$, as otherwise $|T| < \kappa$, but then $\bigcup \{\mathrm{Ran}(f_{\gamma}): \gamma \in \Gamma\}$ is a $K(\kappa)$ in X, a contradiction. We have therefore established that Y is a (λ, κ) -graph. Assume that $g: V \to \lambda$ is a weak embedding of Y into X. By induction on $\alpha < \operatorname{cf}(\kappa)$ we are going to define $f_{\alpha} \in F$ such that $\operatorname{Dom}(f_{\alpha}) = \alpha$, $f_{\alpha+1}(\alpha) \subseteq g[A(f_{\alpha})]$, and $f_{\beta} \subset f_{\alpha}$ whenever $\beta < \alpha$. If this can be carried out, we reach a contradiction, as then $\bigcup \left\{ \operatorname{Ran}(f_{\alpha}) : \alpha < \operatorname{cf}(\kappa) \right\}$ is a $K(\kappa)$ in X. There is no problem with the definition of f_{α} if $\alpha = 0$ or is a limit. Assume that f_{α} is given. $g[A(f_{\alpha})]$ is a clique in X of size $\kappa_{\alpha} = \operatorname{cf}(\kappa_{\alpha}) > \operatorname{cf}(\lambda)$, so there is a bounded (in λ) subset of it of cardinal κ_{α} , say, S. We can define $f_{\alpha+1}(\alpha) = S$ and $f_{\alpha+1}(\beta) = f_{\alpha}(\beta)$ for $\beta < \alpha$. By induction $f_{\alpha}(\beta) = f_{\beta+1}(\beta) \subseteq g[A(f_{\beta})]$. Since $f_{\beta} \subseteq f_{\alpha}$, $A(f_{\beta})$ is joined to $A(f_{\alpha})$. Therefore, since g is a weak embedding, the vertices in $f_{\alpha}(\beta)$ will be joined to S, and the induction continues. From the known results and Lemmas 1-3 we can deduce the following. THEOREM 1. (GCH). Given $\lambda \ge \kappa$, $\lambda \ge \omega$, there is a weakly/strongly (λ, κ) -universal graph iff $\kappa < \omega$ or $cf(\kappa) > cf(\lambda)$. ## 2. The Structure of the Class of (λ, κ) -Graphs In this section we investigate the complexity of the class of (λ, κ) -graphs when there is no universal element in it. DEFINITION. For $\lambda \geqslant \kappa$, $CF(\lambda, \kappa)$ is the minimal cardinal μ such that there is a family $\{X_{\alpha} : \alpha < \mu\}$ of (λ, κ) -graphs with the property that every (λ, κ) -graph is weakly embedded into some X_{α} . $CF^{+}(\lambda, \kappa)$ is the same but with strong embeddings. Clearly, $CF(\lambda, \kappa) \leq CF^+(\lambda, \kappa) \leq 2^{\lambda}$. Also, $CF(\lambda, \kappa) \leq \lambda$ iff $CF(\lambda, \kappa) = 1$ iff there is a weakly (λ, κ) -universal graph, and likewise for $CF^+(\lambda, \kappa)$. It was observed in [1] that $CF^+(\omega, \omega) = \omega_1$. We slightly extend that result. THEOREM 2. If $\lambda \geqslant \kappa$, $cf(\kappa) = \omega$, and λ is either a strong limit or of the form $\lambda = \mu^+ = 2^{\mu}$, then $CF^+(\lambda, \kappa) = \lambda^+$. *Proof.* From Lemmas 2-3, $CF(\lambda, \kappa) \ge \lambda^+$. Fix an increasing sequence $\kappa_n \to \kappa$, $\kappa_0 = 0$. Call a structure (A, <, X, R) a ranked graph if (A, <) is a well-ordered set, X is a graph on A, and R is a function mapping those bounded cliques of X with order-type some κ_n into the ordinals with the property that if clique C' end-extends clique C, then R(C') < R(C). Obviously, then, X will be $K(\kappa)$ -free. On the other hand, if a $K(\kappa)$ -free graph X is given on a well-ordered set (A, <), then the tree $$T(X) = \{ C \subseteq A : \text{type}(C) = \kappa_n \text{ (some } n), C \text{ clique } \},$$ endowed with end-extension as the partial order, will be ω -branchless, so an ordinal-valued function R as above exists. If $|A| = \lambda$, then $|T| = \lambda$, so only λ ordinals are used; therefore $R(0) < \lambda^+$ holds. We call the minimal possible R(0) the rank of X. Assume first that λ is a strong limit. Fix a continuous, cofinal sequence $\{\lambda_{\alpha}: \alpha < \mathrm{cf}(\lambda)\}$ of cardinals with $\lambda_0 = 0$ and $2^{\lambda_{\alpha}} \leq \lambda_{\alpha+1}$. For every $\xi < \lambda^+$ we are going to construct a graph that embeds all graphs with rank ξ ; this will clearly conclude the proof. Let T be a tree with height $\operatorname{cf}(\lambda)$, with one root, such that whenever $0 < \alpha < \operatorname{cf}(\lambda)$ every α -branch has $\lambda_{\alpha+2}$ extensions to the α th level. For $t \in T$ on the α th level, let A(t) be an ordered set of order-type $\lambda_{\alpha+1}$ such that the sets $\{A(t): t \in T\}$ are pairwise disjoint. The vertex set V of our graph will be the union V of these sets. We partially order V by assuming that A(t) < A(t') for t < t'; i.e., all elements of A(t) precede all elements of A(t'). For every $t \in T$, put $B(t) = \bigcup \{A(t'): t' < t\}$. By induction on the height of t we define S(t), a ranked graph with ranks $\leq \xi$ on $B(t) \cup A(t)$ such that if b is an α -branch, then all possible end-extensions (if there are any) of the already defined structure on $\bigcup \{A(t): t \in b\}$ actually occur. This is possible, as there are enough extensions of b to be the α th level. It is now obvious that all (λ, κ) -graphs of rank $\leq \xi$ embed into our tree. One only has to select the appropriate branch through T. Also, $|V| = |T|\lambda = \lambda^{-\frac{c(t(\lambda))}{2}} = \lambda$. We need to show that there is no $K(\kappa)$ in the resulting graph. Assume that U is a clique and that $|U| = \kappa$. As we joined vertices only in comparable A(t)'s, $U \subseteq \bigcup \{A(t): t \in b\}$ for some branch b. For some $t_n \in b$ (n = 0, 1, ...), it is true that the first κ_n elements of U are bounded in $S(t_n)$, so they get a decreasing sequence of ordinals as ranks, a contradiction. The case $\lambda = \mu^+ = 2^{\mu}$ is actually simpler; we need one-element A(t)'s, and we need only μ^+ extensions of every branch of length $< \mu^+$. Finally we show that under $\kappa^{<\kappa} = \kappa$, $CF(\kappa, \omega_1)$ can be as small as κ^+ , or as large as 2^{κ} , and this latter value can be as large as we wish. Theorem 3. Assume that in V, a model of GCH, μ , $\kappa > \omega$ are cardinals and $cf(\mu) > \kappa = cf(\kappa)$. Then in a cardinal and cofinality preserving forcing extension V^P , the GCH holds below κ and $CF(\kappa, \omega_1) = 2^{\kappa} = \mu$. *Proof.* If $\kappa = \lambda^+$, with $cf(\lambda) = \omega$, then we first add a \square_{λ} -sequence, i.e., a sequence $\{C_{\alpha}: \alpha < \kappa, \text{ limit }\}$ with the following properties: - (1) $C_{\alpha} \subseteq \alpha$ is closed, unbounded; - (2) if γ is a limit point of C_{α} , then $C_{\gamma} = \gamma \cap C_{\alpha}$; - (3) $|C_{\alpha}| < \lambda$. It is well known that such a sequence can be added by a cardinal and cofinality preserving forcing of size κ , so we may assume that it exists in V. Fix such a sequence, a sequence of cardinals $\lambda_n \to \lambda$, and a one-to-one mapping $\varphi_{\alpha,\beta} : [\alpha,\beta) \to \lambda$ for each $\alpha < \beta < \kappa$. Here $[\alpha,\beta)$ denotes the ordinal interval $\{\xi : \alpha \leq \xi < \beta\}$. We call a countable set $A \subseteq \kappa$ low, if tp(A) is a limit, and if we put $\delta = \sup(A)$, $C_{\delta} = \{c_{\xi} : \xi < tp(C_{\delta})\}$, the increasing enumeration of C_{δ} , then for some $n < \omega$, $\varphi_{c_{\xi}, c_{\xi+1}}(a) < \lambda_n$ holds for $a \in A$ satisfying $c_{\xi} \le a < c_{\xi+1}$. If $\kappa > \omega_1$ is not of the form $\kappa = \lambda^+$ with $cf(\lambda) = \omega$, then we call every countable subset of limit type low. CLAIM 1. The number of low subsets of any $\alpha < \kappa$ is $< \kappa$. *Proof.* If κ is not of the form λ^+ with $cf(\lambda) = \omega$, then $|\alpha|^{\omega} < \kappa$. In the other case the statement follows from property (3). CLAIM 2. If $B \subseteq \kappa$ is of order-type ω_1 , then for some cofinal subset $B' \subseteq B$ it is true that if $\gamma < \sup(B')$ is a limit point of B', then $B' \cap \gamma$ is low. *Proof.* If κ is of the form $\kappa = \lambda^+$ with $cf(\lambda) = \omega$, put $\delta = \sup(B)$. Shrink B to a cofinal $B' \subseteq B$, such that the elements of B' are separated by C_{δ} , and there is an $n < \omega$, such that if $c_{\xi} \le b < c_{\xi+1}$ for some ξ , then $\varphi_{c_{\xi}, c_{\xi-1}}(b) < \lambda_n$ $(b \in B')$. Then the claim follows from property (2) of the \square -sequence. If κ is not of the form $\kappa = \lambda^+$ with $cf(\lambda) = \omega$ then the choice B' = B works. The poset (P, \leq) of the proof of the theorem will be the $<\kappa$ support product of μ copies of some poset (Q, \leq) to be described below. $q \in Q$ if $q = (\delta, X, \mathcal{A})$, where $\delta < \kappa$, $X \subseteq [\delta]^2$, X is $K(\omega_1)$ -free; if $\kappa > \omega_1$ then \mathcal{A} is a family of low subsets of δ ; if $\kappa = \omega_1$, then \mathcal{A} is a countable family of countable subsets of δ of limit type. Moreover, we require that if $A \in \mathcal{A}$, $\sup(A) \le x < \delta$, then $A \times \{x\} \not\subseteq X$. We define extensions as follow: $q' = (\delta', X', \mathcal{A}') \leqslant q = (\delta, X, \mathcal{A})$ iff $\delta' \geqslant \delta$, $X = X' \cap [\delta]^2$, $\mathcal{A} = \mathcal{A}' \cap [\delta]^{\aleph_0}$. CLAIM 3. $|Q| = \kappa$. *Proof.* For every $\delta < \kappa$ there are at most κ many possibilities of selecting X, \mathscr{A} , such that $(\delta, X, \mathscr{A}) \in Q$. CLAIM 4. Forcing with (Q, \leq) does not introduce new sequences of ordinals of length $< \kappa$. *Proof.* If $\kappa = \omega_1$, then (Q, \leq) is $<\omega_1$ -closed. If $\kappa > \omega_1$, assume that $q \models f: \tau \to OR$, $\tau < \kappa$. We construct the decreasing sequence of conditions $\{q_{\alpha} = (\delta_{\alpha}, X_{\alpha}, \mathscr{A}_{\alpha}): \alpha \leqslant \tau\}$, such that $q_0 = q$, $q_{\alpha+1} \Vdash f(\alpha) = g(\alpha)$, and if α is limit, then $\delta_{\alpha} = \sup\{\delta_{\beta}: \beta < \alpha\}$, $X_{\alpha} = \bigcup\{X_{\beta}: \beta < \alpha\}$. If $\mathrm{cf}(\alpha) \neq \omega$ then $\mathscr{A}_{\alpha} = \bigcup\{\mathscr{A}_{\beta}: \beta < \alpha\}$; otherwise we add the low subsets that are cofinal in δ_{α} , as well. If we can carry out the construction, we are done; q_{τ} determines all the values of f. The only problem is if one of the X_{α} 's is not $K(\omega_1)$ -free. Let $\alpha \leqslant \tau$ be minimal such that there exists an uncountable clique $T \subseteq \delta_{\alpha}$. Clearly, $\mathrm{cf}(\alpha) = \omega_1$. For some cofinal $T' \subseteq T$, if $\gamma < \delta_{\alpha}$ is a limit point of T', then $T' \cap \gamma$ is low. There is a limit $\beta < \alpha$ such that δ_{β} is a limit point of T', so by our construction $T' \cap \delta_{\beta} \in \mathscr{A}_{\beta}$, so $T' \cap \delta_{\beta}$ may not have been later extended to an ω_1 -clique. We now start investigating (P, \leq) . CLAIM 5. Forcing with (P, \leq) does not introduce new sequences of ordinals of length $< \kappa$. *Proof.* Similar to the previous proof. CLAIM 6. (P, \leq) is $\kappa^+ - c.c.$ *Proof.* By Claim 3 and ∆-system arguments. As every factor of (P, \leq) adds a subset of κ , $2^{\kappa} \geqslant \mu$ will hold in the extension. On the other hand, by Claim 6 and the fact that $|P| = \mu$, $2^{\kappa} \leq \mu$ will also hold. If, in V^P , $CF(\kappa, \omega_1) < \mu$, then a family of graphs witnessing this is in a $< \mu$ -sized subproduct of P. By the product lemma we only need to show that forcing with (Q, \leq) introduces a (κ, ω_1) -graph that cannot be embedded into any ground model (κ, ω_1) -graph. If $G \subseteq Q$ is generic, put $Y = \bigcup \{X: (\delta, X, \mathcal{A}) \in G\}$. CLAIM 7. Y is $K(\omega_1)$ -free. Proof. If $\kappa = \omega_1$, $q \Vdash T$ is an ω_1 -clique, select a decreasing sequence $q = q_0 \geqslant q_1 \geqslant \cdots$ such that $q_{n+1} = (\delta_{n+1}, X_{n+1}, \mathcal{A}_{n+1}) \Vdash t_n \in T$, $\delta_n < t_n < \delta_{n+1}$, and then put $q' = (\delta, X, \mathcal{A})$, where $\delta = \lim \delta_n$, $X = \bigcup \{X_n : n < \omega\}$, and $\mathcal{A} = \bigcup \{\mathcal{A}_n : n < \omega\} \cup \{\{t_n : n < \omega\}\}$. Then $q' \Vdash T \subseteq \delta$, a contradiction. If $\kappa > \omega_1$, then by Claim 4 some $q = (\delta, X, \mathcal{A})$ determines all elements of T, the alleged ω_1 -clique. We can assume that $T \subseteq \delta$, but then X is not $K(\omega_1)$ -free, a contradiction. CLAIM 8. Y does not embed into any ground model (κ, ω_1) -graph. *Proof.* Assume that $q \Vdash f: \kappa \to \kappa$ is an embedding of Y into some ground model (κ, ω_1) -graph, Z. By induction on $\alpha < \omega_1$ construct the decreasing sequence $q_{\alpha} = (\delta_{\alpha}, X_{\alpha}, \mathcal{A}_{\alpha})$ such that $q_0 = q$, $q_{\alpha+1} \Vdash f(\delta_{\alpha}) = g(\alpha)$, for α limit $\delta_{\alpha} = \lim \{\delta_{\beta} : \beta < \alpha\}$, $X_{\alpha} = \bigcup \{X_{\beta} : \beta < \alpha\}$, $\{\delta_{\beta}, \delta_{\alpha}\} \in X_{\alpha+1}$ for $\beta < \alpha$, and $\mathcal{A}_{\alpha} = \bigcup \{\mathcal{A}_{\beta} : \beta < \alpha\}$. The only problem with the definition could be that $A \subseteq \{\delta_{\beta} : \beta < \alpha\}$ for some $A \in \mathcal{A}_{\alpha}$. But then, $\sup(A)$ is of the form δ_{γ} for some limit $\gamma \leqslant \alpha$, and no set set of that form was added to \mathcal{A}_{γ} . We can therefore define the sequence, but then the range of g will be a $K(\omega_1)$ in Z, a contradiction. THEOREM 4. If, in a model of GCH, μ , $\kappa > \omega$ are cardinals with $cf(\mu) > \kappa = cf(\kappa)$, then, in some cardinal and cofinality preserving extension the GCH holds below κ , $2^{\kappa} = \mu$ and $CF^+(\kappa, \omega_1) = \kappa^+$. *Proof.* Again, as in the proof of Theorem 3, we can assume that if $\kappa = \lambda^+$, with $\lambda > cf(\lambda) = \omega$, then \square_{λ} holds in the ground model. We also assume that the GCH holds below κ and $2^{\kappa} = \mu$. In a $<\kappa$ -support iteration of length κ^+ , we add a family witnessing CF $^+(\kappa, \omega_1) = \kappa^+$. Factor Q_{α} will add a (κ, ω_1) -graph that strongly embeds every (κ, ω_1) -graph of $V^{P_{\alpha}}$. Note that if the forcing does not collapse cardinals, then \square_{λ} will still hold at every stage. We first define and investigate one step of the iteration. Let (Q, \leq) be the following poset. $q = (\delta, X, \mathcal{A}, \mathcal{Z}, F) \in Q$, if $\delta < \kappa$, $X \subseteq [\delta]^2$ is a $K(\omega_1)$ -free graph, $\mathcal{A} \subseteq [\delta]^{\aleph_0}$ is a family of low sets $(\kappa > \omega_1)$ is a countable family of limit-type subsets of δ $(\kappa = \omega_1)$. \mathcal{Z} is a family of $< \kappa$ many (κ, ω_1) -graphs; $F: \mathcal{Z} \times \delta \to \delta$ is a function such that if $Z \in \mathcal{Z}$; then the mapping $x \mapsto F(Z, x)$ is a strong embedding of $Z \mid \delta$ into X; and the following further conditions hold: - (1) If $A \in \mathcal{A}$, $\sup(A) \leq x < \delta$, then $A \times \{x\} \not\subseteq X$; - (2) if $A \in \mathcal{A}$, $Z \in \mathcal{Z}$, then $A \nsubseteq F[\{Z\} \times \delta]$. $q' = (\delta', X', \mathcal{A}', \mathcal{Z}', F') \leqslant q = (\delta, X, \mathcal{A}, \mathcal{Z}, F) \text{ if } \delta' \geqslant \delta, X = X' \cap [\delta]^2,$ $\mathcal{Z}' \supseteq \mathcal{Z}, \mathcal{A} = \mathcal{A}' \cap [\delta]^{\aleph_0}, F' \supseteq F; \text{ and, moreover,}$ (3) if $Z_0 \neq Z_1 \in \mathcal{Z}$, $\delta \leq x$, $y < \delta'$, then $F'(Z_0, x) \neq F'(Z_1, y)$. CLAIM 1. (Q, \leq) is transitive. *Proof.* Assume that $q_0 \geqslant q_1 \geqslant q_2$, $q_i = (\delta_i, X_i, \mathcal{A}_i, \mathcal{Z}_i, F_i)$ (i < 3). In establishing $q_0 \geqslant q_2$ only condition (3) could cause problems, but it will not: if $Z_0 \neq Z_1 \in \mathcal{Z}_0$, $\delta_0 \leqslant x < \delta_1 \leqslant y < \delta_2$, then $F_2(Z_0, x) \neq F_2(Z_1, y)$ as the first element is in $[\delta_0, \delta_1)$ and the second is in $[\delta_1, \delta_2)$. CLAIM 2. If $\varepsilon < \kappa$, $D = \{(\delta, X, \mathcal{A}, \mathcal{Z}, F) : \delta \geqslant \varepsilon\}$ is dense. *Proof.* We can extend a given $(\delta, X, \mathcal{A}, \mathcal{Z}, F)$ to a large enough δ' by mapping $Z \mid [\delta, \delta')$ $(Z \in \mathcal{Z})$ onto disjoint sets, not extending \mathcal{A} , \mathcal{Z} , and adjusting X. Condition (1) will not cause a problem, as by (2) no $A \in \mathcal{A}$ will be forced to be joined to a vertex. CLAIM 3. If Z is a (κ, ω_1) -graph, then $D = \{(\delta, X, \mathcal{A}, \mathcal{Z}, F) : Z \in \mathcal{Z}\}$ is dense. *Proof.* A similar argument works. CLAIM 4. Forcing with (Q, \leq) does not introduce new sequences of ordinals of length $< \kappa$. *Proof.* (Q, \leq) is $<\omega_1$ -closed, and this is enough if $\kappa = \omega_1$. Assume that $\kappa > \omega_1$. Let $q \Vdash f : \tau \to OR$, $\tau < \kappa$. By induction on $\alpha \le \tau$ we define the decreasing sequence $\{q_{\alpha} = (\delta_{\alpha}, X_{\alpha}, \mathcal{A}_{\alpha}, \mathcal{Z}_{\alpha}, F_{\alpha}): \alpha \leq \tau\}$ such that $q_{\alpha+1} \models$ $f(\alpha) = g(\alpha)$, and for limit α , $\delta_{\alpha} = \sup\{\delta_{\beta} : \beta < \alpha\}$, $X_{\alpha} = \bigcup\{X_{\beta} : \beta < \alpha\}$, $\mathscr{Z}_{\alpha} = \bigcup\{X_{\beta} : \beta < \alpha\}$ $\bigcup \{\mathscr{Z}_{\beta} : \beta < \alpha\}, F_{\alpha} = \bigcup \{F_{\beta} : \beta < \alpha\}. \text{ If } cf(\alpha) > \omega, \text{ we take } \mathscr{A}_{\alpha} = \bigcup \{\mathscr{A}_{\beta} : \beta < \alpha\};$ otherwise we add all the cofinal in δ_{α} low subsets A for which there is no $Z \in \mathcal{Z}_{\alpha}$ with $A \subseteq F_{\alpha}[\{Z\} \times \delta_{\alpha}]$. The only thing we have to show is that no $K(\omega_1)$ will be created. We may assume that $\alpha \leq \tau$ is a limit, that $T \subseteq \delta_{\tau}$ is cofinal, and that T is a clique in X_x . We can assume that segments of T of limit type are low sets. As T could grow for a club subset $C \subseteq \alpha$ of order type ω_1 , it is true that if $\beta \in C$, then $T \cap \delta_{\beta} \subseteq F_{\beta}[\{Z\} \times \delta_{\beta}]$ for some $Z \in \mathcal{Z}_{\beta}$. By condition (3), there can be only one such Z. If, moreover, β is a limit point of the limit points of C, then there is an $h(\beta) < \beta$, such that for $h(\beta) < \gamma \le \beta$ this Z for γ is the same. By the pressing down lemma, h is bounded on an unbounded subset, so $T \cap \delta_{\beta} \subseteq F_{\alpha}[\{Z\} \times \delta_{\beta}]$ for uncountably many $\beta < \alpha$, but then the inverse image of T will be a $K(\omega_1)$ in Z, a contradiction. Let Y be the graph added by Q; i.e., if $G \subseteq Q$ is generic, then $Y = \bigcup \{X : (\delta, X, \mathcal{A}, \mathcal{Z}, F) \in G\}$. CLAIM 5. Y is $K(\omega_1)$ -free. *Proof.* If $\kappa = \omega_1$, $q \Vdash T$ is an ω_1 -clique in Y, then an argument as above shows that there is a decreasing sequence $\{q_x : \alpha < \omega_1\}$ determining more and more elements of T, and we can freeze T unless it is covered by $\bigcup \{F_x[\{Z\} \times \delta_x] : \alpha < \omega_1\}$ for some Z, which again gives a $K(\omega_1)$ in Z. If $\kappa > \omega_1$, by the above claim, the supposed clique T is in the ground model and some $q \in G$ contains it in its X-part, a contradiction. The iteration $(P_{\alpha}, Q_{\alpha}: \alpha \leq \kappa^{+})$ is defined as a $< \kappa$ -support iteration, with Q_{α} as the above Q, defined in $V^{P_{\alpha}}$. In Q_{α} , let D_{α} be the set of those conditions of the form $q = (\delta, X, \mathcal{A}, \mathcal{Z}, F)$ for which it is true that $Z_{0} \neq Z_{1} \in \mathcal{Z}$ implies that $Z_{0} \mid \delta \neq Z_{1} \mid \delta$. CLAIM 6. D_{α} is dense in Q_{α} . *Proof.* Using Claim 2, with ε large enough. If $q = (\delta, X, \mathcal{A}, \mathcal{Z}, F) \in Q_x$ we put $l(q) = (\delta, X, \mathcal{A}, \mathcal{Z} \mid \delta, F)$. Let E_x be the following subset of P_x ; $p \in P_x$ if for all $\beta < \alpha$, $p \mid \beta$ determines $l(p(\beta))$ and forces that $p(\beta) \in D_{\beta}$. CLAIM 7. For every $\alpha \leq \kappa^+$ - (a) E_{α} is dense in P_{α} ; - (b) forcing with P_{α} does not add sequences of ordinals of length $< \kappa$. *Proof.* Assume first that $\kappa > \omega_1$. The proof is by induction on $\alpha \leqslant \kappa^+$. If (b) holds for α , then it holds for $\alpha + 1$, by Claim 4. Assume that (a) and (b) hold for α and that $p \in P_{\alpha+1}$. We may assume that $p \mid \alpha \models p(\alpha) \in D_{\alpha}$. As (b) holds for α , there is a $q \leqslant p \mid \alpha$ which determines $p(\alpha)$. Extend q to an $r \in E_{\alpha}$; then take $r \cup p(\alpha) \in E_{\alpha+1}$. Assume that α is a limit, $p \in P_x$. In order to prove (a) for α , we may assume that $\operatorname{supp}(p)$ is cofinal in α and let $\{\alpha_{\xi} : \xi < \tau\}$ converge to α . We define $\{p_{\xi} : \xi < \tau\}$, a decreasing sequence of conditions. Put $p_0 = p$. Define $p_{\xi} \in P_x$ in such a way that $p_{\xi} \mid \alpha_{\xi} \in E_{\alpha_{\xi}}$, and $p_{\xi} \leqslant p_{\zeta}$, $p_{\xi} \mid [\alpha_{\xi}, \alpha) = p_{\zeta} \mid [\alpha_{\xi}, \alpha)$ hold for $\zeta < \xi$. If ξ is a limit and $\beta \geqslant \alpha_{\xi}$, the names $p_{\zeta}(\beta)$ are identical $(\zeta < \xi)$, so we can take it as $p_{\xi}(\beta)$. If $\beta < \alpha_{\xi}$, we take $p_{\xi}(\beta)$ as $\bigcup \{p_{\zeta}(\beta)\}$ by adding all the low subsets which can be added, as in Claim 4. We show that p_{ξ} is a condition. To this end, we show by induction on $\beta < \alpha$ that $p_{\xi} \mid \beta$ is a condition. The limit case is trivial. The problem with $p_{\xi}(\beta)$ can only be that its X part contains a $K(\omega_1)$, but then, as in the proof of Claim 4, we get that $p_{\xi} \mid \beta \parallel - Z$ is not $K(\omega_1)$ -free for some $Z \in \mathcal{Z}$. If α is a limit and we are to show (b) for α and $p \Vdash f : \tau \to OR$ for some $\tau < \kappa$, we can define a decreasing, continuous sequence $\{p_{\xi} : \xi \leqslant \tau\}$ with $p_{\xi} \Vdash f(\xi) = g(\xi)$, $p_{\xi} \in E_{\alpha}$. This can be carried out, as above, and then p_{τ} decides f. For $\kappa = \omega_1$, (b) follows from the fact that we iterate a countably closed poset with countable supports, and for (a) an easy inductive proof can be given, as for the other case above. CLAIM 8. P_{κ^+} is $\kappa^+ - c.c.$ *Proof.* Given κ^+ conditions, we can assume that they are from E_{κ^+} . By the usual Δ -system arguments we can find two of them, p and p', such that $l(p(\alpha)) = l(p'(\alpha))$ holds for every $\alpha \in \text{supp}(p) \cap \text{supp}(p')$. We show that $p \cup p'$ is a condition (though not necessarily in E_{κ^+}). To this end, we show that $(p \cup p') \mid \alpha \in P_{\alpha}$ by induction on α . All cases are trivial, except when $\alpha = \beta + 1$, $\beta \in \text{supp}(p) \cap \text{supp}(p')$. What we have to show is that the F part of $(p \cup p')(\beta)$ is well defined; i.e., if Z = Z' are from the \mathscr{Z} part, then F(Z, x) = F(Z', x) $(x < \delta)$. But this will hold (or, more precisely, will be forced to hold by $(p \cup p') \mid \beta$) as F(Z, x) is determined by $Z \mid \delta$ and by X, and it is determined the same way in P and P'. From the last claim, every (κ, ω_1) -graph appears in some intermediate extension, and so it is embedded into the next graph, Y_{α} , by Q_{α} . We still have to show that Y_{α} remains $K(\omega_1)$ -free under the further extensions. This follows from Claim 7(b) if $\kappa > \omega_1$ and from the following statement for $\kappa = \omega_1$. CLAIM 9. If, in V, Y is a $K(\omega_1)$ -free graph and P is an $<\omega_1$ -closed forcing, then, in V^P , Y is still $K(\omega_1)$ -free. *Proof.* If $p \Vdash T$ is an uncountable clique, select $\{p_{\alpha} : \alpha < \omega_1\}$ fixing more and more elements of $T, p_0 = p$. Remark. With the technique of Theorem 4 it is possible to show that if $\mu \geqslant v > \kappa$, $\operatorname{cf}(\mu) > \kappa$, and v, κ are regular, then it is consistent that $2^{\kappa} = \mu$, $\operatorname{CF}(\kappa, \omega_1) = v$, and GCH holds below κ . Add a sequence $\{Y_{\alpha} : \alpha < v\}$, rather than of length κ^+ , as in Theorem 4. One has only to observe that Y_{α} does not embed into any $K(\omega_1)$ -free graph in V^{P_2} ; this can be proved similarly to Claim 8 in Theorem 3. ### ACKNOWLEDGMENT The authors are grateful to the referees for their very thorough work. ### REFERENCES - A. Hajnal and P. Komjáth, Embedding graphs into colored graphs, Trans. Amer. Math. Soc. 307 (1988), 395-409. - P. KOMJÁTH AND J. PACH, Universal elements and the complexity of certain classes of infinite graphs, Discrete Math. 95 (1991), 255-270. - P. KOMJÁTH AND J. PACH, The complexity of a class of infinite graphs, Combinatorica 14 (1994), 121-125. - 4. R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964), 331-340. - R. RADO, Universal graphs, in "A Seminar in Graph Theory" (F. Harary and L. Beineke, Eds.), Holt, Rinehart & Winston, New York, 1967. - 6. F. GALVIN, unpublished notes.