Positive Solutions of Quasilinear Boundary V alue Problems

D. D. Hai
Denartment of Mathematics Misciscinni State University Misciscinni State
\section*{JRE}
K. Schmitt
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
and
R.Shivaji
Department of Mathematics, Mississippi State University, Mississippi State, Mississippi 39762
Submitted by John Lavery
R eceived J anuary 27, 1997

This paper deals with the existence of positive solutions for the boundary value problem

$$
\begin{gathered}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\lambda p(t) f(t, u)=0 ; \quad a<t<b \\
u(a)=0=u(b),
\end{gathered}
$$

where f is either ϕ-superlinear or ϕ-sublinear at ∞ and $f(t, 0)$ may be negative and p is a positive continuous function. The results extend several known results for semilinear equations. Our approach is based on fixed point theory for completely continuous operators which leave invariant a suitable cone in a Banach space of continuous functions. © 1998 A cademic Press

1. INTRODUCTION

The results in this paper are motivated by the search for positive radial solutions for the quasilinear elliptic boundary value problem

$$
\begin{gather*}
\operatorname{div}\left(a\left(|\nabla u|^{2}\right) \nabla u\right)+\lambda f(|x|, u)=0, \quad a<|x|<b \\
u=0, \quad|x| \in\{a, b\}, \tag{1.1}
\end{gather*}
$$

where $\phi(s)=\alpha\left(s^{2}\right) s$ is an increasing homeomorphism of the real line and λ is a positive parameter. Such radial solutions are solutions to boundary value problems of the form

$$
\begin{gather*}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime}+\lambda p(t) f(t, u)=0, \quad a<t<b \\
u(a)=0=u(b) \tag{1.2}
\end{gather*}
$$

with $p(t)=t^{N-1}, t=|x|$, and N is the dimension of x. The case where

$$
\alpha\left(|\nabla u|^{2}\right) \nabla u=|\nabla u|^{p-2} \nabla u, \quad p>1,
$$

i.e., perturbations of the p-Laplacian, has received much attention in the recent literature. A Iso problem (1.2) with $f(t, 0) \geq 0$ has been studied by several authors in recent years (see [15] and the references therein). H ere, we are interested in the case when $f(t, 0)$ may be negative (the so-called semipositone case) (see [6] and its references for a review). Since our results only depend upon the positivity and continuity of the coefficient function p, we shall consider (1.2) in this generality.

We first consider the case when f is ϕ-superlinear at ∞. In particular, we make the assumptions:
(A.1) ϕ is an odd, increasing homeomorphism on \mathbb{R} with ϕ^{-1} concave on \mathbb{R}^{+}.
(A.2) For each $c>0$, there exists $A_{c}>0$ such that $\phi^{-1}(c u) \geq$ $A_{c} \phi^{-1}(u), u \in \mathbb{R}^{+}$and $\lim _{c \rightarrow \infty} A_{c}=\infty$ (note that (A.2) implies the existence of $B_{c}>0$ such that $\phi^{-1}(c u) \leq B_{c} \phi^{-1}(u), u \in \mathbb{R}^{+}$with $\lim _{c \rightarrow 0} B_{c}$ $=0$).
(A.3) $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\lim _{u \rightarrow \infty}(f(t, u) / \phi(u))=\infty$ uniformly for $t \in[a, b]$.
(A.4) $p:[a, b] \rightarrow(0, \infty)$ is continuous.

Our first result is:
Theorem 1.1. Let (A.1)-(A.4) hold. Then there exists $\lambda^{*}>0$ such that problem (1.2) has a positive solution u_{λ} for $0<\lambda<\lambda^{*}$ with $\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow 0$.

We also consider the case when f is ϕ-sublinear at ∞, i.e, we consider nonlinearities f that satisfy
(A.5) $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\lim _{u \rightarrow \infty} f(t, u)=\infty$ uniformly for $t \in[a, b]$, and $\lim _{u \rightarrow \infty}(f(t, u) / \phi(u))=0$ uniformly for $t \in[a, b]$.
In this case we establish the following result:
Theorem 1.2. Let (A.1), (A.2), (A.4), and (A.5) hold. Then there exists $\bar{\lambda}>0$ such that (1.2) has a positive solution u_{λ} for $\lambda>\bar{\lambda}$ with $\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty$.

In the above we adhere to the notation

$$
\|u\|_{\infty}=\sup \{|u(t)|: a \leq t \leq b\} .
$$

Theorems 1.1 and 1.2 are extensions of results in [2,5,10], to quasilinear equations (in particular, p-Laplacian like equations), and of results in [1, 3, $4,7,8,13,16]$. The paper also serves to provide a unified treatment to a variety of results having been obtained by a host of methods.

2. PRELIMINARY RESULTS

W e establish some preliminary results.
Lemma 2.1. Let $p_{0}, p_{1}>0$ be such that $p_{0} \leq p(t) \leq p_{1}, t \in[a, b]$, and let M be a positive number. Assume w is the solution of

$$
\begin{align*}
\left(p(t) \phi\left(u^{\prime}\right)\right)^{\prime} & =-\lambda M p(t), \quad a<t<b \\
u(a) & =0=u(b) . \tag{2.1}
\end{align*}
$$

Then $w>0$ on (a, b) and

$$
\begin{equation*}
\left\|w^{\prime}\right\|_{\infty} \leq \phi^{-1}(\lambda M \delta) \tag{2.2}
\end{equation*}
$$

where $\delta=\left(p_{1} / p_{0}\right)(b-a)$.
Proof. By integrating, it follows that (2.1) has the unique solution given by

$$
w(t)=\int_{a}^{t} \phi^{-1}\left\{\frac{1}{p(s)}\left(C-\lambda M \int_{a}^{s} p(r) d r\right)\right\} d s
$$

where C is such that $w(b)=0$. Hence we must have $0<C<\lambda M \int_{a}^{b} p(r) d r$. Further, using

$$
\phi\left(w^{\prime}(t)\right)=\frac{1}{p(t)}\left(C-\int_{a}^{t} \lambda M p(r) d r\right),
$$

we obtain

$$
-\lambda M \delta \leq \phi\left(w^{\prime}(t)\right) \leq \lambda M \delta,
$$

$t \in[a, b]$, and (2.2) follows. Finally, since $w(a)=0=w(b)$, there exits $z \in(a, b)$ such that $w^{\prime}(z)=0$ and, since $p(t) \phi\left(w^{\prime}\right)$ is decreasing, $w^{\prime}(t)<0$ for $t>z$ while $w^{\prime}(t)>0$ for $t<z$. Thus $w>0$ on (a, b).

Lemma 2.2. For $x \geq-\mu, y \geq 0, \mu \geq 0$,

$$
\phi^{-1}(x+y) \leq \phi^{-1}(x)+\phi^{-1}(y)+\phi^{-1}(\mu) .
$$

Proof. Since ϕ^{-1} is concave and $\phi^{-1}(0)=0$, it follows that $\phi^{-1}(x+$ $y) \leq \phi^{-1}(x)+\phi^{-1}(y)$ if $x \geq 0, y \geq 0$. If $-\mu \leq x<0, y \geq 0$ and $\mu \geq 0$, then, since ϕ^{-1} is increasing $\phi^{-1}(x+y) \leq \phi^{-1}(y)$ and $\phi^{-1}(-\mu) \leq$ $\phi^{-1}(x)$. Thus $\phi^{-1}(x)+\phi^{-1}(\mu) \geq 0$, since ϕ^{-1} is odd. H ence the conclusion follows.

We next state the fixed point theorems which will be used to prove our results.

Theorem 2.1 [11]. Let E be a Banach space and let \mathbb{K} be a cone in E such that $\|\cdot\|$ is monotone with respect to the cone \mathbb{K}. Let $T: \mathbb{K} \rightarrow \mathbb{K}$ be a completely continuous operator. Assume there exist positive constants r, R, and $k \in \mathbb{K}, h \in \mathbb{K}$ with $0<r<R,\|k\|<r,\|h\|>R$ such that
(a) For each $0<\theta<1$, all solutions $u \in \mathbb{K}$ of

$$
u=\theta T u+(1-\theta) k
$$

satisfy $\|u\| \neq r$.
(b) For each $0<\theta<1$, all solutions $u \in \mathbb{K}$ of

$$
u=T u+\theta h
$$

satisfy $\|u\| \neq R$.
Then T has at least one fixed point $u \in \mathbb{K}$ with $r \leq\|u\| \leq R$.

Theorem 2.2 [11]. Let E, \mathbb{K}, and T be as in Theorem 2.1. Assume there exist positive constants r, R, and $k \in \mathbb{K}$ with $0<r<R,\|k\|=1$ such that
(a) For each $\gamma>0$, all solutions $y \in \mathbb{K}$ of

$$
y=T y+\gamma k
$$

satisfy $\|y\| \neq r$.
(b) For each $0<\gamma<1$, all solutions $z \in \mathbb{K}$ of

$$
z=\gamma T z
$$

satisfy $\|z\| \neq R$.
Then T has a fixed point $x \in \mathbb{K}$ with $r \leq\|x\| \leq R$.

3. PROOF OF THEOREM 1.1

Let $M>0$ be such that $g(t, u):=f(t, u)+M>0$ for $t \in[a, b], u \geq 0$. Define $\tilde{g}(t, u)=g(t, u)$ if $u \geq 0, \tilde{g}(t, u)=g(t, 0)$ if $u \leq 0$. Let w be defined as in Lemma 2.1. Then u is a positive solution of (1.2) if $\tilde{u}=u+w$ is a solution of

$$
\begin{align*}
\left(p(t)\left(\phi\left(\tilde{u}^{\prime}-w^{\prime}\right)+\phi\left(w^{\prime}\right)\right)\right)^{\prime} & =-\lambda p(t) \tilde{g}(t, \tilde{u}-w), \quad a<t<b \\
\tilde{u}(a) & =0=\tilde{u}(b) \tag{3.1}
\end{align*}
$$

with $\tilde{u}>w$ on (a, b).
For each $v \in C[a, b]$, let $u=T v$ be the solution of

$$
\begin{gathered}
\left(p(t)\left(\phi\left(u^{\prime}-w^{\prime}\right)+\phi\left(w^{\prime}\right)\right)\right)^{\prime}=-\lambda p(t) \tilde{g}(t, v-w), \quad a<t<b \\
u(a)=0=u(b) .
\end{gathered}
$$

Note that u satisfies
$u(t)=\int_{a}^{t} \phi^{-1}\left(\frac{C_{1}-\lambda \int_{a}^{s} p(\tau) \tilde{g}(\tau, v-w)}{p(s)} d \tau-\phi\left(w^{\prime}(s)\right)\right) d s+w(t)$,
where C_{1} is such that $u(b)=0$.
Hence

$$
0 \leq C_{1} \leq \lambda \int_{a}^{b} p(\tau) \tilde{g}(\tau, v-w) d \tau
$$

since otherwise,

$$
u(b)>\int_{a}^{b} \phi^{-1}\left(-\phi\left(w^{\prime}(s)\right)\right) d s=0
$$

which is a contradiction.
Now let $\mathbb{K}=\{v \in C[a, b] \mid v \geq 0\}$. It can be verified that $T: \mathbb{K} \rightarrow \mathbb{K}$ is completely continuous. Let $\lambda^{*}>0$ be such that

$$
\frac{b-a}{M_{1}} \phi^{-1}\left(\lambda^{*} M \delta\right)<\frac{1}{8}
$$

and

$$
\lambda^{*}<\left[\frac{h(1)}{\phi(1 / 2(b-a))}\right]^{-1} \frac{1}{2 \delta}
$$

where $M_{1}=A_{\left(p_{0} / p_{1}\right)} \leq 1, h(t)=\sup _{a \leq \tau \leq b, 0 \leq s \leq t} \tilde{g}(\tau, s)$ and δ is given by Lemma 2.1.
We shall now apply Theorem 2.1 to show that T has a fixed point \tilde{u} in \mathbb{K} with $\|\tilde{u}\|_{\infty} \geq C_{\lambda}$, where $C_{\lambda} \rightarrow \infty$ as $\lambda \rightarrow 0$. Let $0<\lambda<\lambda^{*}$. Then there exists $C_{\lambda}>1$ such that

$$
\begin{equation*}
\frac{h\left(C_{\lambda}\right)}{\phi\left(C_{\lambda} / 2(b-a)\right)}=\frac{1}{2 \lambda \delta} \tag{3.2}
\end{equation*}
$$

for

$$
\frac{h(1)}{\phi(1 / 2(b-a))}<\frac{1}{2 \lambda \delta} \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{h(t)}{\phi(t / 2(b-a))}=\infty .
$$

Let $u \in \mathbb{K}$ be such that $u=\theta T u, 0<\theta<1$. We claim that $\|u\|_{\infty} \neq C_{\lambda}$. Indeed, if $\|u\|_{\infty}=C_{\lambda}$ then we have by Lemma 2.2,

$$
\begin{aligned}
u(t) \leq & \int_{a}^{t} \phi^{-1}\left(\frac{\lambda \int_{s}^{b} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p(s)}-\phi\left(w^{\prime}\right)\right) d s+w(t) \\
\leq & \int_{a}^{t} \phi^{-1}\left(\frac{\lambda \int_{s}^{b} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p(s)}\right) d s \\
& -\int_{a}^{t} \phi^{-1}\left(\phi\left(w^{\prime}\right)\right) d s+\int_{a}^{t} \phi^{-1}(\lambda M \delta) d s+w(t)
\end{aligned}
$$

Here we have used the fact that $\phi\left(w^{\prime}\right)<\lambda M \delta$ (see Lemma 2.1). Then

$$
C_{\lambda}=\|u\|_{\infty} \leq(b-a) \phi^{-1}\left(\lambda \delta h\left(C_{\lambda}\right)\right)+(b-a) \phi^{-1}\left(\lambda^{*} M \delta\right),
$$

which implies

$$
\phi\left(\frac{C_{\lambda}}{2(b-a)}\right) \leq \lambda \delta h\left(C_{\lambda}\right)
$$

or

$$
\frac{h\left(C_{\lambda}\right)}{\phi\left(C_{\lambda} / 2(b-a)\right)} \geq \frac{1}{\lambda \delta}
$$

a contradiction to (3.2). Hence $\|u\|_{\infty} \neq C_{\lambda}$. Note that since

$$
h\left(C_{\lambda}\right) \geq \frac{1}{2 \lambda \delta} \phi\left(\frac{1}{2(b-a)}\right),
$$

it follows that $C_{\lambda} \rightarrow \infty$ as $\lambda \rightarrow 0$.
Next, we verify that there exist constants $R>C_{\lambda}, h>R$ such that for given $0<\theta<1$ all solutions $u \in \mathbb{K}$ of $u=T u+\theta h$ satisfy $\|u\|_{\infty} \neq R$. Such u satisfy

$$
\begin{gathered}
{\left[p(t)\left(\phi\left(u^{\prime}-w^{\prime}\right)+\phi\left(w^{\prime}\right)\right)\right]^{\prime}=-\lambda p(t) \tilde{g}(t, u-w), \quad a<t<b} \\
u(a)=\theta h=u(b) .
\end{gathered}
$$

Let $\|u\|_{\infty}=u\left(t_{0}\right)$ and suppose that $\|u\|_{\infty}>C_{\lambda}$. Let v be the solution of

$$
\begin{gathered}
{\left[p(t)\left(\phi\left(v^{\prime}-w^{\prime}\right)+\phi\left(w^{\prime}\right)\right)\right]^{\prime}=0, \quad a<t<t_{0}} \\
v(a)=\theta h, \quad v\left(t_{0}\right)=\|u\|_{\infty} .
\end{gathered}
$$

Then we have

$$
\begin{aligned}
{\left[p(t)\left(\phi\left(u^{\prime}-w^{\prime}\right)-\phi\left(v^{\prime}-w^{\prime}\right)\right)\right]^{\prime} } & =-\lambda M \tilde{g}(t, u-w), \quad a<t<t_{0} \\
(u-v)(a)=0 & =(u-v)\left(t_{0}\right),
\end{aligned}
$$

and by a comparison argument it follows that $u>v$ on $\left(a, t_{0}\right)$. Note that

$$
v(t)=\|u\|_{\infty}-\int_{t}^{t_{0}}\left\{\phi^{-1}\left(\frac{C}{p(s)}-\phi\left(w^{\prime}(s)\right)\right)+w^{\prime}(s)\right\} d s
$$

where C is such that $v(a)=\theta h$, and hence

$$
\begin{equation*}
\|u\|_{\infty}=\theta h+\int_{a}^{t_{0}}\left\{\phi^{-1}\left(\frac{C}{p(s)}-\phi\left(w^{\prime}\right)\right)+w^{\prime}\right\} d s \tag{3.3}
\end{equation*}
$$

If $C>p_{1} \phi\left(2\|u\|_{\infty} /\left(t_{0}-a\right)\right)$, then

$$
\frac{C}{p(s)}>\frac{p_{1}}{p_{0}} \phi\left(\frac{2\|u\|_{\infty}}{t_{0}-a}\right) \geq \phi\left(\frac{2}{b-a}\right)>\lambda M \delta \geq \phi\left(w^{\prime}(s)\right)
$$

by Lemma 2.1. This implies

$$
\begin{aligned}
\phi^{-1}\left(\frac{C}{p(s)}\right) & =\phi^{-1}\left(\frac{C}{p(s)}-\phi\left(w^{\prime}(s)\right)+\phi\left(w^{\prime}(s)\right)\right) \\
& \leq \phi^{-1}\left(\frac{C}{p(s)}-\phi\left(w^{\prime}(s)\right)\right)+w^{\prime}(s)+\phi^{-1}(\lambda M \delta)
\end{aligned}
$$

by Lemma 2.2. Hence

$$
\begin{aligned}
\phi^{-1}\left(\frac{C}{p(s)}-\phi\left(w^{\prime}(s)\right)\right)+w^{\prime}(s) & \geq \phi^{-1}\left(\frac{C}{p(s)}\right)-\phi^{-1}(\lambda M \delta) \\
& \geq \frac{2\|u\|_{\infty}}{t_{0}-a}-\phi^{-1}(\lambda M \delta) \geq \frac{\|u\|_{\infty}}{t_{0}-a}
\end{aligned}
$$

(since $1 /(b-a) \geq \phi^{-1}(\lambda M \delta)$) which is a contradiction to (3.3). Thus $0 \leq C \leq p_{1} \phi\left(2\|u\|_{\infty} /\left(t_{0}-a\right)\right)$ and using Lemma 2.2 it follows that

$$
\begin{aligned}
v(t) & \geq\|u\|_{\infty}-\int_{t}^{t_{0}}\left\{\phi^{-1}\left(\frac{p_{1}}{p_{0}} \phi\left(\frac{2\|u\|_{\infty}}{t_{0}-a}\right)-\phi\left(w^{\prime}(s)\right)\right)+w^{\prime}(s)\right\} d s \\
& \geq\|u\|_{\infty}-\left(t_{0}-t\right)\left[\phi^{-1}\left(\frac{p_{1}}{p_{0}} \phi\left(\frac{2\|u\|_{\infty}}{t_{0}-a}\right)\right)+\phi^{-1}(\lambda M \delta)\right] \\
& \geq\|u\|_{\infty}-\frac{2 B_{\left(p_{1} / p_{2}\right)}\left(t_{0}-t\right)}{t_{0}-a}\|u\|_{\infty}-(b-a) \phi^{-1}(\lambda M \delta) \\
& \geq \frac{1}{2}\|u\|_{\infty}-(b-a) \phi^{-1}(\lambda M \delta) \geq \frac{3}{8}\|u\|_{\infty}, \quad t \in\left[t_{1}, t_{0}\right]
\end{aligned}
$$

where $t_{1}=t_{0}-\left(t_{0}-a\right) / 4 B$ and $B>1$ is such that $\phi^{-1}\left(\left(p_{1} / p_{0}\right) x\right) \leq$ $B \phi^{-1}(x), x \geq 0$.

Consequently $u(t)-w(t) \geq v(t)-w(t) \geq \frac{3}{8}\|u\|_{\infty}-w(t) \geq \frac{1}{4}\|u\|_{\infty}$, for $t \in\left[t_{1}, t_{0}\right]$, since $w(t)=\int_{a}^{t} w^{\prime}(s) d s \leq(b-a) \phi^{-1}(\lambda M \delta) \leq \frac{1}{8}$.

Now

$$
u(t)=w(t)+\theta h+\int_{a}^{t} \phi^{-1}\left(\frac{\tilde{C}-\lambda \int_{a}^{s} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p(s)}-\phi\left(w^{\prime}\right)\right) d s
$$

where \tilde{C} is such that $u^{\prime}\left(t_{0}\right)=0$. Thus

$$
w^{\prime}\left(t_{0}\right)+\phi^{-1}\left(\frac{\tilde{C}-\lambda \int_{a}^{t_{0}} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p\left(t_{0}\right)}-\phi\left(w^{\prime}\left(t_{0}\right)\right)\right)=0,
$$

which implies that $\tilde{C}=\lambda \int_{a}^{t_{0}} p(\tau) \tilde{g}(\tau, u-w) d \tau$. Hence

$$
u(t)=w(t)+\theta h+\int_{a}^{t} \phi^{-1}\left(\frac{\lambda \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p(s)}-\phi\left(w^{\prime}\right)\right) d s
$$

If $t_{0} \geq(b+a) / 2$, then

$$
\left.\left.\begin{array}{rl}
\|u\|_{\infty} & \geq \int_{a}^{t_{1}} \phi^{-1}\left(\frac{\lambda \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p(s)}-\phi\left(w^{\prime}\right)\right) d s \\
\geq\left(t_{1}-a\right) \phi^{-1}\left(\frac{\lambda\left(t_{0}-t_{1}\right) p_{0} \quad \inf \tilde{g}(\tau, s)}{a \leq \tau \leq b, s \geq\|u\|_{\infty} / 4}\right. \\
p_{1} \phi\left(\|u\|_{\infty} / 4\right)
\end{array}\right)\left(\frac{\|u\|_{\infty}}{4}\right)-\lambda M \delta\right) \quad \begin{aligned}
& \geq\left(\frac{b-a}{2}\right)\left(1-\frac{1}{4 B}\right) \phi^{-1}\left(\frac{\lambda p_{0}(b-a)}{8 B p_{1}}\left(\inf _{a \leq \tau \leq b, s \geq\|u\|_{\infty} / 4} \frac{\tilde{g}(\tau, s)}{\phi(s)}\right)\right. \\
& \left.\quad \times \phi\left(\frac{\|u\|_{\infty}}{4}\right)-\lambda M \delta\right)
\end{aligned}
$$

$$
\geq \frac{(b-a)}{2}\left(1-\frac{1}{4 B}\right) \phi^{-1}\left(\bar{C} \phi\left(\frac{\|u\|_{\infty}}{4}\right)\right) \quad \text { for }\|u\|_{\infty} \text { large }
$$

$$
\geq \frac{(b-a)}{2}\left(1-\frac{1}{4 B}\right) A_{\bar{C}} \frac{\|u\|_{\infty}}{4} \quad \text { by (A.2), }
$$

where

$$
\bar{C}=\frac{\lambda p_{0}(b-a)}{16 B p_{1}} \inf _{\substack{a \leq \tau \leq b, s \geq \| u b_{\infty} / 4}} \frac{\tilde{g}(\tau, s)}{\phi(s)} .
$$

This implies $A_{\bar{C}} \leq 8 /(b-a)(1-1 / 4 B)$. Since $A_{\bar{C}} \rightarrow \infty$ as $\|u\|_{\infty} \rightarrow \infty$ (by A.4), there exists $R_{1}>C_{\lambda}$ independent of u, θ, and h such that $\|u\|_{\infty}<R_{1}$.

If, on the other hand, $t_{0} \leq(b+a) / 2$, we let \tilde{v} be such that

$$
\begin{gathered}
{\left[p(t)\left(\phi\left(\tilde{v}^{\prime}-w^{\prime}\right)+\phi\left(w^{\prime}\right)\right)\right]^{\prime}=0, \quad t_{0}<t<b} \\
\tilde{v}\left(t_{0}\right)=\|u\|_{\infty}, \quad \tilde{v}(b)=\theta h .
\end{gathered}
$$

Then $\tilde{v}(t)=\|u\|_{\infty}-\int_{t_{0}}^{b} \phi^{-1}\left[C / p(s)+\phi\left(w^{\prime}\right)\right] d s+\int_{t_{0}}^{t} w^{\prime}(s) d s$, where $C>0$ is such that $\tilde{v}(b)=\theta$ h, i.e.,

$$
\begin{equation*}
\|u\|_{\infty}=\theta h+\int_{t_{0}}^{b} \phi^{-1}\left(\frac{C}{p(s)}+\phi\left(w^{\prime}\right)\right) d s-\int_{t_{0}}^{b} w^{\prime}(s) d s \tag{3.4}
\end{equation*}
$$

If $C>p_{1} \phi\left(2\|u\|_{\infty} /\left(b-t_{0}\right)\right)$, then

$$
\frac{C}{p(s)}>\frac{p_{1}}{p_{0}} \phi\left(\frac{2\|u\|_{\infty}}{b-t_{0}}\right) \geq \phi\left(\frac{2}{b-a}\right)>\lambda M \delta \geq \phi\left(-w^{\prime}(s)\right),
$$

by Lemma 2.1.
This implies

$$
\begin{aligned}
\phi^{-1}\left(\frac{C}{p(s)}\right) & =\phi^{-1}\left(\frac{C}{p(s)}+\phi\left(w^{\prime}(s)\right)+\phi\left(-w^{\prime}(s)\right)\right) \\
& \leq \phi^{-1}\left(\frac{C}{p(s)}+\phi\left(w^{\prime}(s)\right)\right)-w^{\prime}(s)+\phi^{-1}(\lambda M \delta)
\end{aligned}
$$

by Lemma 2.2. Hence

$$
\begin{aligned}
\phi^{-1}\left(\frac{C}{p(s)}+\phi\left(w^{\prime}(s)\right)\right)-w^{\prime}(s) & \geq \phi^{-1}\left(\frac{C}{p(s)}\right)-\phi^{-1}(\lambda M \delta) \\
& \geq \frac{2\|u\|_{\infty}}{b-t_{0}}-\phi^{-1}(\lambda M \delta) \\
& \geq \frac{\|u\|}{b-t_{0}}
\end{aligned}
$$

(since $1 /(b-a) \geq \phi^{-1}(\lambda M \delta)$) which is in contradiction to (3.4). Thus

$$
0 \leq C \leq p_{1} \phi\left(\frac{2\|u\|_{\infty}}{b-t_{0}}\right)
$$

and, using similar arguments as before, we have $u \geq \tilde{v}$ on $\left(t_{0}, b\right)$. H ence

$$
\begin{align*}
\tilde{v}(t) & \geq\|u\|_{\infty}-\int_{t_{0}}^{t} \phi^{-1}\left(\frac{p_{1}}{p_{0}} \phi\left(\frac{2\|u\|_{\infty}}{b-t_{0}}\right)+\phi\left(w^{\prime}\right)\right) d s+\int_{t_{0}}^{t} w^{\prime}(s) d s \\
& \geq\|u\|_{\infty}-\left[\phi^{-1}\left(\frac{p_{1}}{p_{0}} \phi\left(\frac{2\|u\|_{\infty}}{b-t_{0}}\right)\right)+\phi^{-1}(\lambda M \delta)\right]\left(t-t_{0}\right) \\
& \geq\|u\|_{\infty}-\frac{2 B_{\left(p_{1} / p_{0}\right)}(t-T)\|u\|_{\infty}}{b-t_{0}}-(b-a) \phi^{-1}(\lambda M \delta) \\
& \geq \frac{1}{2}\|u\|_{\infty}-(b-a) \phi^{-1}(\lambda M \delta) \\
& \geq \frac{3}{8}\|u\|_{\infty}, \quad t \in\left[t_{0}, t_{2}\right] \tag{3.5}
\end{align*}
$$

where $t_{2}=t_{1}+\left(b-t_{0}\right) / 4 B$. By rewriting u as

$$
u(t)=w(t)+\theta h+\int_{t}^{b} \phi^{-1}\left\{\frac{\lambda \int_{t_{0}}^{s} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p(s)}-\phi\left(w^{\prime}\right)\right\} d s
$$

and using (3.5), it follows that there is $R_{2}>C_{\lambda}$ independent of u, θ, and h such that $\|u\|_{\infty}<R_{2}$. Thus by Theorem 2.1, T has a fixed point \tilde{u} in \mathbb{K} with $\|u\|_{\infty} \geq C_{\lambda}$.

We now establish that $\tilde{u}>w$ on (a, b). Let $\|\tilde{u}\|_{\infty}=\tilde{u}\left(t_{0}\right), a<t_{0}<b$. From (3.1) we obtain for $a<t<t_{0}$,

$$
p(t)\left(\phi\left(\tilde{u}^{\prime}-w^{\prime}\right)+\phi\left(w^{\prime}\right)\right)=\int_{t}^{t_{0}} \lambda p(t) \tilde{g}(t, \tilde{u}-w) d t
$$

which implies

$$
\begin{aligned}
\tilde{u}\left(t_{0}\right)= & \int_{a}^{t_{0}} \phi^{-1}\left(\frac{\int_{s}^{t_{0}} \lambda p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau}{p(s)}-\phi\left(w^{\prime}(s)\right)\right) d s \\
& +\int_{a}^{t_{0}} w^{\prime}(s) d s \\
= & \int_{a}^{t_{0}}\left[\phi^{-1}\left(\frac{\int_{s}^{t_{0}} \lambda p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau}{p_{0}}+\phi\left(-w^{\prime}(s)\right)\right)+w^{\prime}(s)\right] d s \\
\leq & \int_{a}^{t_{0}}\left[\phi^{-1}\left(\frac{\lambda}{p_{0}} \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau\right)+\phi^{-1}(\lambda M \delta)\right] d s,
\end{aligned}
$$

where we have used Lemma 2.2.
This implies

$$
1 \leq \int_{a}^{t_{0}} \phi^{-1}\left(\frac{\lambda}{p_{0}} \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau\right) d s+(b-a) \phi^{-1}(\lambda M \delta)
$$

and hence

$$
\begin{equation*}
\int_{a}^{t_{0}} \phi^{-1}\left(\frac{\lambda}{p_{0}} \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau\right) d s \geq \frac{1}{2} \tag{3.6}
\end{equation*}
$$

by our choice of λ^{*}. Now, using Lemma 2.2 and (3.6), we obtain

$$
\begin{aligned}
\tilde{u}(t)-w(t)= & \int_{a}^{t} \phi^{-1}\left(\frac{\lambda \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau}{p(s)}-\phi\left(w^{\prime}(s)\right)\right) d s \\
\geq & \int_{a}^{t} \phi^{-1}\left(\frac{\lambda}{p_{1}} \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau-\lambda M \delta\right) d s \\
\geq & \int_{a}^{t} \phi^{-1}\left(\frac{\lambda}{p_{1}} \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau\right) d s \\
& -2(t-a) \phi^{-1}(\lambda M \delta) .
\end{aligned}
$$

Here we have used the fact that

$$
\phi^{-1}(x-y) \geq \phi^{-1}(x)-2 \phi^{-1}(y),
$$

for $x \geq 0, y \geq 0$ which follows from Lemma 2.2, since

$$
\phi^{-1}(x)=\phi^{-1}(x-y+y) \leq \phi^{-1}(x-y)+\phi^{-1}(y)+\phi^{-1}(y) .
$$

H ence

$$
\begin{aligned}
\tilde{u}(t)-w(t) \geq & M_{1} \int_{a}^{t} \phi^{-1}\left(\frac{\lambda}{p_{0}} \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w) d \tau\right) d s \\
& -2(t-a) \phi^{-1}(\lambda M \delta) \\
\geq & \frac{M_{1}}{2} \frac{(t-a)}{\left(t_{0}-a\right)}-2(t-a) \phi^{-1}(\lambda M \delta)>0, \quad a<t \leq t_{0}
\end{aligned}
$$

since $\int_{a}^{t} \phi^{-1}\left(\left(\lambda / p_{0}\right) \int_{s}^{t_{0}} p(\tau) \tilde{g}(\tau, \tilde{u}-w)\right) d s$ is concave on $\left[a, t_{0}\right]$ and (3.6) holds.

Similarly, $\tilde{u}>w$ on $\left(t_{0}, b\right)$ and thus $u=\tilde{u}-w$ is a positive solution of (1.2).

4. PROOF OF THEOREM 1.2

Define M, \tilde{g}, w, T, and \mathbb{K} as in the proof of Theorem 1.1. Let $k \equiv 1$ and let u satisfy

$$
u=T u+\gamma k, \quad 0<\gamma
$$

We claim that $\|u\|_{\infty} \neq r=\left(8 / M_{1}\right)(b-a) \phi^{-1}(\lambda M \delta)$, where $M_{1}=A_{\left(p_{0} / p_{1}\right)}$ and δ is given by Lemma 2.1. Indeed, proceeding as in the proof of Theorem 1.1., we obtain

$$
u(t)-w(t) \geq \frac{1}{4}\|u\|_{\infty}, \quad t \in\left[t_{1}, t_{0}\right]
$$

where $t_{1}=t_{0}-\left(t_{0}-a\right) / 4 B$.

Hence, if $t_{0} \geq(a+b) / 2$, we have by (3.3)

$$
\begin{aligned}
\|u\|_{\infty} & \geq \int_{a}^{t_{1}} \phi^{-1}\left\{\frac{\lambda\left(t_{0}-t_{1}\right) p_{0}}{p_{1}} G\left(\frac{\|u\|_{\infty}}{4}\right)-\lambda M \delta\right\} d s \\
& \geq \frac{b-a}{2} \phi^{-1}\left\{\frac{\lambda p_{0}}{p_{1}} \frac{b-a}{8 B} G\left(\frac{\|u\|_{\infty}}{4}\right)-\lambda M \delta\right\},
\end{aligned}
$$

where

$$
G(t)=\inf _{\substack{a \leq \tau \leq b, s \geq t}} \tilde{g}(\tau, s)
$$

Since $G(t) \rightarrow \infty$ as $t \rightarrow \infty$, it follows from (A.1) that

$$
\|u\|_{\infty} \neq \frac{8}{M_{1}}(b-a) \phi^{-1}(\lambda M \delta),
$$

if λ is sufficiently large.
The case where $t_{0}<(a+b) / 2$ can be treated in a similar way, by using (3.4).

Next we verify that there exists $R>r$ such that if u is a solution of

$$
u=\gamma T u, \quad 0<\gamma<1,
$$

then $\|u\|_{\infty} \neq R$.
U sing Lemma 2.2, we see that

$$
\begin{aligned}
u(t) \leq & \int_{a}^{t} \phi^{-1}\left\{\frac{\lambda \int_{s}^{b} p(\tau) \tilde{g}(\tau, u-w) d \tau}{p(s)}\right\} d s+(b-a) \phi^{-1}(\lambda M \delta) \\
\leq & (b-a) \phi^{-1}\left\{\frac{\lambda(b-a) p_{1}}{p_{0}} \frac{\tilde{G}\left(\|u\|_{\infty}\right)}{\phi\left(\|u\|_{\infty}\right)} \phi\left(\|u\|_{\infty}\right)\right\} \\
& +(b-a) \phi^{-1}(\lambda M \delta) \\
= & (b-a) \phi^{-1}\left\{\lambda C\left(\|u\|_{\infty}\right) \phi\left(\|u\|_{\infty}\right)\right\}+(b-a) \phi^{-1}(\lambda M \delta) \\
\leq & (b-a) B_{\left.\lambda C\| \| \|_{\infty}\right)}\|u\|_{\infty}+(b-a) \phi^{-1}(\lambda M \delta)
\end{aligned}
$$

where $\tilde{G}(t)=\sup _{a \leq \tau \leq b, 0 \leq s \leq t} \tilde{g}(\tau, s)$.
Since $C\left(\|u\|_{\infty}\right) \rightarrow 0$ as $\|u\|_{\infty} \rightarrow \infty$, it follows that there exists $R>r$ such that $\|u\|_{\infty} \neq R$. Hence T has a fixed point \tilde{u} in \mathbb{K} with $r \leq\|\tilde{u}\|_{\infty} \leq R$. Proceeding as in the proof of Theorem 1.1, we deduce that $\tilde{u}>w$ which completes the proof.

REFERENCES

1. W. Allegretto, P. Nistri, and P. Zecca, Positive solution of elliptic nonpositone problems, Differential Integral Equations 5 (1992), 95-101.
2. D. A rcoya and A. Zertiti, Existence and nonexistence of radially symmetric nonnegative solutions for a class of semipositone problems in an annulus, Rend. Mat. 14 (1994), 625-646.
3. A. A mbrosetti, D. A rcoya, B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equation 7 (1994), 655-663.
4. V. A nuradha, S. Dickens, and R. Shivaji, Existence results for nonautonomous elliptic boundary value problems, Electron. J. Differential Equations (1994).
5. V. A nuradha, D. D. Hai, and R. Shivaji, Existence results for superlinear semipositone BV Ps, Proc. Amer. Math. Soc. 124 (1996), 757-763.
6. A. Castro and R. Shivaji, Semipositone problems, in "Semigroups of Linear and Nonlinear O perators and A pplications," pp., 109-119, K luwer A cademic, D ordrecht, 1993.
7. H. Dang and K. Schmitt, Existence of positive radial solutions for semilinear elliptic equations in annular domains, Differential Integral Equation 7 (1994), 747-758.
8. H. Dang, R. M anasevich, and K. Schmitt, Positive radial solutions for some nonlinear partial differential equations, Math. Nachr. 186 (1997), 101-113.
9. J. R. Esteban and J. L. Vazquez, On the equation of turbulent filtration in one dimensional porous media, Nonlinear Anal. 10 (1986), 1303-1325.
10. X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), 69-92.
11. G. B. Gustafson and K. Schmitt, Nonzero solutions of boundary value problems for second order ordinary and delay differential equations, J. Differential Equations 12 (1972), 129-147.
12. M. A. Herrero and J. L. Vazquez, On the propagation properties of a nonlinear degenerate parabolic equation, Comm. Partial Differential Equation 7 (1982), 1381-1402.
13. H. Kaper, M. Knaap, and M. K wong, Existence theorems for second order boundary value problems, Differential Integral Equation 4 (1991), 543-554.
14. J. L. Lions, "Quelques methodes de resolution des problemes aux limites nonlineaires," Dunod, Paris, 1969.
15. R. M anasevich and K. Schmitt, Boundary value problems for quasilinear second order differential equations, in "Nonlinear A nalysis and Boundary Value Problems," pp. 79-119, CISM Lecture Notes, Springer-V erlag, New Y ork/Berlin, 1996.
16. J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Rational Mech. Anal. 98 (1987), 229-249.
17. E. Zeidler, "Nonlinear Functional A nalysis and Its Applications," V ol. IIB, SpringerV erlag, Berlin, 1990.
