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This paper deals with the existence of positive solutions for the boundary value
problem

(p()d(u")) + Ap()f(t,u) =0, a<t<b
u(a) =0 =u(b),

where f is either ¢-superlinear or ¢-sublinear at « and f(¢,0) may be negative and
p is a positive continuous function. The results extend several known results for
semilinear equations. Our approach is based on fixed point theory for completely
continuous operators which leave invariant a suitable cone in a Banach space of
continuous functions.  © 1998 Academic Press
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1. INTRODUCTION

The results in this paper are motivated by the search for positive radial
solutions for the quasilinear elliptic boundary value problem

div(a(quIz)Vu) + Af(Ixl,u) =0, a<l|x|<b
u=0, lx| € {a, b}, (1.1)

where ¢(s) = a(s?)s is an increasing homeomorphism of the real line and
A is a positive parameter. Such radial solutions are solutions to boundary
value problems of the form

(p(t)d(u")) + Ap()f(t,u) =0, a<t<b
u(a) =0=u(b), (1.2)

with p(¢t) =tV 1 ¢t = |x|, and N is the dimension of x. The case where
a(IVuIZ)Vu=|Vu|p72Vu, p>1,

i.e., perturbations of the p-Laplacian, has received much attention in the
recent literature. Also problem (1.2) with f(¢,0) > 0 has been studied by
several authors in recent years (see [15] and the references therein). Here,
we are interested in the case when f(¢,0) may be negative (the so-called
semipositone case) (see [6] and its references for a review). Since our
results only depend upon the positivity and continuity of the coefficient
function p, we shall consider (1.2) in this generality.

We first consider the case when f is ¢-superlinear at <. In particular,
we make the assumptions:

(A1) ¢ is an odd, increasing homeomorphism on R with ¢!
concave on R™.

(A2) For each ¢ > 0, there exists 4, >0 such that ¢ *(cu) >
A. ¢ (w), u € R* and lim,_, A4, = « (note that (A.2) implies the exis-
tence of B, > 0 such that ¢ *(cu) < B¢ *(u), u € R* with lim,_ B,
= 0).

(A3) f:la, b] X R - Ris continuous and lim, _, .(f(z, u)/ $(u)) =
uniformly for ¢ € [a, b].

(A4) p:la,b] = (0,) is continuous.

Our first result is:

THEOREM 1.1. Let (A.1)—(A.4) hold. Then there exists A* > 0 such that
problem (1.2) has a positive solution u, for 0 < A < X* with ||lu,ll.. = © as
A— 0.
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We also consider the case when f is ¢-sublinear at oo, i.e, we consider
nonlinearities f that satisfy

(A5) f:[a,b] X R = R is continuous, lim, _, . f(¢t, u) = o uniformly
for ¢ € [a, b], and lim, _, .(f(¢,u)/¢$(u)) = 0 uniformly for ¢ € [a, b].

In this case we establish the following result:

_ THEOREM 1.2. Let (A1), (A.2), (A.4), and (A5) hold. Then there exists
A > 0 such that (1.2) has a positive solution u, for A > A with |lu,|l. — = as
A — o,

In the above we adhere to the notation
lull. = sup{|u(t)|: a <t < b}.

Theorems 1.1 and 1.2 are extensions of results in [2, 5, 10], to quasilinear
equations (in particular, p-Laplacian like equations), and of results in [1, 3,
4,7, 8, 13, 16]. The paper also serves to provide a unified treatment to a
variety of results having been obtained by a host of methods.

2. PRELIMINARY RESULTS

We establish some preliminary results.

LEMMA 2.1.  Let py, p; > 0 be such that py, < p(t) < p,, t € [a, b], and
let M be a positive number. Assume w is the solution of

(p(t)p(u')) = —AMp(t), a<t<b
u(a) =0 =u(b). (2.1)

Then w > 0 on (a, b) and
Iw'll. < ¢~ (AMS), (2.2)

where 8 = (p,/p, )b — a).

Proof. By integrating, it follows that (2.1) has the unique solution given
by

e L - o(r) dr| Y ds
w(t)=faq5 {p(s)(c )\Mjap()d)}d,
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where C is such that w(b) = 0. Hence we must have 0 < C < AM[’p(r) dr.
Further, using

(w'(1)) = ﬁ(c et

we obtain
—AMS < p(w'(t)) < AMS,

t € [a, b], and (2.2) follows. Finally, since w(a) = 0 = w(b), there exits
z € (a, b) such that w'(z) = 0 and, since p(#)¢p(w’) is decreasing, w'(¢) < 0
for ¢t > z while w'(z) > 0 for ¢t <z. Thus w > 0 on (a, b).

LEmmA 2.2, Forx > —u,y >0, u =0,

b (x+y) <o (x) +dH(Y) + d ().

Proof. Since ¢~ ' is concave and ¢~ *(0) = 0, it follows that ¢ *(x +
V< xX)+ o H(y)ifx=20,y=>0.1f —u<x<0,y>0and u=>0,
then, since ¢! is increasing ¢ (x +y) < ¢ (y) and ¢ (—pu) <
¢ H(x). Thus ¢ *(x) + ¢ () = 0, since ¢~ is odd. Hence the conclu-
sion follows.

We next state the fixed point theorems which will be used to prove our
results.

THEOREM 2.1 [11]. Let E be a Banach space and let K be a cone in E
such that || - || is monotone with respect to the cone K. Let T: K — K be a
completely continuous operator. Assume there exist positive constants r, R,
andk €K, h € K with 0 <r <R, |lkl| <r, ||kl > R such that

(@) Foreach 0 < 6 < 1, all solutions u € K of
u=0Tu+ (1-6)k

satisfy ||lull # r.
(b) Foreach 0 < 0 < 1, all solutions u € K of

u=Tu+ 6h

satisfy |lull # R.

Then T has at least one fixed point u € K with r < |lull < R.
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THEOREM 2.2 [11]. Let E, K, and T be as in Theorem 2.1. Assume there
exist positive constants r, R, and k € K with 0 <r <R, ||kll = 1 such that

(@ Foreach y > 0, all solutionsy € K of
y=Ty+ vk

satisfy |yl # r.
(b) Foreach 0 < y < 1, all solutions z € K of

z=vyTz
satisfy ||zIl # R.

Then T has a fixed point x € K with r < ||x]| < R.

3. PROOF OF THEOREM 1.1

Let M > 0 be such that g(¢,u) == f(¢,u) + M > 0 for ¢t € [a,b], u = 0.
Define g(t,u) = g(t,u) if u>0, g(¢t,u) =g, 0 if u<0. Let w be
defined as in Lemma 2.1. Then u is a positive solution of (1.2) if
% = u + w is a solution of

(p()(P(T' —w') + d(w'))) = —Ap(t)8(t. U —w), a<t<b
u(a) =0=1u(b) (3.1)

with @ > w on (a, b).
For each v € Cla, b], let u = Tv be the solution of

(p()(Pp(u' —w') + d(w'))) = —Ap()8(t,v —w), a<t<b
u(a) =0 =u(b).

Note that u satisfies

C, - A/:pm;f(f.u —w)

p(s)

u(t) = /a’drl dr — $(w'(s)) | ds + w(t),

where C, is such that u(b) = 0.
Hence

0<C < /\/bp(ﬂr)[gf“(f,u —w)dr,
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since otherwise,

u(b) > [ 97 (= o(w(s)) ds =0,

which is a contradiction.
Now let K = {v € C[a, b]| v = 0}. It can be verified that 7: IK — K is
completely continuous. Let A* > 0 be such that

b—a
M,

1
¢ (MMB) < <

and

weo| DL
[q,’)(l/Z(b—a))} 25

Lemma 2.1.

We shall now apply Theorem 2.1 to show that T has a fixed point  in K
with ||ill. > C,, where C, - © as A — 0. Let 0 < A < A*. Then there
exists C, > 1 such that

h(C) 1
o(Co/2(b —a)) 21

(3.2)

for
e R S ') N
b(1/2(b—ay) 2xe 9 AN G2(b —a))

Let u € K be such that u = 67u, 0 < 6 < 1. We claim that |lull.. # C,.
Indeed, if |lull.. = C, then we have by Lemma 2.2,

/\fsbp(T)g"(T,u —w)dr

u(t) < fa’qu 05 — d(w')| ds + w(r)
. Afsbp(T)g(T,u—w)dT
sfaqﬁ ) ds

—[;¢*1(¢(w')) ds + f;dfl()\Mﬁ) ds + w(t).
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Here we have used the fact that ¢(w') < AMS (see Lemma 2.1). Then
C, = llull. < (b —a)¢p ' (ASh(C))) + (b — a)dp™ ' (A*M5),

which implies

G
¢(2(b——a)) < A8h(C))

or
me) 1
#(Ch/2(b —a)) — A8

a contradiction to (3.2). Hence lull.. # C,.
Note that since

1 1
h(C) = 2A8¢( 2(b — a) )

it follows that C, — @ as A — 0.

Next, we verify that there exist constants R > C,, A > R such that for
given 0 < 6§ < 1 all solutions u € K of u = Tu + 6h satisfy |lull.. # R.
Such u satisfy

[P()(d(u' = w') + d(w)]' = =Ap()E(t,u —w), a<t<b
u(a) = 6h = u(b).
Let |lull.. = u(t,) and suppose that lull.. > C,. Let v be the solution of
[p() (60" =w) + d(w)]' =0,  a<i<i
v(a) = 0h, v(ty) = llulle.
Then we have
[P()((u' —w') = (v —w))]' = —AME(t,u—w), a<t<i
(u —v)(a) =0=(u—0)(t),

and by a comparison argument it follows that u > v on (a, t,). Note that

£) = llull. — [° -1(i— / +wi(s)Vd
o(t) = lull- /t{¢ PO w(s)} 5
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where C is such that v(a) = 6k, and hence

lall = oh + [ 1(C— 3 4w a 33
ull. = f{d) o(5) d(w') w}s. (3.3)

a

If C > p,¢Qllull./(t, — a)), then

C pl 2|lull.. 2
p(s) d’(ro—a) Z‘f’(b—

by Lemma 2.1. This implies

a) > AMS > p(w'(s))

g iy e
N e R e CU Q)RR IR O

< ¢ —d(w' ()] +w'(s) + ¢ 1(AMS)

(c
p(s)

by Lemma 2.2. Hence

C
+w'(s) = ¢~ (p( )) — ¢ 1(AMS)

2lull.. Il
= — ¢ (AMS) > :
ty—a to—a

1( ¢
b 205) = d(w'(s))

(since 1/(b —a) = ¢~ *(AMS)) which is a contradiction to (3.3). Thus
0 <C <p,oQllull./(t, — a)) and using Lemma 2.2 it follows that

" 1 2||ull.
o(¢) = lulle —/["{w p—¢(t”_”a) ) +w'<s>}ds
(P, [ 2lull )
> lulle — (t5 — t)[qﬁ p—0¢(t0 — )) + ¢ (AMS)]

ZB(P1/P2)(t0 B t)
ty —

> |lull. —

lull.. — (b — a)dp~*(AMS)

1
> Slull. = (b @)™ (AM3) > —||u||m te [t 1,],

where ¢, =t, — (t, —a)/4B and B > 1 is such that ¢ '((p,/py)x) <
B¢ (x), x = 0.
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Consequently u(t) — w(t) > v(t) — w(t) > 3llull. — w(t) > lull., for
1

t € [t,,t,], since w(t) = ['w'(s)ds < (b — a)¢p " (AMS) < ;.
Now

(A p(DE(ru=-w) dr
u(t) =w(t) +0h+[a ¢t a o) —p(w")| ds,
where C is such that u’(z,) = 0. Thus
C—A[°p(1)&(r,u—w)dr
w'(ty) + ¢t a o8 - ¢(w’(t0))] =0,
which implies that C = A[op(7)g(r,u — w) dr. Hence
A (DR u = w) dr
u(t) = w(t) + 0h + f [ o) — p(w") | ds.
If t, > (b + a)/2, then
lull. = /atldfl /\fs P(T)i((:)“ n —¢(w') | ds
Mo m e, M e (.
> (4, —a)¢p ! pl¢(||a;||j/4’f)sz — ( , ) —/\Ma)
S I e I ey

><¢( ”u4”°°) - /\Ma)
= o

(b - a) (1 _ L)Aé””n“ by (A.2),

— [ Ml for [l large
4 Ulloo g

>
2 4B
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where

Apo(b—a) . B(7.9)

165 AITOR
<7<b, S
P1 sa2<|\u|Ef}4

C =

This implies Az <8/(b —aX1 — 1/4B). Since Az — % as llull. — ©
(by A.4), there exists R, > C, independent of u, 6, and & such that
lull. <R;.

If, on the other hand, 7, < (b + a)/2, we let 7 be such that

[p()(H(T —w') + d(w))]' =0, 1,<t<b
7(t,) = lull.,  T(b) = 6h.

Then 7(¢) = |lull. — f, “C/p(s) + pwN]ds + f, w'(s) ds, where C > 0
is such that 7(b) = 0h ie.,

lull. = 0k + ftbdf ( ((’;)

If C>p,¢Qllull./(b — ty)), then

C )2 2|lull 2 )
p(S) > —0¢(b —to) > (b(m) > AM6 > ¢(—W (S)),

by Lemma 2.1.
This implies

)
¢ p(s)

fo

+ (' ))ds— [Pwi(s)ds. (3.4

¢ + o(w'(s)) + o(— W(S)))

C
(p( s)
1 C ’ ’ -1
¢ (p(s) + ¢(w (S))) —w'(s) + ¢ (AMS),

IA

by Lemma 2.2. Hence

o5+ )_ > (C)_—um
N R O] B O R (el B L)

2|[ull
>
b—t,

~ ¢7(AMb)

llull
b— 1,

2
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(since 1/(b — a) = ¢~ *(AM$)) which is in contradiction to (3.4). Thus

2|lull..
0<C<po P
0

and, using similar arguments as before, we have u > 7 on (¢,, b).
Hence

t 2||ull ¢
o(t) = llull. — fto ¢t p_; (b”f“to) + ¢p(w') | ds + /tow’(s) ds
=l — [0 22| 22 ) 5 e amo)|(c - o
> lull. — | ¢ p0¢> =y ¢ ( ) (£ = 1)

2B(P1/P0)(t o T)||u||°° _

= [lull.. — b1, (b—a)d t(AMS)
1
> EIIuIIoo —(b—a)p ' (AMS)
3
> gllullw, t € [ty,1,], (3.5)

where t, = t;, + (b — t,)/4B. By rewriting u as

/\'/;Sp(T)g(’r,u — w) dr

p(s)

u(t) =w(t) + oh + [* ¢ — d(w')) ds

and using (3.5), it follows that there is R, > C, independent of u«, 0, and &
such that |lull.. < R,. Thus by Theorem 2.1, T has a fixed point @ in I with
lull. > C,.

We now establish that @ > w on (a, b). Let ||#ll.. = u(zy), a <1, <b.
From (3.1) we obtain for a <t < ¢,

PO(SE =)+ d(w)) = [*Ap()F(1. T~ w) dr
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which implies

[°ap()&(7, 7 = w) dr
* — B(w'(s)) | ds

i(ty) = fawrl )

+ft°w’(s) ds

fs‘up(f)g(f,a—w) dr

Do

ty

= ot

+ d(—w'(s))| +w'(s)|ds

< fa"’[cb-l(%fs"’p(r)g‘(f,a—w)dr + dfl(AMa)}ds

where we have used Lemma 2.2.
This implies

1</’°¢ ()‘f p(T)g(7, 0 —w)dr|ds+ (b—a)¢ (AMS)

and hence

(3.6)

r\)lH

/° ¢1( . ()& T = w) df)
a Po
by our choice of A*. Now, using Lemma 2.2 and (3.6), we obtain

A/S’°p(7)§(7,iz— w) dr

p(s)

w(r) — w(t) = fa’qu

I

- ¢>(W’(S))] ds

\%

ot ift‘] (7)g(r,u—w) dT—)\Mé)ds
. )s p(7)8(7,

v

Pt i/to (1)8(r,u—w) dT) ds
A p(7)8(T,

a

—2(t — a) ¢ 1 (AMS).
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Here we have used the fact that

dHx—y)= ¢ H(x) =26 (),

for x = 0, y = 0 which follows from Lemma 2.2, since

dHx) = H(x—y+y)<dHx—y)+d (y)+dH(y).

Hence

u(t) —w(t) >M/ ¢ ( Of p(T)8(r,u —w)dr|d
—2(t — a) ¢ L(AMS)

M, (t—a)

7m—2(t—a)¢>’l()\M6)>O, a<t<lt

since ['¢ *((A/py)[lop(1)g(r, & — w))ds is concave on [a,t,] and (3.6)
holds.
Similarly, @ > w on (¢, b) and thus u = &7 — w is a positive solution of
1.2).
4. PROOF OF THEOREM 1.2

Define M, g, w, T, and K as in the proof of Theorem 1.1. Let k = 1 and
let u satisfy

u="Tu + yk, 0 <.

We claim that |lull.. # r = (8/M;Xb — @)~ '(AMS), where M; = A, ,,
and & is given by Lemma 2.1. Indeed, proceeding as in the proof of
Theorem 1.1., we obtain

u(t) —w(t) > —||u||, t €[t 6],

where t;, = t, — (t, — a)/4B.
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Hence, if 7, > (a + b)/2, we have by (3.3)

Jul = ]‘lw{ A - “)"‘)G( ”L;”m) - )\M«S} ds

a D1
b—a Ap, b —a {173
> ¢! “Po G — AMS ),
2 p, 8B 4

where
G(t) = inf g(r,s).
a<t<b,

s>t

Since G(t) — « as t — o, it follows from (A.1) that
llull i b YAMS

w# — (b — - ,

ull- # 37 (b = @) 67 (AMS)

if A is sufficiently large.

The case where ¢, < (a + b)/2 can be treated in a similar way, by using
(3.4).

Next we verify that there exists R > r such that if u is a solution of

u=~vyTu, 0<y<1,
then [lull. # R.

Using Lemma 2.2, we see that

1 A[s”p(f)g‘(f,u —w)dr
p(s)

t

u(t) < j; o

ds + (b — a) ¢~} (AMS)

b —a)p, G(llull..)
Po S (llull.)
T+ (b - a)d L (AMS)

= (b —a) e H{AC(llull.) p(llull)} + (b —a)dp~ (AMS)

< (b — a)Byequllulle + (b — a) ¢~ (AMS),

<(b-a)¢* $(lluell--)

=7=0,U=s§=

Since C(Jlull..) = 0 as |lull.. — <, it follows that there exists R > r such
that |lull. # R. Hence T has a fixed point & in K with r < ||#@ll.. < R.
Proceeding as in the proof of Theorem 1.1, we deduce that & > w which
completes the proof.
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