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Abstract

We consider a numerical method to verify the existence and uniqueness of the solutions of nonlinear hyperbolic problems
with guaranteed error bounds. Using a C1 .nite element solution and an inequality constituting a bound on the norm of
the inverse operator of the linearized operator, we numerically construct a set of functions which satisfy the hypothesis of
Banach’s .xed point theorem for a continuous map on Lp-space in a computer. We present detailed veri.cation procedures
and give some numerical examples. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the two preceding papers [4,5], we discussed the numerical veri.cation of the existence of
solutions to nonlinear parabolic and hyperbolic equations in the one-dimensional case. This veri.-
cation method is based on Plum’s formulation [9] of veri.cation methods and weak formulation for
determining a bound on the inverse norm of the linearized operator. In this paper, we describe a
numerical veri.cation method that demonstrates existence and uniqueness of solutions to nonlinear
hyperbolic equations. In order to ensure existence and uniqueness, we use the idea contained in
Nakao’s method [6,8,11]. Another method used for hyperbolic equations [7] requires that the non-
linear map in question is retractive in a neighborhood of the solution. Our method is not subjected
to such a condition. Thus, our method has the potential of being applicable to a more general class
of hyperbolic equations.

In the following section, we introduce the problem considered and its .xed point formulation.
In Section 3, a fundamental theorem which contains the veri.cation conditions of our method is
presented. In Section 4, using a weak formulation, we estimate the inverse norm of the linearized
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operator and give the algorithm for our method. Section 5 contains some examples that illustrate
our method.

2. Problem and the �xed-point formulation

Consider the problem of .nding a function u that satis.es the following relations:

u∈L2(J ; H 1
0 (�)); ut ∈L2(J ; L2(�))

d2

dt2
(u; v) + (�u;�v) = (−f(·; u); v); v∈H 1

0 (�); t ∈ J := (0; T );

u(·; 0) = 0; (1)

where � is a bounded open interval on R or a bounded rectangular domain in R2, (·; ·) is the usual
L2(�) inner product, and f is a function on Q × R with Q = � × J . Also, suppose that f̂ de.ned
by (f̂(u))(x; t) := f(x; t; u(x; t)) maps Lp(Q) into L2(Q) for some p satisfying 26p66.

To be precise, the derivative d2=dt2 in (1) is treated as the generalized derivative of real functions
on (0,T), that is,∫ T

0
(u(·; t); v)’′′(t) dt +

∫ T

0
(�u(·; t);�v)’(t) dt =

∫ T

0
(−f(·; t; u(·; t)); v)’(t) dt;

∀’∈C∞
0 [0; T ):

Here we note that Eq. (1) is the generalized problem corresponding to the following equations:

utt −Ju =−f(x; t; u) (x; t)∈Q;

u(x; t) = 0 (x; t)∈ @� × J;

u(x; 0) = 0 x∈�;

ut(x; 0) = 0 x∈�; (2)

and the derivatives utt ; ut and Ju are understood in the distributional sense, where @� stands for
the boundary of �:

Next, we de.ne the time-dependent Sobolev space H by

H ≡ L2(J ; H 1
0 (�)) ∩ H 1(J ; L2(�))

with norm

‖u‖2
H =

∫
J
‖�u(·; t)‖2

L2(�) dt +
∫

J
‖ut(·; t)‖2

L2(�) dt;

where ‖ · ‖Lp(�) is the usual Lp(�) norm.
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Let H̃ := {�∈H |�(·; 0)=0} and let uh ∈ H̃ be an approximate solution of (1). It is most common
to think of such a solution as some .nite element solution depending on h. Then suppose the
following conditions hold for the nonlinear map f in (1) and (2):

(A1) f̂ : Lp(Q)→ L2(Q) is continuous and maps bounded sets into bounded sets.
(A2) f̂ is FrMechet diNerentiable in Lp(Q):
Let f′(·; uh)(x; t) := (@f=@u)(x; t; uh(x; t)).
Now, as well known [3], for each g∈L2(Q), if a∈C1([0; T ]; L∞(�)), the following problem has

a unique solution �∈ H̃ :

d2

dt2
(�; v) + (��;�v) + (a�; v) = (g; v); v∈H 1

0 (�); t ∈ J: (3)

We denote the above correspondence by Ag = �. Moreover, assuming that a = f′(·; uh) and
(d=dt)f′(·; uh)∈L∞(Q), we de.ne the .xed-point operator T by

Tu ≡ A[f′(·; uh)u− f(·; u)]: (4)

Then, from (A1), (A2), and the fact that the operator A : L2(Q)→ H̃ and the injection H ,→ Lp(Q)
are continuous and bounded (see Lemmas 1 and 2), the operator T : Lp(Q) → Lp(Q) is FrMechet
diNerentiable in Lp(Q).

The map f(·; u) = gum is an example that satis.es assumptions (A1) and (A2), where g∈L∞(Q),
and m is an arbitrary nonnegative integer satisfying 16m63. In this case, f′(·; uh) = mgum−1

h , and
if uh ∈C1([0; T ]; L∞(�)), the operator T in (4) is well de.ned.

Remark 1. In the one-dimensional case, we can choose 26p¡∞, which implies 16m¡∞ in
the above example. In any case, we assume that the nonlinearity of f has a polynomial form with
respect to u.

3. Veri�cation condition

In order to transform (4) into a “residual-form”, setting v = u − uh, we introduce the operator
T̃ : Lp(Q)→ Lp(Q) de.ned by

T̃ v ≡ T (uh + v)− uh: (5)

Then if we wish to .nd a solution of the given problem that is close to uh, we may look for a .xed
point of T̃ that is close to 0. To construct a set V which includes the error of a solution to (2),
taking some real number �, we set

V ≡ {v∈Lp(Q) | ‖v‖Lp(Q)6�}: (6)

Next, we choose the positive real numbers � and � such that

‖T̃ (0)‖Lp(Q)6�; (7)

‖T̃ ′
(v1)v2‖Lp(Q)6� ∀v1; v2 ∈V (8)
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and de.ne the set K ⊂Lp(Q) by

K ≡ {v∈Lp(Q) | ‖v‖Lp(Q)6� + �}: (9)

Our veri.cation condition is described in the following theorem, which is similar to those in
[6,11].

Theorem 1. If K ⊂V holds for V (that is; if � + �6�); then there exists a solution to

v = T̃ (v)

in K; and this solution is unique within the set V .

Proof. From the de.nition � and the mean value theorem,

‖T̃ (v)‖Lp(Q)6‖T̃ (0)‖Lp(Q) + ‖T̃ (v)− T̃ (0)‖Lp(Q)6� + �6�; ∀v∈V:

This means that

T̃ (V )⊂V: (10)

The convexity of V and the mean value theorem give the following relations:

‖T̃ (v1)− T̃ (v2)‖Lp(Q) 6 sup
s∈[0;1]

‖T̃ ′
(sv1 + (1− s)v2)(v1 − v2)‖Lp(Q)

6 sup
v3∈V
‖T̃ ′

(v3)(v1 − v2)‖Lp(Q)

= sup
v3∈V
‖T̃ ′

(v3)w‖Lp(Q)
1
�
‖v1 − v2‖Lp(Q)

6
�
�
‖v1 − v2‖Lp(Q) ∀v1; v2 ∈V; (11)

where w := �(v1 − v2)=‖v1 − v2‖Lp(Q) ∈V . Thus, the assumption of this theorem provides the relation

�
�

¡
� + �

�
61:

Noting that 0 ¡�¡� and 0 ¡�, Banach’s .xed-point theorem then gives the desired result.

4. Constants in the veri�cation condition

In this section we describe how to estimate � and � introduced in the previous section. We assume
that there exist the constants C1 and C2 satisfying

‖Ar‖H6C1‖r‖L2(Q) ∀r ∈L2(Q); (12)

‖Ar‖Lp(Q)6C2‖Ar‖H : (13)
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If we then compute an approximate solution uh ∈ H̃ so as to satisfy d[uh] ≡ uhtt−Juh+f(·; uh)∈L2(Q)
by using C1(Q) .nite element, for example, the following relations hold:

‖T̃ (0)‖Lp(Q) = ‖Ad[uh]‖Lp(Q)

6C2‖Ad[uh]‖H
6C1C2‖d[uh]‖L2(Q): (14)

Similarly, we can obtain

‖T̃ ′
(v1)v2‖Lp(Q) 6C1C2‖f̂′

(uh + v1)v2 − f̂
′
(uh)v2‖L2(Q)

6C1C2G� ∀v1; v2 ∈V: (15)

Here G� is a constant depending on � in (6).
In what follows, we consider the open intervals Ix1 = (ax1 ; bx1 ) and Ix2 = (ax2 ; bx2 ) for real numbers

ax1 ¡bx1 and ax2 ¡bx2 and de.ne � = Ix1 × Ix2 and d = max{bx1 − ax1 ; bx2 − ax2}.

Lemma 2. Let a and Qa denote constants satisfying a6a(x; t)6 Qa for almost all (x; t)∈Q. Then C1

in (12) is given by

C1 =

√
1
c

(ecT − 1);

where c = max(1 − aT; (d2=n0�2)‖at‖L∞(Q)) for a¡ 0 and c = max(1; (d2=n0�2)‖at‖L∞(Q)) for a¿0
and n0 is the dimension.

Proof. We .rst consider two-dimensional case.
Let )∈C∞(R) denote some function such that

)¿0; supp())⊂(−1; 1);
∫ 1

−1
)(t) dt = 1: (16)

For .xed *¿ 0, let )*(t) := 1
* )(t=*). Moreover, with given g∈L2(Q) and � := Ag, let

�*(x; t) :=
∫ T

0
�(x; s))*(s− t) ds for (x; t)∈ Q� × R: (17)

Then, �* ∈C∞(R; H 1
0 (�)), and �*=0 outside Q�×(−*; T +*). Moreover, for (x; t)∈ Q�×[−*; T−*],

�*; t(x; t) =−
∫ T

0
�(x; s))′

*(s− t) ds =
∫ T

0
�t(x; s))*(s− t) ds;

�*; tt(x; t) =
∫ T

0
�(x; s))′′

* (s− t) ds; ��*(x; t) =
∫ T

0
��(x; s))*(s− t) ds: (18)
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Now we use Eq. (3) in distributional form, i.e.,∫ T

0
(�(·; s); v)’′′(s) ds +

∫ T

0
(��(·; s);�v)’(s) ds +

∫ T

0
(a(·; s)�(·; s); v)’(s) ds

=
∫ T

0
(g(·; s); v)’(s) ds; v∈H 1

0 (�); ’∈C∞
0 [0; T )

with v := �*; t(·; t) and ’(s) := )*(s− t), where t ∈ [− *; T − *] is .xed for the moment.
By (18), this yields

(�*; tt(·; t); �*; t(·; t)) + (��*(·; t);��*; t(·; t))

=−
(∫ T

0
a(·; s)�(·; s))*(s− t) ds; �*; t(·; t)

)
+

(∫ T

0
g(·; s))*(s− t) ds; �*; t(·; t)

)
:

Since the left-hand side equals 1
2 (d=dt)[‖�*; t(·; t)‖2

L2(�) + ‖��*(·; t)‖2
L2(�)], and �*(x; t) vanishes

for t in some neighborhood of −* due to (16) and (17), we obtain by integration from −* to
t ∈ (−*; T − *]:

1
2

[‖�*; t(·; t)‖2
L2(�) + ‖��*(·; t)‖2

L2(�)]

= −
∫ t

−*

(∫ T

0
a(·; s)�(·; s))*(s− t̃) ds; �*; t(·; t̃)

)
dt̃

+
∫ t

−*

(∫ T

0
g(·; s))*(s− t̃) ds; �*; t(·; t̃)

)
dt̃: (19)

We only prove the case for a60, because we may put a = 0 for a¿0 in the following.
De.ning now a(·; t) := a(·; 0) for t ∈ [− *; 0) and

R*(t) :=
∫ t

−*

(∫ T

0
[a(·; t̃)− a(·; s)]�(·; s))*(s− t̃) ds; �*; t(·; t̃)

)
dt̃; (20)

we .nd that the .rst term on the right-hand side of (19) equals

−
∫ t

−*
(a(·; t̃)�*(·; t̃); �*; t(·; t̃)) dt̃ + R*(t)

=− 1
2

(a(·; t)�*(·; t); �*(·; t)) +
1
2

∫ t

−*
(at(·; t̃)�*(·; t̃); �*(·; t̃)) dt̃ + R*(t)

6− 1
2
a‖�*(·; t)‖2

L2(�) +
1
2
‖at‖L∞(Q)

∫ t

−*
‖�*(·; t̃)‖2

L2(�) dt̃ + R*(t)

and

‖�*(·; t)‖2
L2(�) = ‖�*(·; t)− �*(·;−*)‖2

L2(�)6
(∫ t

−*
‖�*; t(·; t̃)‖L2(�) dt̃

)2

6 T
∫ t

−*
‖�*; t(·; t̃)‖2

L2(�) dt̃;
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∫ t

−*
‖�*(·; t̃)‖2

L2(�) dt̃6
d2

2�2

∫ t

−*
‖��*(·; t̃)‖2

L2(�) dt̃ (21)

by PoincarMe’s inequality (cf. [12, Chapter 18]). Furthermore, de.ning

g*(x; t) :=
∫ T

0
g(x; s))*(s− t) ds for (x; t)∈ Q� × R; (22)

we obtain that the second term on the right-hand side of (19) is bounded by
1
2

∫ t

−*
‖g*(·; t̃)‖2

L2(�) dt̃ +
1
2

∫ t

−*
‖�*; t(·; t̃)‖2

L2(�) dt̃:

Altogether we obtain from (19), using the constant c de.ned in this lemma, that for t ∈ [− *; T − *],

‖�*; t(·; t)‖2
L2(�) + ‖��*(·; t)‖2

L2(�)

6c
∫ t

−*
(‖�*; t(·; t̃)‖2

L2(�) + ‖��*(·; t̃)‖2
L2(�)) dt̃ +

∫ t

−*
‖g*(·; t̃)‖2

L2(�) dt̃ + 2R*(t):

Therefore, Gronwall’s Lemma yields

‖�*; t(·; t)‖2
L2(�) + ‖��*(·; t)‖2

L2(�)6ect

[∫ T−*

−*
‖g*(·; t̃)‖2

L2(�) dt̃ + 2 sup
−*≤t̃6T−*

|R*(t̃)|
]

and by integration over [− *; T − *], we obtain

‖�*; t‖2
L2(Q*) + ‖��*‖2

L2(Q*)6e−* ecT − 1
c

[
‖g*‖2

L2(Q*) + 2 sup
−*6t6T−*

|R*(t)|
]
; (23)

where Q* := � × (−*; T − *).
Now let * tend to 0. Using |a(x; t̃)−a(x; s)|6‖at‖L∞(Q) · * in (20), we .nd that sup−*6t6T−*|R*(t)| →

0 as *→ 0. Furthermore, by (16)–(18), (22),

�* → �; �*; t → �t; ��* → ��; g* → g in L2(Q)

as *→ 0. Thus, (23) provides the assertion by letting * tend to 0.
In one-dimensional case, noting that∫ t

−*
‖�*(·; t̃)‖2

L2(�) dt̃6
d2

�2

∫ t

−*
‖��*(·; t̃)‖2

L2(�) dt̃

holds instead of (21), we can get the desired result.

To calculate C2 in (13), we slightly modify the proof of the Sobolev Embedding theorem.

Proposition 3 (e.g. Adams [1]). Let x̃1 = (x2; x3); x̃2 = (x1; x3); x̃3 = (x1; x2); and let Ik (k = 1; 2; 3) be
bounded open intervals. The function F is de5ned by

F(x) = F(x1; x2; x3) = F1(x̃1)F2(x̃2)F3(x̃3);

where Fk ∈L2(�k) (k = 1; 2; 3); and �1 = I2× I3; �2 = I1× I3; �3 = I1× I2. Then F ∈L1(�); and the
following inequality holds:

‖F‖L1(�)6‖F1‖L2(�1)‖F2‖L2(�2)‖F3‖L2(�3);

where � = I1 × I2 × I3:



86 T. Minamoto / Journal of Computational and Applied Mathematics 135 (2001) 79–90

Lemma 4. C2 in (13) is given by

C2 =




p
4 |Q|1=p (� is one dimensional)

( 1
2 )2=3 2

√
3

9 p|Q|(6−p)=6p (� is two dimensional):

Proof. The proof for the one-dimensional case is found in [2,4].
We consider the two-dimensional case. For any w∈ C̃ := {v∈C1([0; T ]; C∞

0 (�)) | v(·; 0) = 0} and
arbitrary (x1; x2; t)∈Q, we have

|w(x1; x2; t)|61
2

∫
Ix1

|wx′1 (x
′
1; x2; t)| dx′1 =: f1(x̃1);

|w(x1; x2; t)|61
2

∫
Ix2

|wx′2 (x1; x′2; t)| dx′2 =: f2(x̃2)

and

|w(x1; x2; t)|6
∫

J
|wt′(x1; x2; t′))| dt′ =: f3(t̃):

These relations give the following inequality:

|w(x1; x2; t)|3=26f1=2
1 (x̃1)f1=2

2 (x̃2)f1=2
3 (t̃): (24)

Then applying Proposition 1 to (24), we obtain∫
Q
|w(x1; x2; t)|3=2 dx1 dx2 dt6

1
2
‖wx1‖1=2

L1(Q)‖wx2‖1=2
L1(Q)‖wt‖1=2

L1(Q):

This implies

‖w‖L(3=2)(Q)6( 1
2 )2=3‖wx1‖1=3

L1(Q)‖wx2‖1=3
L1(Q)‖wt‖1=3

L1(Q): (25)

By using the fact that C̃ is dense in H̃ (cf. [12, Chapters 23 and 24]), estimate (25) holds for
arbitrary w∈ H̃ .

Substituting w = |v|s (16s64) into (25) gives

‖v‖sL(3=2)s(Q)6( 1
2 )2=3s‖vs−1‖L2(Q)‖vx1‖1=3

L2(Q)‖vx2‖1=3
L2(Q)‖vt‖1=3

L2(Q): (26)

Then using HTolder’s inequality, we obtain∫
Q
|v(x1; x2; t)|2(s−1) dx1 dx2 dt6‖v‖2(s−1)

L(3=2)s(Q)|Q|(4−s)=3s: (27)

We conclude from (26) and (27) that

‖v‖L(3=2)s(Q) 6 ( 1
2 )2=3s|Q|(4−s)=6s‖vx1‖1=3

L2(Q)‖vx2‖1=3
L2(Q)‖vt‖1=3

L2(Q)

6 ( 1
2 )2=3s|Q|(4−s)=6s 1

3
(‖vx1‖L2(Q) + ‖vx2‖L2(Q) + ‖vt‖L2(Q))

6 ( 1
2 )2=3s|Q|(4−s)=6s

√
3

3
‖v‖H :

Setting s = 2
3p, we obtain the desired conclusion.
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Finally, we describe the algorithm for .nding a real number � that satis.es the veri.cation con-
dition in Theorem 1,

� + �6�: (28)

What we present here is the most basic such as algorithm [6]. Since � depends on �, we write
� = �(�). The algorithm is as follows:

1. Compute a constant � satisfying (7).
2. Set � = �.
3. Compute �(�) satisfying (8).
4. Check condition (28), � + �(�)6�: If this condition is satis.ed, then stop. This means that

veri.cation is completed.
5. Otherwise, make the replacement

�← (1 + 3)�

for a certain positive number 3 and return to 3.

If the iteration number exceeds some maximal value that we decide in advance without satisfying
(28), the veri.cation fails.

5. Veri�cation procedures and numerical examples

In this section, we describe the computation of the approximate solution uh and defect ‖d[uh]‖L2(Q)

in (14).
Let Sh be a .nite-dimensional subspace of H 1

0 (�) ∩ H 2(�) depending on h and let N be the
dimension of Sh. Then we can represent uh by

uh(x; t) =
N∑

i=1

ui(t)�̂i(x);

where �̂i are base functions in Sh. The function ui(t) constitutes the time-dependent coeUcient of
the base function �̂i(x).

Now uh is computed by the following Newton-iteration:

(u(n)
htt ; �̂j) + (�u(n)

h ;��̂j) + (f′(u(n−1)
h )u(n)

h ; �̂j) = (f′(u(n−1)
h )u(n−1)

h − f(u(n−1)
h ); �̂j); (29)

where n is the iteration number.
For the discretization of time, we take equal time steps of length Jt and de.ne

tk = kJt; k = 0; 1; 2; : : : :

We used the Newmark method [10], which generates the following scheme:

u(n)
i (t + Jt) ≈ u(n)

i (t) + Jtu̇(n)
i (t) + Jt2[� Tu(n)

i (t + Jt) + ( 1
2 − �) Tu(n)

i (t)] (30)

u̇(n)
i (t + Jt) ≈ u̇(n)

i (t) + Jt[7 Tu(n)
i (t + Jt) + (1− 7) Tu(n)

i (t)]; (31)

where u̇ i = dui=dt and Tu i = d2ui=dt2, and 7 and � are some nonnegative parameters.
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We compute an approximate solution by combining the Newton iteration and the Newmark method.
From (30),

Tu(n)
i (t + Jt) ≈ 1

� Jt2
[u(n)

i (t + Jt)− u(n)
i (t)]− 1

� Jt
u̇(n)

i (t)−
(

1
2�
− 1

)
Tu(n)
i (t) (32)

We approximate iteration (29) by carrying out the following procedure (i)–(iii), and by getting an
approximate solution in each time step on condition that u(n)

i (t); u̇(n)
i (t); Tu(n)

i (t) are already known.
(i) Substitute (32) to the next equation

(u(n)
htt (t + Jt); �̂j) + (�u(n)

h (t + Jt);��̂j) + (f′(u(n−1)
h (t + Jt))u(n)

h (t + Jt); �̂j)

=(f′(u(n−1)
h (t + Jt))u(n−1)

h (t + Jt)− f(u(n−1)
h (t + Jt)); �̂j) (33)

and compute u(n)
i (t + Jt).

(ii) Substitute u(n)
i (t + Jt) in (i) to (32), and compute Tu(n)

i (t + Jt).
(iii) Substitute Tu(n)

i (t + Jt) in (ii) to (31),and compute u̇(n)
i (t + Jt).

For initial value of this scheme, we .nd ui(0) = u̇ i(0) = 0 from initial condition in (2) for each
i, and Tu i(0) is computed by solving (33) in t + Jt = 0 with respect to Tu i(0), i.e. by solving the
linear system

∑N
i=1(�̂j; �̂i) Tu i(0) = −(f(0); �̂j) (j = 1; 2; : : : ; N ). In particular, ui(0); u̇ i(0); Tu i(0) are

independent of n.
Since uhtt − Juh + f(·; uh)∈L2(Q) is required, we use the piecewise cubic Hermite function in

one-dimensional case and the piecewise bi-cubic Hermite function in two-dimensional case as the
base function in space, and also use the piecewise cubic Hermite interpolation in time. Moreover,
since f has a polynomial restriction with respect to u and piecewise polynomials are used in space
and time, we can compute ‖d[uh]‖L2(Q) directly, elementwise in each time step when all coeUcients
appearing in f are simple (typically constants).
One-dimensional case:
In (2), we set

f(x; t; u) =−Au2 − k sin �x(2 + �2t2 − Akt4 sin �x);

where A and k are constants, and we let �=(0; 1) and T=1. The exact solution is u(x; t)=kt2 sin �x.
If we take p = 4, then (A1) and (A2) are satis.ed. Then, since we have

‖f̂′
(uh + v1)v2 − f̂

′
(uh)v2‖2

L2(Q) = 4A2
∫ ∫

|v1v2|2 dx dt

6 4A2‖v1‖2
L4(Q)‖v2‖2

L4(Q)64A2�4;

(15) is satis.ed for

G� = 2|A|�2:

We illustrate our algorithm with the numerical results of several examples, where NS and NT are
the partition numbers of space and time, respectively, and M = NS × NT: Since the cubic Hermite
interpolation procedure is fourth-order accurate for all suUciently smooth functions and the Newmark
method is second-order accurate, we choose NS and NT to satisfy the relation NT = NS ×NS when
adjusting the accuracy. Generally speaking, it is diUcult to describe the stability of the Newmark
method for nonlinear problems, but according to [10], if 7 = 1

2 and � = 1
4 , the Newmark method is
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Table 1
Results in the one-dimensional-case

The result in [4] Our new result

Case 1: A = 1:5; k = 1; NS = 60; M = 216 000

C1C2 7.3890561 3.6945281
‖d[uh]‖L2(Q) 0.0013745 0.0013745
� 0.0785593 0.0054016

Case 2: A = 0:8; k = 2; NS = 100; M = 1 000 000

C1C2 8.16616992 3.98468291
‖d[uh]‖L2(Q) 0.00075867 0.00075867
� 0.146602 0.00308368

Table 2
Speci.cation of numerical environment

Software CPU time

Case 1 FUJITSU Fortran Compiler FSUNf90cp. V4 937 (s)
Case 2 FUJITSU Fortran Compiler FSUNf90cp. V4 4412 (s)
Case 3 FUJITSU C Compiler FSUNfcc. V4 35376 (s)

unconditionally stable for linear hyperbolic equations. Thus, we choose 7 = 1
2 and � = 1

4 in these
examples (Table 1).

In our numerical examples we used u(·; (k−1)Jt) (k¿1) as the initial value of Newton iteration
at t = k Jt. In the following, � represents the veri.ed error bound in Theorem 1.

The computations were carried out on Sun Ultra 60 with UltraSPARC-II 360 MHz. The execution
times are shown in Table 2.

We obtain sharper bounds than those in [4] owing to the better constant C = C1C2 used here. We
note that Theorem 1 ensures not only the existence of solutions but also their local uniqueness.
Two-dimensional case:
In (2), we set

f(x; t; u) = f(x1; x2; t; u) = Au2 − k sin �x1 sin �x2(2 + 2t2�2 + Akt4 sin �x1 sin �x2);

and let � = (0; 1)× (0; 1) and T = 1. The exact solution is u(x1; x2; t) = kt2 sin �x1 sin �x2: The other
conditions are the same as in the one-dimensional case (Table 3).

Remark 2. In these computations, we used the usual Woating-point number system with double
precision. Therefore, the above results may include some unknown rounding errors. From the author’s
experiences, however, the order of magnitude of the eNect of round-oN errors is smaller than 10−10.
With this observation, we can assume that the numerical results are suUciently reliable to at least
six digits or so. Of course, we need to use arithmetic system with guaranteed accuracy for a really
rigorous veri.cation.
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Table 3
Results in two-dimensional case

Case 3: A = 1:0; k = 1:0

NS 8
Jt 1

64
C1C2 1.27137
‖d[uh]‖L2(Q) 0.01825348
� 0.0247665
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