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Cayley’s hyperdeterminant is a homogeneous polynomial of degree

4 in the 8 entries of a 2 × 2 × 2 array. It is the simplest (noncon-

stant) polynomial which is invariant under changes of basis in three

directions. We use elementary facts about representations of the 3-

dimensional simple Lie algebra sl2(C) to reduce theproblemoffind-

ing the invariant polynomials for a 2×2×2 array to a combinatorial

problem on the enumeration of 2× 2× 2 arrays with non-negative

integer entries.We then apply results from linear algebra to obtain a

new proof that Cayley’s hyperdeterminant generates all the invari-

ants. In the last section we discuss the application of our methods

to general multidimensional arrays.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In his famous 1845 paper on the theory of linear transformations, which became the foundation

of classical invariant theory, Cayley [5] introduced the concept of the hyperdeterminant of a multidi-

mensional array. He explicitly calculated the hyperdeterminant for the simplest case, an array of size

2× 2× 2, which can be represented in two dimensions by its two frontal slices:

X =
⎡⎣ x000 x010 x001 x011

x100 x110 x101 x111

⎤⎦ . (1)
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Fig. 1. Geometric configurations in Cayley’s hyperdeterminant.

Definition 1. Cayley’s hyperdeterminant is the following homogeneous polynomial of degree 4 in

the 8 entries xijk of the 2× 2× 2 array of Eq. (1):

C = x2000x
2
111 + x2001x

2
110 + x2010x

2
101 + x2011x

2
100

− 2
(
x000x001x110x111 + x000x010x101x111 + x000x011x100x111

+ x001x010x101x110 + x001x011x100x110 + x010x011x100x101
)

+ 4 (x000x011x101x110 + x001x010x100x111) .

This polynomial has an interesting combinatorial-geometric interpretation. The first four terms

have coefficient 1, and the subscripts correspond to the vertices of diagonals of the cube (configurations

of dimension 1). The next six terms have coefficient−2, and the subscripts correspond to rectangles

in the cube (configurations of dimension 2). The last two terms have coefficient 4, and the subscripts

correspond to tetrahedra in the cube (configurations of dimension 3). These three configurations are

illustrated by the dashed lines in Fig. 1.

Cayley’s hyperdeterminantC is the simplest (nonconstant) polynomial in the entries of the 2×2×2

array X of Eq. (1) which is invariant under unimodular changes of basis along the three directions. To

make this idea more precise, we regard X as an element of the tensor cube C2 ⊗ C2 ⊗ C2 of the

2-dimensional complex vector space C2. The group SL2(C) of 2 × 2 matrices of determinant 1 acts

on C2 by matrix–vector multiplication, and this gives a component-wise action of the direct product

SL2(C) × SL2(C) × SL2(C) on C2 ⊗ C2 ⊗ C2. This action extends to the algebra of polynomials

in the entries of X , and C is the simplest polynomial which is fixed by every element of the direct

product.

Ordinary determinants of square matrices can be characterized by a similar invariance property.

Matrices U ∈ SLm(C) act on rectangular m × n matrices A by left multiplication: A �→ UA. The

First Fundamental Theorem of Classical Invariant Theory states that there exist nonconstant invariant

polynomials in the entries of A if and only if m ≤ n, and every invariant is a polynomial in the

determinants of them×m submatrices obtained by choosingm columns of A; see Procesi [23, §11.1.2].

If we combine the left action of U ∈ SLm(C) with the right action of V ∈ SLn(C), so that A �→ UAV ,

then invariants exist for SLm(C)× SLn(C) if and only ifm = n, and every invariant is a polynomial in

det(A).
We now summarize the results of this paper. In Section 2 we recall some elementary results in

the representation theory of the 3-dimensional simple Lie algebra sl2(C). We explain how the 9-

dimensional semisimple Lie algebra

sl2,2,2(C) = sl2(C)⊕ sl2(C)⊕ sl2(C),

acts on the 8-dimensional vector space

M2,2,2(C) = C2 ⊗ C2 ⊗ C2,

the tensor cube of the natural representation of sl2(C). We describe, using what are essentially the

power and product rules fromelementary calculus, the action of sl2,2,2(C) on the algebra of polynomi-

als onM2,2,2(C). The invariant polynomials are thosewhich are annihilated by all Lie algebra elements



96 M.R. Bremner et al. / Linear Algebra and its Applications 437 (2012) 94–112

(equivalently, fixed by all Lie group elements). For each degree d, the homogeneous polynomials form

a finite-dimensional representation of sl2,2,2(C), and a well-known theorem implies that this repre-

sentation is the direct sum of irreducible representations.We express the invariant polynomials as the

elements in the kernel of a linear differential operator which represents the action of the Lie algebra

on homogeneous polynomials, and from this we obtain the invariant polynomials as the nullspace of

a matrix. The domain of this linear map has a monomial basis in bijection with the set of all 2× 2× 2

arrays with non-negative integer entries summing to d and having equal sums over the parallel 2× 2

slices in the three directions. This reduces the computation of invariants to elementary combinatorics

and linear algebra.

In Section 3 we present explicit calculations for degrees 2 and 4. In degree 2, the matrix has size

6 × 4 and rank 4, so there are no invariants. In degree 4, the matrix has size 24 × 12 and rank 11;

Cayley’s hyperdeterminant C is a basis for the nullspace. Considering the powers of C, it follows that

the dimension of the space of invariants is at least 1 in each degree d which is a multiple of 4.

In Section 4we compute the dimensions of certainweight spaces in the representation of sl2,2,2(C)
on the homogeneous polynomials of degree d. This is equivalent to the enumeration of 2×2×2 arrays

with non-negative integer entries and constraints on the entry sums over the parallel 2 × 2 slices in

the three directions.

In Section 5 we apply a result on subspaces, reminiscent of the inclusion–exclusion principle, to a

commutative diagram of injective linearmaps betweenweight spaces in representations of sl2,2,2(C).
This provides a different proof that the space of invariant polynomials has dimension at least 1 in each

degree dwhich is amultiple of 4.We then use the representation theory of sl2,2,2(C) to prove that the

algebra of invariants is a polynomial algebra and is generated by Cayley’s hyperdeterminant in degree

4. Hence there are no new invariants in higher degrees.

In Section 6 we consider invariant polynomials in the entries of an array of size n1× n2× · · · × nk
under the action of SLn1(C)× SLn2(C)× · · · × SLnk(C). The corresponding combinatorial objects are

k-dimensional arrays with non-negative integer entries and equal sums over the parallel slices in the

k directions.

In Section 7 we briefly summarize recent applications of Cayley’s hyperdeterminant and provide

some suggestions for further research.

2. Representations of sl2(C)

In this section we recall some elementary results in the representation theory of Lie algebras.

Standard references are Jacobson [16], Humphreys [15], de Graaf [6], Erdmann and Wildon [10]. For

an introduction to Lie theory, by which is meant the relation between Lie groups and Lie algebras, see

Stillwell [25]. For the connection with classical invariant theory, see Procesi [23].

The 3-dimensional simple Lie algebra sl2(C) consists of the 2× 2 matrices of trace 0 over C with

the Lie bracket [A, B] = AB− BA. This operation satisfies anticommutativity and the Jacobi identity:

[A, A] ≡ 0, [[A, B], C] + [[B, C], A] + [[C, A], B] ≡ 0.

The standard basis of sl2(C) consists of these three matrices:

H =
⎡⎣ 1 0

0 −1

⎤⎦ , E =
⎡⎣ 0 1

0 0

⎤⎦ , F =
⎡⎣ 0 0

1 0

⎤⎦ . (2)

In its natural representation, sl2(C) acts by matrix–vector multiplication on the two-dimensional

vector space C2 with this standard basis:

x0 =
⎡⎣ 1

0

⎤⎦ , x1 =
⎡⎣ 0

1

⎤⎦ .

The action of sl2(C) on C2 is given by the following equations:

H · x0 = x0, H · x1 = −x1. E · x0 = 0, E · x1 = x0, F · x0 = x1, F · x1 = 0.
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In particular, x0 and x1 are eigenvectors for H and H · xi = (−1)ixi (i = 0, 1). If we regard x0 and x1
as indeterminates, then we can express the action of sl2(C) on C2 by partial differential operators as

follows:

H = x0
∂

∂x0
− x1

∂

∂x1
, E = x0

∂

∂x1
, F = x1

∂

∂x0
.

We identify a 2×2×2 arrayX = (xijk)with an element of the tensor cubeM2,2,2(C) = C2⊗C2⊗C2.

We identify the entries with simple tensors, xijk = xi⊗ xj⊗ xk (i, j, k = 0, 1). (Strictly speaking, since

we regard xijk as a coordinate function onM2,2,2(C), we should use dual basis vectors andwrite xijk =
x∗
i ⊗x∗

j ⊗x∗
k , but this distinctionwill not be important for us.) The Lie group SL2(C)×SL2(C)×SL2(C)

acts on the vector space M2,2,2(C); the action is defined on simple tensors and extended linearly:

(X, Y, Z) · (u⊗ v⊗ w) = (X · u)⊗ (Y · v)⊗ (Z · w).

As usual, we linearize the group action by considering the action of the Lie algebra sl2,2,2(C) =
sl2(C)⊕ sl2(C)⊕ sl2(C) on M2,2,2(C) defined by this equation:

(A, B, C) · (u⊗ v⊗ w) = (A · u)⊗ v⊗ w + u⊗ (B · v)⊗ w + u⊗ v⊗ (C · w).

Lemma2. The 8-dimensional vector spaceM2,2,2(C) is an irreducible representation of the 9-dimensional

semisimple Lie algebra sl2,2,2(C).

Proof. A representation of a semisimple Lie algebra is irreducible if and only if it is isomorphic to the

tensor product of irreducible representations of its simple summands. See Proposition 1.1 of Neher et

al. [22]. �
We write H�, E�, F� (� = 1, 2, 3) for the standard basis of the �th copy of sl2(C) in sl2,2,2(C); see

Eq. (2). The basis of sl2,2,2(C) acts on the basis of M2,2,2(C) as follows:

H1 · x0jk = x0jk, H2 · xi0k = xi0k, H3 · xij0 = xij0,

H1 · x1jk = −x1jk, H2 · xi1k = −xi1k, H3 · xij1 = −xij1,
E1 · x0jk = 0, E2 · xi0k = 0, E3 · xij0 = 0,

E1 · x1jk = x0jk, E2 · xi1k = xi0k, E3 · xij1 = xij0,

F1 · x0jk = x1jk, F2 · xi0k = xi1k, F3 · xij0 = xij1,

F1 · x1jk = 0, F2 · xi1k = 0, F3 · xij1 = 0.

These equations can be proved by straightforward calculation.We give the details for � = 1; the other

cases are similar:

H1 · x0jk = H1 · (x0 ⊗ xj ⊗ xk) = (H1 · x0)⊗ xj ⊗ xk = x0jk,

H1 · x1jk = H1 · (x1 ⊗ xj ⊗ xk) = (H1 · x1)⊗ xj ⊗ xk = −x1jk,
E1 · x0jk = E1 · (x0 ⊗ xj ⊗ xk) = (E1 · x0)⊗ xj ⊗ xk = 0,

E1 · x1jk = E1 · (x1 ⊗ xj ⊗ xk) = (E1 · x1)⊗ xj ⊗ xk = x0jk,

F1 · x0jk = F1 · (x0 ⊗ xj ⊗ xk) = (F1 · x0)⊗ xj ⊗ xk = x1jk,

F1 · x1jk = F1 · (x1 ⊗ xj ⊗ xk) = (F1 · x1)⊗ xj ⊗ xk = 0.

We consider the polynomial algebra onM2,2,2(C):

P = C[x000, x010, x100, x110, x001, x011, x101, x111].
A basis of P over C consists of the monomials,∏

i,j,k=0,1
x
eijk
ijk = x

e000
000 x

e001
001 x

e010
010 x

e011
011 x

e100
100 x

e101
101 x

e110
110 x

e111
111 ,

where the exponents eijk are arbitrary non-negative integers. The degree of a monomial is the sum of

its exponents:
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d = ∑
i,j,k=0,1

eijk.

Wewrite Pd for the homogeneous subspace of P spanned by themonomials of degree d. We identify P1
withM2,2,2(C), so that a basis of P1 consists of themonomials of degree 1, namely x000, x001, x010, x011,

x100, x101, x110, x111. There is a bijection between the monomials of degree d and the 2× 2× 2 arrays

E = (eijk) of non-negative integers summing to d. The polynomial algebra P is graded by the degree:

P =⊕
d≥0

Pd, PdPe ⊆ Pd+e.

Wehave Pd = SdP1, the dth symmetric power of P1. The action of an elementD ∈ sl2,2,2(C) extends to
all basismonomials of P by the derivation ruleD · (fg) = (D · f )g+ f (D ·g). It follows by induction that

D · xeijkijk = eijkx
eijk−1
ijk (D · xijk),

and hence that

D ·∏
i,j,k

x
eijk
ijk =

∑
i′,j′,k′

x
e000
000 · · ·

(
D · xei′ j′k′

i′j′k′
)
· · · xe111111

= ∑
i′,j′,k′

x
e000
000 · · ·

(
ei′j′k′x

ei′ j′k′−1
i′j′k′ (D · xi′j′k′)

)
· · · xe111111 .

In particular, D · Pd ⊆ Pd for all D ∈ sl2,2,2(C); hence for every d ≥ 1, the subspace Pd is a finite-

dimensional representation of sl2,2,2(C), and is isomorphic to a direct sum of irreducible representa-

tions. For every non-negative integer n, there is (up to isomorphism) a unique irreducible representa-

tion of sl2(C)with dimension n+1, denoted V(n). This representation is generated by a vector vn with

H · vn = nvn. With respect to the basis vn−2i (i = 0, 1, . . . , n), the action of sl2(C) on V(n) is given by

H · vn−2i = (n−2i)vn−2i,
E · vn−2i = (n−i+1)vn−2i+2 (i = 1, 2, . . . , n), E · vn = 0,

F · vn−2i = (i+1)vn−2i−2 (i = 0, 1, . . . , n−1), F · v−n = 0.

Definition 3. In the irreducible representationV(n) of sl2(C), the basis vector vn−2i is aweight vector

(that is, H-eigenvector) of weight n−2i.
An irreducible representation of sl2,2,2(C) is isomorphic to the tensor product V(a)⊗V(b)⊗V(c)

for some non-negative integers a, b, c. The polynomials invariant under the group SL2(C)3 coincide

with the polynomials annihilated by the Lie algebra sl2,2,2(C); hence a polynomial f ∈ Pd is invariant

if and only if D · f = 0 for all D ∈ sl2,2,2(C). Equivalently, the invariant polynomials correspond to the

summands of Pd isomorphic to V(0)⊗ V(0)⊗ V(0). Therefore, a polynomial f ∈ Pd is invariant if and

only if H� · f = 0 and E� · f = 0 for � = 1, 2, 3.

Lemma 4. The basis monomial∏
i,j,k

x
eijk
ijk ,

is a simultaneous eigenvector for H1,H2,H3 with eigenvalues∑
j,k

e0jk −
∑
j,k

e1jk,
∑
i,k

ei0k −
∑
i,k

ei1k,
∑
i,j

eij0 −
∑
i,j

eij1.
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Proof. For � = 1 we have

H1 · xeijkijk = eijkx
eijk−1
ijk

(
H1 · xijk) = eijkx

eijk−1
ijk (−1)ixijk = (−1)ieijkxeijkijk ,

and therefore

H1 ·
∏
i,j,k

x
eijk
ijk =

⎛⎝∑
j,k

e0jk −
∑
j,k

e1jk

⎞⎠ ∏
i,j,k

x
eijk
ijk .

The other cases are similar. �

Definition 5. Theweight spaceW(d; a, b, c) is the subspace of Pd spanned by the monomials which

have eigenvalues a, b, c for H1, H2, H3 respectively. The zero weight space isW(d; 0, 0, 0).
The basis monomial∏

i,j,k

x
eijk
ijk ,

belongs to W(d; 0, 0, 0) if and only if∑
i,j,k

eijk = d,
∑
j,k

e0jk =
∑
j,k

e1jk,
∑
i,k

ei0k =
∑
i,k

ei1k,
∑
i,j

eij0 =
∑
i,j

eij1.

That is, the 2×2×2 array (eijk) of exponents satisfies the condition that in each of the three directions,

the parallel 2 × 2 slices have equal sums. If d is odd then the zero weight space W(d; 0, 0, 0) is the

zero subspace. In particular, there are no invariant polynomials in odd degrees. The actions of E1, E2, E3
induce these linear maps on weight spaces:

E1 : W(d; 0, 0, 0)→ W(d; 2, 0, 0),
E2 : W(d; 0, 0, 0)→ W(d; 0, 2, 0),
E3 : W(d; 0, 0, 0)→ W(d; 0, 0, 2).

We define a linear map

Ed : W(d; 0, 0, 0) −→ W(d; 2, 0, 0)⊕W(d; 0, 2, 0)⊕W(d; 0, 0, 2),
by the equation Ed(f ) = ( E1 · f , E2 · f , E3 · f ) for all f ∈ W(d; 0, 0, 0). The invariant polynomials in

Pd coincide with the kernel of Ed. We can represent the linear map Ed by the matrix [Ed]with respect

to the ordered monomial bases of the weight spaces. The size [Ed] is(
dimW(d; 2, 0, 0)+ dimW(d; 0, 2, 0)+ dimW(d; 0, 0, 2) )× dimW(d; 0, 0, 0).

In fact the three dimensions in parentheses are equal; this follows by considering the automorphisms

of sl2,2,2(C) which permute the three summands.

3. Cayley’s hyperdeterminant via linear algebra

In this section we show by direct calculation that every (nonconstant) invariant polynomial of

degree≤ 4 is a scalar multiple of Cayley’s hyperdeterminant.

We identify monomials with sequences of exponents lexicographically ordered by their triples of

subscripts:
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i,j,k

x
eijk
ijk ←→ [e000, e001, e010, e011, e100, e101, e110, e111].

Within each weight space, we order the basis monomials lexicographically.

Lemma 6. There are no invariant polynomials in degree 2.

Proof. A basis of the zero weight space W(2; 0, 0, 0) consists of four monomials,

00011000, 00100100, 01000010, 10000001

which label the columns of the matrix [E2]. Each nonzero weight space W(2; 0, 0, 2), W(2; 0, 2, 0),
W(2; 2, 0, 0) has a basis of two monomials which label the rows of [E2]:

01100000

10010000

01001000

10000100

00101000

10000010

[E2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0

1 0 0 1

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrix has full rank, and so its nullspace is {0}. �

Theorem 7. In degree 4, the space of invariant polynomials has dimension 1; every invariant is a scalar

multiple of Cayley’s hyperdeterminant C.

Proof. A basis of the zero weight space W(4; 0, 0, 0) consists of these 12 monomials:

00022000, 00111100, 00200200, 01011010, 01100110, 01101001,

02000020, 10010110, 10011001, 10100101, 11000011, 20000002

Each nonzero weight space W(4; 0, 0, 2), W(4; 0, 2, 0), W(4; 2, 0, 0) has a basis of 8 monomials;

see Fig. 2, which also displays the 24 × 12 matrix [E4] (we use dot for zero). Fig. 3 gives the row

canonical form of [E4] (we omit zero rows). The rank is 11, and Cayley’s hyperdeterminant is a basis of

the nullspace. �

Corollary 8. The dimension of the space of invariant polynomials is at least 1 in each degree d congruent

to 0 modulo 4.

Proof. The existence of Cayley’s hyperdeterminant C in degree 4 implies that there is at least one

invariant polynomial Ce in each degree d = 4e. �

4. Dimension formulas for weight spaces

Our next goal is to prove that there are no new invariants in higher degrees; in other words, that

every invariant is a polynomial in C. To do this, we need to prove that the lower bound of Corollary 8

is also an upper bound. The first step is to obtain dimension formulas for certain weight spaces in the

representation of sl2,2,2(C) on the space Pd of homogeneous polynomials of degree d.
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Fig. 2. The matrix [E4].

Fig. 3. The row canonical form of [E4].

Theorem 9. The dimension of the zero weight subspace W(d; 0, 0, 0) equals
1

384
(d+ 4)2(d2 + 8d+ 24) if d ≡ 0 (mod 4), (000-0)

1

384
(d+ 2)(d+ 6)(d2 + 8d+ 28) if d ≡ 2 (mod 4). (000-2)
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The dimensions of W(d; 2, 0, 0), W(d; 0, 2, 0) and W(d; 0, 0, 2) equal
1

384
d(d+ 4)2(d+ 8) if d ≡ 0 (mod 4), (200-0)

1

384
(d+ 2)(d+ 6)(d2 + 8d+ 4) if d ≡ 2 (mod 4). (200-2)

The dimensions of W(d; 2, 2, 0), W(d; 2, 0, 2) and W(d; 0, 2, 2) equal
1

384
d(d+ 4)(d2 + 12d+ 8) if d ≡ 0 (mod 4), (220-0)

1

384
(d+ 2)(d3 + 14d2 + 28d− 24) if d ≡ 2 (mod 4). (220-2)

The dimension of W(d; 2, 2, 2) equals
1

384
d(d3 + 16d2 + 32d+ 32) if d ≡ 0 (mod 4), (222-0)

1

384
(d+ 2)(d3 + 14d2 + 4d+ 24) if d ≡ 2 (mod 4). (222-2)

In all cases, the dimension is 0 if d is odd.

Given non-negative integers d (the degree) and a, b, c (the weights), we consider 2× 2× 2 arrays

E = (eijk) with i, j, k ∈ {0, 1} of non-negative integer exponents satisfying the following equations:

e000 + e001 + e010 + e011 + e100 + e101 + e110 + e111 =d, (D)

(e000 + e001 + e010 + e011)− (e100 + e101 + e110 + e111) =a, (M1)

(e000 + e001 + e100 + e101)− (e010 + e011 + e110 + e111) =b, (M2)

(e000 + e010 + e100 + e110)− (e001 + e011 + e101 + e111) =c. (M3)

These equations hold if and only if the corresponding monomial belongs to the weight spaceW(d; a,
b, c); that is, the number of arrays E satisfying Eqs. (D)–(M3) equals the dimension of W(d; a, b, c).
Theorem 9 gives formulas for these dimensions for certain values of a, b, c. These formulas are poly-

nomials of degree 4, as expected since we have eight exponents and four constraints.

Lemma 10. Consider 2× 2matrices (eij) with non-negative integer entries and specified row sums r0, r1
and column sums c0, c1; clearly r0 + r1 = c0 + c1:⎡⎣ e00 e01

e10 e11

⎤⎦ ,
e00 + e01 = r0,

e10 + e11 = r1,

e00 + e10 = c0,

e01 + e11 = c1.
(3)

The number of such matrices equals min(r0, r1, c0, c1)+ 1.

Proof. We have four variables and four constraints, but one dependence relation among the con-

straints, so we expect a 1-dimensional solution set. Without loss of generality, we can interchange the

rows (resp. columns) and assume that r0 ≤ r1 (resp. c0 ≤ c1); we can also transpose the matrix and

assume that r0 ≤ c0. It is clear that since c1 − r0 ≥ c1 − c0 ≥ 0 we have the particular solution⎡⎣ e00 e01

e10 e11

⎤⎦ =
⎡⎣ 0 r0

c0 c1 − r0

⎤⎦ .
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If u is any integer then we can preserve the constraints by adding u to the diagonal entries and sub-

tracting u from the off-diagonal entries:⎡⎣ e00 e01

e10 e11

⎤⎦ =
⎡⎣ u r0 − u

c0 − u c1 − r0 + u

⎤⎦ .

This is another solution if and only if 0 ≤ u ≤ r0. Hence the number of solutions is r0 + 1 =
min(r0, r1, c0, c1)+ 1. �

Lemma 11. For any integer k ≥ 1 we have

k∑
i=1

k∑
j=1

(
min(i, j)

)2 = 1

6
k(k+ 1)(k2 + k+ 1).

Proof. By induction on k; the result is clear for k = 1. We have

k+1∑
i=1

k+1∑
j=1

(
min(i, j)

)2 = k∑
i=1

k∑
j=1

(
min(i, j)

)2 + k+1∑
i=1

(
min(i, k+1))2 + k∑

j=1

(
min(k+1, j))2

= 1

6
k(k+1)(k2+k+1)+ 1

6
(k+1)(k+2)(2k+3)+ 1

6
k(k+1)(2k+1)

= 1

6
(k+ 1)(k + 2)(k2 + 3k + 3),

using the well-known formula for the sum of squares. �

We now come to the proof of Theorem 9. We prove the first two Eqs. (000-0) and (000-2); the

proofs of the others are similar but slightly more complicated, and the details are not particularly

enlightening.

Proof. Eqs. (M1)–(M3) imply that d is even, since if a = b = c = 0 then each of the sums in

parentheses equals d/2. Hence we assume that d = 2m.

In Eqs. (D)–(M3) we write w, x, y, z for the row and column sums of the 2 × 2 slice (e0jk) with

i = 0. We then have w + x = m and y+ z = m, and

e000 + e001 = w, e100 + e101 = m− w,

e010 + e011 = x, e110 + e111 = m− x,

e000 + e010 = y, e100 + e110 = m− y,

e001 + e011 = z, e101 + e111 = m− z.

Suppose that w ≤ x and y ≤ z. Lemma 10 shows that

• the number of 2× 2 slices (e0jk) is min(w, y)+ 1, and
• the number of 2× 2 slices (e1jk) is min(m−x,m−z)+ 1 = min(w, y)+ 1.

Hence the number of 2×2×2 arrays is (min(w, y)+1)2. Any solutionwithw < x has a corresponding

solution with w > x obtained by interchanging the slices (ei0k) and (ei1k). Any solution with y < z

has a corresponding solution with y > z obtained by interchanging (eij0) and (eij1).
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We first prove Eq. (000-2): the case d ≡ 2 (mod 4). We have m = 2k−1 where k = (d+2)/4.
Sincem is odd, we cannot have eitherw = x or y = z; hence all solutions are doubly paired. Thus the

number of solutions is four times the number withw < x and y < z, and for this we apply Lemma 11:

4

k−1∑
w=0

k−1∑
y=0

(
min(w, y)+ 1

)2 = 4

k−1∑
w=0

k−1∑
y=0

min(w+1, y+1)2

= 2

3
k(k+ 1)(k2 + k + 1) = 1

384
(d+ 2)(d+ 6)(d2 + 8d+ 28).

We next prove Eq. (000-0): the case d ≡ 0 (mod 4). We have m = 2k where k = d/4. In this case we

must also consider w = x and y = z, so we add

2

k−1∑
w=0

min(w+1, k+1)2 + 2

k−1∑
y=0

min(k+1, y+1)2 +min(k+1, k+1)2

= 2

3
k(k+ 1)(2k + 1)+ (k+ 1)2 = 1

3
(k+ 1)(4k2 + 5k+ 3),

to the previous result, obtaining

2

3
k(k+ 1)(k2 + k + 1)+ 1

3
(k+ 1)(4k2 + 5k+ 3) = 1

384
(d+ 4)2(d2 + 8d+ 24).

This completes the proof. �

5. Inclusion–exclusion for subspaces

We recall a familiar formula from elementary linear algebra. If U1 and U2 are finite-dimensional

subspaces of a vector space then

dim(U1 + U2 ) = dim(U1 )+ dim(U2 )− dim(U1 ∩ U2 ). (4)

The next result generalizes Eq. (4) to an arbitrary finite number of subspaces, and is similar to the

combinatorial formula for inclusion–exclusion on finite sets.

Lemma 12. If U1, . . . ,Un are finite-dimensional subspaces of a vector space then

dim

⎛⎝ n∑
i=1

Ui

⎞⎠ ≤ n∑
r=1

(−1)r+1 ∑
1≤i1<···<ir≤n

dim(Ui1 ∩ · · · ∩ Uir ),

where the inner sum on the right is over all
(
n

r

)
subsets {i1, . . . , ir} ⊆ {1, . . . , n}.

Proof. The statement is false if the inequality is replaced by an equality: consider three distinct lines

through the origin in the plane. The statement is clear for n ≤ 2, and can easily be proved by induction

on n. �

We now consider a reformulation of this problem, in which we have a positive integer n and a

collection of 2n finite-dimensional vector spaces,

{ Vi1,i2,...,in | 0 ≤ i1, i2, . . . , in ≤ 1 },
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corresponding to the vertices of an n-dimensional cube. We also have n2n−1 injective linear maps

corresponding to the edges of the cube,

f
(k)

i1,...,îk,...,in
: Vi1,...,1,...,in −→ Vi1,...,0,...,in ,

where the hat indicates omission and the values of the indices are

1 ≤ k ≤ n, (i1, . . . , îk, . . . , in) ∈ {0, 1}n−1.
Given any two of these vector spaces, we assume that all compositions of linear maps between the

spaces give the same result; that is, the diagram is commutative. We can therefore identify each space

Vi1,i2,...,in with its image in V0,0,...,0, and so all of the spaces Vi1,i2,...,in can be identified with subspaces

of V0,0,...,0.

We define n vector spaces U1, . . . ,Un by starting at the vertex (0, . . . , 0) of the n-dimensional

cube and following the n edges to the vertices

Ui = V0,...,1,...,0 (1 ≤ i ≤ n),

in which the subscripts on the right are 0 except for 1 in position i. Given any r-element subset

{i1, . . . , ir} ⊆ {1, . . . , n}, we write χ(i1, . . . , ir) for the element of {0, 1}n which has 1 in positions

i1, . . . , ir and 0 elsewhere. Our assumptions allow us to make the following identifications:

Ui1 ∩ · · · ∩ Uir = Vχ(i1,...,ir).

Lemma 12 then implies that

dim
(
im

(
f
(1)
0,...,0

)+ · · · + im
(
f
(n)
0,...,0

) )
≤

n∑
r=1

(−1)r+1 ∑
1≤i1<···<ir≤n

dim
(
Vχ(i1,...,ir)

)
. (5)

Theorem 13. Every polynomial in the entries xijk of the 2× 2× 2 array X = (xijk) (i, j, k = 0, 1), which

is invariant under changes of basis with determinant 1 along all the three directions, is a polynomial in

Cayley’s hyperdeterminant.

Proof. We consider n = 3 and identify the 8 vertices of the cube with the following weight spaces in

degree d defined in Section 4:

W(d; 0, 0, 0), W(d; 2, 0, 0), W(d; 0, 2, 0), W(d; 0, 0, 2),
W(d; 2, 2, 0), W(d; 2, 0, 2), W(d; 0, 2, 2), W(d; 2, 2, 2).

The representation theory of sl2(C) shows that the action of the basis elements F1, F2, F3 on the

homogeneous polynomials of degree d gives injective linear maps between these weight spaces as

illustrated in Fig. 4. The invariant polynomials are the nonzero elements in the irreducible sum-

mands V(0)⊗ V(0)⊗ V(0), and the number of these summands equals the codimension, in the zero

weight spaceW(d; 0, 0, 0), of the sum of the images of theweight spacesW(d; 2, 0, 0),W(d; 0, 2, 0),
W(d; 0, 0, 2) under the actions of F1, F2, F3 respectively. That is,

• We start with the entire zero weight zero space W(d; 0, 0, 0).
• We factor out the images of vectors of weight (2,0,0) or (0,2,0) or (0,0,2) by the action of F1 or F2 or

F3.• The vectors that come from weight (2,2,0) or (2,0,2) or (0,2,2) by the action of F1, F2 or F1, F3 or

F2, F3 have then been factored out twice, so we must add those dimensions back in.
• But then the vectors that come from weight (2,2,2) by the action of F1, F2, F3 must be factored out

again.
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Fig. 4. Linear maps among weight spaces in degree d.

The dimension formulas from Section 4 with Eq. (5) give

dimW(d; 0, 0, 0)− dimW(d; 2, 0, 0)− dimW(d; 0, 2, 0)− dimW(d; 0, 0, 2)
+ dimW(d; 2, 2, 0)+ dimW(d; 2, 0, 2)+ dimW(d; 0, 2, 2)− dimW(d; 2, 2, 2)
=

{
1 if n ≡ 0 (mod 4)

0 otherwise.

Combining this with Lemma 12, this gives another proof of Corollary 8: the dimension of the space of

invariants is at least 1 in degrees d ≡ 0 (mod 4).

It remains to use the representation theory of Lie algebras to show that inequality (5) becomes in

fact an equality in the present situation. We know that the space Pd of homogeneous polynomials of

degree d is completely reducible as a representation of the semisimple Lie algebra sl2,2,2(C), and that

the irreducible summands are tensor products V(a)⊗ V(b)⊗ V(c) of irreducible representations of

sl2(C). Since the weight spaces in the tensor factors have dimension 1 as representations of sl2(C), it
follows that theweight spaces in the tensor product have dimension 1 as representations of sl2,2,2(C).
Inequality (5) is obviously an equality when all the dimensions are 1, and this completes the proof. �

6. General multidimensional arrays

We consider a k-dimensional array of size n1 × n2 × · · · × nk:

X = (xi1i2···ik) (1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, . . . , 1 ≤ ik ≤ nk).

(The smallest index is now 1, not 0.) We consider an extension of determinants to these arrays, using

a combinatorial approach based on the representation theory of the special linear Lie algebra sln(C).
As usual we write Cn1 , Cn2 , . . . , Cnk for the complex vector spaces with dimensions n1, n2, . . . , nk
and standard bases

e
(1)
i1

(i1 = 1, . . . , n1), e
(2)
i2

(i2 = 1, . . . , n2), . . . , e
(k)
ik

(ik = 1, . . . , nk).

A tensor of order k is an element of the tensor product

Cn1,n2,...,nk = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnk .

Lemma 14. Every element of Cn1,n2,...,nk is a finite sum of elements of the form

v1 ⊗ v2 ⊗ · · · ⊗ vk (v1 ∈ Cn1 , v2 ∈ Cn2 , . . . , vk ∈ Cnk).
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A basis for Cn1,n2,...,nk over C consists of the n1n2 · · · nk simple tensors

ei1,i2,...,ik = e
(1)
i1
⊗ e

(2)
i2
⊗ · · · ⊗ e

(k)
ik

.

Every tensor of order k can be expressed uniquely in the form

n1∑
i1=1

n2∑
i2=1
· · ·

nk∑
ik=1

xi1,i2,...,ik ei1,i2,...,ik (xi1,i2,...,ik ∈ C).

A k-dimensional array consists of the coefficients of a tensor of order k with respect to the basis of

simple tensors:

X = (xi1,i2,...,ik) (i1 = 1, . . . , n1; i2 = 1, . . . , n2; . . . ; ik = 1, . . . , nk).

IfM1,M2, . . . ,Mk are linear operators onCn1 , Cn2 , . . . , Cnk then, with respect to the standard bases,

we identify M� with an n� × n� matrix for � = 1, 2, . . . , k:

M� = (
m

(�)
ij

) (
m

(�)
ij ∈ C; i, j = 1, . . . , n�

)
.

The action of a k-tuple of operatorsM = (M1,M2, . . . ,Mk) on a simple tensor in Cn1,n2,...,nk is given

by the equation

(M1,M2, . . . ,Mk) · (v1 ⊗ v2 ⊗ · · · ⊗ vk) = M1v1 ⊗M2v2 ⊗ · · · ⊗Mkvk. (6)

We introduce n1n2 · · · nk indeterminates corresponding to the entries of X:

xi1,i2,...,ik (i1 = 1, . . . , n1; i2 = 1, . . . , n2; . . . ; ik = 1, . . . , nk).

We consider the polynomial algebra in these indeterminates over C:

C[ xi1,i2,...,ik | i1 = 1, . . . , n1; i2 = 1, . . . , n2; . . . ; ik = 1, . . . , nk ].
For � = 1, 2, . . . , k the action of M� on an indeterminate corresponds to its action on the standard

basis vectors in Cn� :

M� e
(�)
j =

n�∑
i=1

m
(�)
ij e

(�)
i �⇒ M� · xj1,...,j�,...,jk =

n�∑
i=1

m
(�)
ij�

xi1,...,i,...,ik . (7)

From this we obtain the action of M = (M1,M2, . . . ,Mk) on an indeterminate:

(M1,M2, . . . ,Mk) · xj1,j2,...,jk =
n1∑

i1=1

n2∑
i2=1
· · ·

nk∑
ik=1

m
(1)
i1j1

m
(2)
i2j2
· · ·m(k)

ikjk
xi1,i2,...,ik .

This action of M = (M1,M2, . . . ,Mk) extends to an action on polynomials:

M · f (x11...1, . . . , xj1j2...jk , . . . , xn1n2...nk ) = f
(
M · x11...1, . . . ,M · xj1j2...jk , . . . ,M · xn1n2...nk

)
.

Definition 15. The polynomial f ∈ C[ xi1,i2,...,ik ] is invariant if
det(M�) = 1 (� = 1, . . . , k) �⇒ M · f = f , M = (M1,M2, . . . ,Mk).

The n × n complex matrices of determinant 1, with the usual operation of matrix multiplication,

form the special linear group SLn(C). Finite-dimensional representations of SLn(C) can be studied in
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terms of the Lie algebra sln(C), which consists of all n × n complex matrices of trace 0; the bilinear

product is the Lie bracket [A, B] = AB− BA. The standard basis of sln(C) consists of

• the matrix units Ui,j for i �= j with (i, j) entry 1 and other entries 0,
• the diagonal matrices Hi = Ui,i − Ui+1,i+1 for i = 1, 2, . . . , n−1.
The simple root vectors are the matrix units Ei = Ui,i+1 for i = 1, 2, . . . , n−1. The natural represen-

tation of sln(C) is its action on Cn by matrix–vector multiplication.

Lemma 16. In the natural representation of sln(C) we have

Hi · ej =
⎧⎪⎨⎪⎩
ej if j = i

−ej if j = i+1
0 otherwise,

Ei · ej =
{
ej−1 if j = i+1
0 otherwise.

We consider the action of the semisimple Lie algebra

k⊕
�=1

sln�
(C) = sln1(C)⊕ sln2(C)⊕ · · · ⊕ slnk(C), (8)

on its irreducible representation Cn1,n2,...,nk , the tensor product of the natural representations of its

simple summands. For� = 1, 2, . . . , kwewriteH
(�)
i , E

(�)
i for the elementsHi, Ei ∈ sln�

(C). Combining

Eqs. (6) and (7) with Lemma 16 we obtain the action of H
(�)
i and E

(�)
i on the indeterminates xj1j2...jk .

Lemma 17. For � = 1, 2, . . . , k and i = 1, 2, . . . , n�−1 we have

H
(�)
i · xj1,j2,...,jk =

⎧⎪⎨⎪⎩
xj1,j2,...,jk if j� = i

−xj1,j2,...jk if j� = i+1
0 otherwise,

E
(�)
i · xj1,j2,...,jk =

{
xj1,j2,...,j�−1,...,jk if j� = i+1
0 otherwise.

The action of a Lie algebra L on a tensor product V⊗W of representations is given by the derivation

rule:

x · (v⊗ w) = (x · v)⊗ w + v⊗ (x · w) (x ∈ L, v ∈ V, w ∈ W).

We identify the dth symmetric power SdV of the representation V with the space of homogeneous

polynomials of degree d on a basis of V . It follows by induction on d that the action of L on SdV is given

by the following equation:

x · (ve11 v
e2
2 · · · vepp ) =

p∑
i=1

v
e1
1 · · · (x · veii ) · · · vepp

=
p∑

i=1
v
e1
1 · · ·

(
eiv

ei−1
i (x · vi)) · · · vepp = p∑

i=1
ei v

e1
1 · · · vei−1i · · · vepp (x · vi).

We apply this to

L =
k⊕

�=1
sln�

(C), V =
n1⊕

j1=1

n2⊕
j2=1
· · ·

nk⊕
jk=1

Cxj1j2...jk .
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Some equations will be clearer if we write a monomial as follows:

n1∏
j1

n2∏
j2

· · ·
nk∏
jk

x
ej1 j2 ...jk
j1j2...jk

= x
e1...1
1...1 · · · xej1 ...jk

j1...jk
· · · xen1 ...nk

n1...nk

Lemma 18. For � = 1, 2, . . . , k and i = 1, 2, . . . , n�−1 we have

H
(�)
i ·

(
x
e1...1
1...1 · · · xej1 ...jk

j1...jk
· · · xen1 ...nk

n1...nk

)
=

n1∑
j1=1
· · ·

nk∑
jk=1

(
δj�,i − δj�,i+1

)
ej1...j�...jk x

e1...1
1...1 · · · x

ej1 ...j�...jk
j1...j�...jk

· · · xen1 ...nk
n1...nk ,

E
(�)
i ·

(
x
e1...1
1...1 · · · xej1 ...jk

j1...jk
· · · xen1 ...nk

n1...nk

)
=

n1∑
j1=1
· · ·

nk∑
jk=1

δj�,i+1 ej1...j�...jk x
e1...1
1...1 · · · x

ej1 ...j�−1...jk+1
j1...j�−1...jk · · · x

ej1 ...j�...jk
−1

j1...j�...jk
· · · xen1 ...nk

n1...nk ,

where δij is the Kronecker delta (δii = 1, δij = 0 for i �= j).

Lemma 19. For every � = 1, 2, . . . , k and i = 1, 2, . . . , n�−1, the monomial

x
e1...1
1...1 · · · xen1 ...nk

n1...nk ,

is an eigenvector for H
(�)
i with eigenvalue

n1∑
j1=1
· · ·∑̂

j�

· · ·
nk∑

jk=1
ej1...i...jk −

n1∑
j1=1
· · ·∑̂

j�

· · ·
nk∑

jk=1
ej1...i+1...jk ,

where the hat denotes omission.

The space of homogeneous polynomials of degree d has the basis

x
e1...1
1...1 · · · xen1 ...nk

n1...nk ,

n1∑
j1=1
· · ·

nk∑
jk=1

ej1...jk = d.

Definition 20. Amonomial x
e1...1
1...1 · · · xen1 ...nk

n1...nk hasweight zero if it has eigenvalue 0 for every H
(�)
i with

� = 1, 2, . . . , k and i = 1, 2, . . . , n�−1; that is,
n1∑

j1=1
· · ·∑̂

j�

· · ·
nk∑

jk=1
ej1...i...jk =

n1∑
j1=1
· · ·∑̂

j�

· · ·
nk∑

jk=1
ej1...i+1...jk .

The zero weight space of degree d consists of the monomials of weight zero.

Definition21. LetE = (ei1i2...ik)beanarrayof sizen1×n2×· · ·×nk withnon-negative integer entries.

A sliceofE is a (k−1)-dimensional subarrayobtainedbyfixingone subscript; for every� = 1, 2, . . . , k
we can set i� = 1, 2, . . . , n� and obtain n� slices of size n1×· · · n̂� · · ·×nk .We call E an equal parallel

slice (EPS) array if for every � = 1, 2, . . . , k the n� slices in direction � have the same entry sum. That

is, for each � the following sum does not depend on j:

n1∑
i1=1
· · ·∑̂

i�

· · ·
nk∑

ik=1
ei1...j...ik .
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Lemma 22. A basis for the zero weight space in degree d consists of the monomials whose arrays of

exponents are EPS arrays.

We write W(d; a1, . . . , an−1) for the vector space with basis consisting of the monomials with

degree d and eigenvalues (a1, . . . , an−1) for H1, . . . ,Hn−1 as in Lemma 19. In sln(C) the brackets of

Hi and Ej are given by the formulas

[Hi, Ej] =
⎧⎪⎨⎪⎩
2Ej if i = j

−Ej if j = i− 1 or j = i+ 1

0 otherwise.

It follows that the actions of E1, . . . , En−1 induce the following linear maps:

E1 : W(d; 0, . . . , 0) −→ W(d; 2,−1, 0, . . . , 0, 0),
E2 : W(d; 0, . . . , 0) −→ W(d;−1, 2,−1, . . . , 0, 0),
E3 : W(d; 0, . . . , 0) −→ W(d; 0,−1, 2, . . . , 0, 0),

...

En−1 : W(d; 0, . . . , 0) −→ W(d; 0, 0, 0, . . . ,−1, 2).
The weights appearing on the right are the rows of the Killing–Cartan matrix,

K(n−1) = (κij), κij =
⎧⎪⎨⎪⎩
2 if i = j

−1 if j = i− 1 or j = i+ 1

0 otherwise.

We write w
(n−1)
1 , . . . ,w

(n−1)
n−1 for the rows of K(n−1) and form the linear map

E = (E1, . . . , En−1) : W(d; 0, . . . , 0) −→
n−1⊕
i=1

W(d;w(n−1)
i ).

We apply this to the semisimple Lie algebra (8). We first combine the spacesW(d; 0, . . . , 0) for each
summand into the zero weight space of Definition 20:

Z = W(d;
n1−1︷ ︸︸ ︷

0, . . . , 0) ∩ · · · ∩ W(d;
nk−1︷ ︸︸ ︷

0, . . . , 0).

We then combine the linear maps E for each summand into the single linear map

E = (
E(n1), . . . , E(nk)

) : Z −→ k⊕
�=1

n�−1⊕
i=1

W
(
d;w(n�−1)

i

)
. (9)

Theorem 23. The invariant polynomials in degree d for the n1 × · · · × nk array X = (xi1···ik) are the

(nonzero) elements of the kernel of the linear map (9).

In degree d there are no monomials of weight zero unless d is a multiple of N = LCM(n1, . . . , nk);
hence invariants can only exist in degrees d ≡ 0 (modN). Since we have n1 · · · nk exponents, with one

constraint on the degree and (n1−1)+ · · · + (nk−1) constraints on the parallel slices, we make the

following conjecture.

Conjecture 24. Let k and n1, n2, . . . , nk be positive integers. The dimension of the zero weight space in

degree d is given by a family of polynomials of degree
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k∏
�=1

n� −
k∑

�=1
n� + k− 1.

For the application of these methods to arrays of size 2× 2× 3, see Bremner [4].

7. Conclusion

Modern interest in Cayley’s hyperdeterminant and its generalizations was revived by the famous

paper of Gelfand et al. [11]; see especially Proposition 1.9 on page 234. The same authors developed

this subject in great depth, using the techniques of algebraic geometry, in their monograph [12].

A closely related topic, of great importance in applied numerical linear algebra, is the problem of

computing the rank of a k-dimensional array. When k = 2, this problem has an efficient solution

using Gaussian elimination, but for k ≥ 3 it has been shown by Hastad [13] to be NP-complete. A

comprehensive survey on tensor rank and algorithms for tensor decompositionhas beengiven recently

by Kolda and Bader [17]. Cayley’s hyperdeterminantwas rediscovered in the 1970’s by Kruskal [18], and

is sometimes called Kruskal’s polynomial by applied mathematicians; see ten Berge [27] and Martin

[21] for an explanation of how it can be used to compute the rank of a 2 × 2 × 2 array. Two recent

related papers are de Silva and Lim [7] and Stegeman and Comon [24].

Invariant polynomials on arrays of size 2× 2× · · ·× 2 (k factors) have been studied by theoretical

physicists working on quantum computing; see Luque and Thibon [19,20], Djokovic and Osterloh [9].

For the combinatorial-geometric aspects of this problem, see Huggins et al. [14]. These invariants can

be regarded as noncommutative analogues of classical invariant theory (for a survey see Dixmier [8]):

the 19th century invariant theorists studied the irreducible representations V(k) ∼= SkV(1) of sl2(C),
and replacing the symmetric power by the full tensor power gives the vector space of arrays of size

2k . It is an open problem to extend the methods of the present paper to these arrays. It would be

very useful to have a complete description of the structure of the space of homogeneous polynomials

as a sum of irreducible representations of the semisimple Lie algebra; one possible approach to this

problem has been developed by Adsul and Subrahmanyam [1].

The objects that we call equal parallel slice (EPS) arrays are examples of contingency tables, which

are important in combinatorics and statistics. For asymptotic formulas for the enumeration of these

objects, see Barvinok [3]. The recent preprint by Sturmfels and Zwiernik [26] usesmethods of algebraic

statistics to obtain a more compact expression for Cayley’s hyperdeterminant in terms of cumulants.

In closing, we mention the intriguing applications of Gröbner bases and hyperdeterminants to math-

ematical genetics; see Allman and Rhodes [2], especially page 146.
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