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Microbending experiments of pure aluminum show that the springback angles increase with the decrease
of foil thickness, which indicates obvious size effects and attributes to plastic strain gradient hardening.
Then a constitutive model, taking into accounts both plastic strain and plastic strain gradient hardening,
is proposed to analyze the microbending process of thin foil. The model is based on the relationship
between shear yield stress and dislocation density, in which the material intrinsic length is related to
material properties and average grain numbers along the characteristic scale direction of part. It is
adopted in analytical model to calculate the non-dimensional bending moment and predict the spring-
back angle after microbending. It is confirmed that the predictions by the proposed hardening model
agree well with the experimental data, while those predicted by the classical plasticity model cannot cap-
ture such size effects. The contribution of plastic strain gradient increases with the decrease of foil thick-
ness and is independent on the bending angle.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of products toward miniaturization, the
demands for metal micro parts are rapidly increasing in micro
medical devices, electronics and telecommunication devices, micro
system technology (MST) and micro electro-mechanical systems
(MEMS), etc. (Geiger et al., 2001; Lee et al., 2008). In comparison
with the micro machining and other micro technologies, the micro
plastic forming is the most suitable and economic manufacturing
process for mass production of micro metal components.

Recently, more and more experimental and theoretical re-
searches on microbending of metal foils are implemented and
obvious size effects are observed. Stölken and Evans have indicated
that the non-dimensional bending moment increases when the foil
thickness decreases from 50 lm to 12.5 lm in microbending tests
of high purity nickel (Stölken and Evans, 1998). Suzuki has also ob-
served the similar tendency in his microbending experiments of
pure aluminum foils with thickness of 51 lm, 35 lm and 24 lm
(Suzuki et al., 2009). In brass sheet bending process, Gau has found
that springback angle is affected by the ratio of sheet thickness to
mean grain size for thinner sheet, unlike the behavior of much
ll rights reserved.
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thicker ones (Gau et al., 2007). Parasiz has investigated the effects
of grain size and specimen size on the deformation distribution
through the sheet thickness in microbending of CuZn30, and indi-
cated that the plastic deformation will penetrate to the inner re-
gions of sheet for the coarse grained structures when the
specimen size is miniaturized (Parasiz et al., 2010). These experi-
ments show that obvious size effects are observed and the spring-
back angle is related to the mean grain size, but quantitative
relations between them have not been established.

Although metal forming technology in macro scale is well
established, it cannot be applied directly to metal microforming
through scale down specimen and tooling size (Geiger et al.,
2001). Therefore, it is necessary to develop a new plastic theory
to explain the size effects in metal microforming. Fleck and Hutch-
inson have developed a phenomenological theory in micro scale, in
which the hardening effects due to the strain gradient are consid-
ered (Fleck and Hutchinson, 2001). Based on this theory, Zhu has
deduced a relationship between the non-dimensional bending cur-
vature and the non-dimensional bending moment for metallic
plates with a thickness from a few mm down to about 10 nm. At
the micron scale, the strain gradient has a more dominant effect
on the effective bending strength with thickness decreasing (Zhu
and Karihaloo, 2008). Wang has analyzed the microbending behav-
ior of metal foils, in which the strain gradient effects are significant
on the bending stiffness when the beam thickness becomes com-
parable to the material intrinsic length (Wang et al., 2003). The size
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effects in microbending are discussed from dislocation dynamics
and strain gradient plasticity by Zbib and Aifantis in Ref. (Zbib
and Aifantis, 2003). In previous researches, the size effects on
non-dimensional bending moment caused dominantly by plastic
strain gradient have been analyzed in pure microbending process,
however, the size effects on springback angles have not been inves-
tigated with detail.

Another hardening law are developed based on the Taylor’s
relation, in which the plastic work hardening is attributed to both
statistically stored dislocations and geometrically necessary dislo-
cations, and the latter is directly related to the plastic strain gradi-
ent (Gao et al., 1999; Huang et al., 2000; Nix and Gao, 1998). In the
aforementioned gradient plasticity theories, the higher-order
stress tensor work-conjugated to strain gradient is introduced in
constitutive relations, and the additional unconventional boundary
conditions related to the higher-order stresses are required, which
leads to complexity in mathematical representations. This com-
plexity can be avoided by using the gradient of the conventional
effective plastic strain, instead of strain gradient tensor (Abu Al-
Rub and Voyiadjis, 2005). This method is also adopted in present
paper to deal with plastic strain gradient hardening. The prediction
of non-dimensional bending moment and springback angle reveals
the size effects in microbending process and agrees well with the
experimental data.

The material intrinsic length is one of the important factors in
plastic strain gradient theory and originally proposed for dimen-
sional consistency, which is provided with various values by dif-
ferent investigators. Begley and Hutchinson (1998) have
summarized the material length scale between 0.25 lm and
2 lm, and the fitting value of length scale is about 1.6 lm for
an annealed metal (soft aluminum, copper and iron) and range
from 0.5 lm to 1 lm for work hardened metal (hardened alumi-
num, copper and iron). It is showed that the harder the material
is (work hardened or smaller grain size), the smaller the length
scale is. This length is related to the free slip distance of disloca-
tions, which decreases with hardness increasing or grain size
decreasing. Nix and Gao (1998) have given the length scale
12 lm for annealed copper (single crystal) and 5.84 lm for cold
worked copper (polycrystalline) based on the indentation experi-
mental data (McElhaney et al., 1998). Nevertheless, Yuan and
Chen (2001) have determined alternative value 20 lm and 6 lm
respectively for the same experimental data. The intrinsic length
is not consistent but it is obvious that the value of length scale for
polycrystalline copper is only half of length for single crystal cop-
per. Furthermore, Fleck et al. (1994) has found that the intrinsic
length is in the range 2.6–5.1 lm and decreases with the wire
diameter increasing and when the wire diameter increases up
to 30 lm, it becomes larger again in microtorsion experiments
with copper wires. Stölken and Evans (1998) have estimated
the material length parameter as 5 lm based on their microbend-
ing tests of thin nickel foils. Haque and Saif (2003) has put for-
ward a hypothesis that the intrinsic length is not a fixed
parameter but depends on the grain sizes of material based on
their nano-scale bending tests of aluminum. Voyiadjis and Abu
Al-Rub (2005) have argued that the intrinsic length of materials
is different due to the different value of macro-characteristic
length and grain size of the specimen. If varied values of intrinsic
length are taken in strain gradient hardening for microbending
and microtorsion analyses, the predicted values can agree better
with the experimental data. As mentioned above, all the research-
ers determine the intrinsic length by fitting the experimental data
of microindentation, microbending or microtorsion tests, but no
expression of intrinsic length scale is commonly accepted, and
different authors estimate at different value even based on the
same experimental data. Previous researches reveal that the
material intrinsic length depends on many factors, including
materials (e.g. copper, nickel, iron, and aluminum), material prop-
erties (e.g. shear modulus, initial yield strength, and hardness),
material microstructure (e.g. Burger’s vector, and grain size),
and macro geometrical characteristic scale of specimens (e.g. foil
thickness, wire diameter, or indentation depth).

In present paper, the springback behaviors after microbending
of pure aluminum foils with five different thicknesses (0.5 mm,
0.2 mm,0.1 mm,0.05 mm,0.025 mm) and same width (w =
10 mm) are investigated. In order to analyze the size effects pre-
sented in the experiments, a simplified constitutive model is pro-
posed, which takes into account plastic strain gradient but does
not introduce higher-order stress tensor. A semi-empirical expres-
sion is also proposed to determine the material intrinsic length,
which is a function of shear modulus, initial yield strength, length
of Burger’s vector, grain size, and macro geometrical characteristic
scale of the specimen. The constitutive model is adopted in analyt-
ical expressions to predict the non-dimensional bending moment
and the springback angle after microbending. It is confirmed that
the prediction results are in good agreement with the experimental
data, while those obtained by using classical plasticity model can-
not catch the size effects.
2. Microbending experiments

2.1. Material preparation

Pure aluminum (99.5%) is used in the microbending experi-
ments. The Young’s modulus is E = 69 GPa, the Poisson’s ratio
m = 0.33, the shear modulus G = 26.3 GPa, and the length of Burger’s
vector b = 2.86 � 10�7 mm. In order to eliminate the effects of roll-
ing texture, the aluminum foils are annealed at 550 �C for 1.5 h.
There is many grains across the thickness for thicker foils, but there
is only one or two grains for 0.025 mm thick foil, as shown in Fig. 1.
ASTM E112-Heyn Lineal Intercept Procedure is used to determine
the grain size of the specimens by analyzing the metallograph.
The measure approach is to count on five or more blindly drawn
lines along the longitudinal direction on the thickness section, then
to calculate the average grain size. For all the cases, the number of
grains intercepted by one or more straight lines sufficiently long to
yield at least 50 intercepts. Hence, for the thinner foils, there exits a
case that the average grain size is lager than the foil thickness, see
Fig. 1a. Average grain size d and mean grain number nG across
thickness are given in Table 1.

Uniaxial tensile tests are performed, and the true stress-true
strain curves are obtained, as shown in Fig. 2. At least five samples
are repeated for each thickness, and the true stress–strain curve of
each case is obtained by averaging the experimental data of these
samples. The curves show a general trend that the yield strength
decreases with the foil thickness decreasing, as the initial yield
strengthen r s0 shown in Table 1. The reason is that the share of
surface grains on the overall volume is increasing with the foil
thickness scaling down. These grains exhibit lower yield strength
due to fewer constraints in contrast to grains positioned within
the metal foil, leading to a decreasing material strength. However,
the strength of the 0.5 mm thick foil is lower due to considerably
lager grain size (see Table 1.) according to the Hall–Petch relation.

The following Swift’s hardening model is used to fit the uniaxial
tensile curves,

r ¼ Kðe0 þ eÞn ð1Þ

where, r is the flow stress and e is the plastic tensile strain, respec-
tively; rs0 ¼ Ken

0 is the initial yield strength of material (e = 0); The
parameters K, e0, n are obtained by curve fitting method, and given
in Table 1.



Fig. 1. Metallograph of aluminum foil with thickness (a) 0.025 mm and (b) 0.1 mm.

Table 1
Material and experimental set-up parameters.

h (mm) k d (mm) nG rs0 (MPa) K (MPa) e0 (%) n l (mm) ln (mm) Rd = Rp (mm) C (mm) v (mm/min)

0.025 0.05 0.036 0.8 43.8 125.7 1.02 0.23 0.061 0.061 0.0625 0.03 0.5
0.05 0.1 0.036 1.6 44.6 172.1 0.95 0.29 0.060 0.038 0.125 0.06 1
0.1 0.2 0.052 2.0 47.0 154.2 1.23 0.27 0.053 0.027 0.25 0.12 2
0.2 0.4 0.038 5.4 48.1 152.7 0.66 0.23 0.051 0.09 0.5 0.24 4
0.5 1 0.075 6.5 34.4 100.8 0.35 0.19 0.098 0.012 1.25 0.6 10

l – the value of intrinsic length calculated by Eq. (9) without the mean grain numbers across thickness; ln – the value of intrinsic length calculated by Eq. (10) with the mean
grain numbers nG across thickness.

Fig. 2. Tensile true stress -true strain curves of pure aluminum foils.
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2.2. Experimental procedure

In order to study on the size effects occurring in microbending
processes, the springback behaviors of pure aluminum with differ-
ent thicknesses are investigated. For this purpose, a scaled experi-
ment set-up is established in LFT (illustrated in Fig. 3) (Diehl et al.,
Fig. 3. Three-dimensional geometric model and sc
2008). In Fig. 3, C = 1.2 h denotes the clearance between die and
punch, which is slightly larger than the sheet thickness h in order
to prevent the sheet being squeezed.

In the experiments, all parameters, such as foil thickness h, die
radius Rd, punch radius Rp, bending clearance C and punch velocity
v, are changed proportionally according to the scaling factor k
(k = h/hmax, here hmax = 0.5 mm). The values of the parameters are
also given in Table 1.

A CCD camera is placed in front of the bending set-up to record
the microbending process. As shown in Fig. 4, the bended angles,
before and after bending springback, are measured from the re-
corded pictures by an edge detection algorithm, then the spring-
back angle can be calculated. The bending angle hb = 30�, 45�, 65�
is controlled by the punch stroke. Each experiment case is repeated
five times and the springback angle is their average value. Error
lines in Fig. 5 indicate the variation span of the experiment data
of springback angle. In the experiments, the springback angle in-
creases with foil thickness decreasing, which indicates obvious size
effects, as shown in Fig. 5. It is the main purpose of this paper to
develop a model to analyze this size effects.
3. Microbending theoretic analysis

According to classical bending theory, the main factors, which
affect springback angle after bending, are the material properties
hematic set-up of the free microbending tool.



Fig. 4. CCD pictures to measure the angle of bended foil with regression fit line.

Fig. 5. Experimental data curve of springback angle versus foil thickness for Al.
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(such as Young’s modulus E and flow stress), the ratio of bending
neutral radius (Rn) (see Fig. 3) to foil thickness Rn/h and bending
clearance C etc. In the experiments, for all the foils, E, Rn/h and C
are identical, hence the difference of springback angle can be
attributed to flow stress. Since the hardening curves are no dis-
tinctly different in uniaxial tensile tests for all the foils (see
Fig. 2), the hardening behavior related with plastic strain gradient
should be the main factor affecting flow stress and leading to the
size effects in microbending process. Therefore, a constitutive rela-
tion is proposed, in which the plastic strain gradient hardening is
taken into account, and then it is applied to an analytical model
of bending process to analyze the size effects of springback angle.

3.1. Constitutive relation

Illuminated by the relation between yield shear stress and
dislocation density (Taylor, 1938), a hardening model has proposed
in Refs. (Gao et al., 1999; Huang et al., 2000; Nix and Gao, 1998).
Taylor’s relation can be written as:

s ¼ aGb
ffiffiffiffiffiffi
qT
p ¼ aGb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qS þ qG

p
r ¼ Ms

ð2Þ

where, a is an empirical material constant ranging between 0.1 and
0.5; qT, qS and qG are, respectively, the total dislocation density, the
statistically stored dislocation density and the geometrically neces-
sary dislocation density; M is Taylor coefficient, which reflects the
ratio of tensile yield strength r to shear yield strength s. In classical
plasticity, only plastic strain, related with the statistically stored
dislocation density qS, is considered, however the geometrically
necessary dislocation density qG may become important in some
microforming processes.

A relation between the plastic strain gradient and the geomet-
rically necessary dislocation density is assumed as,

re ¼ qGb ð3Þ

where re denotes strain gradient.
For bending deformation, Eq. (3) can be deduced based on a

simplified model as shown in Fig. 6a. If there is a positive edge dis-
location in lattice, the length of top edge will be longer than the
bottom one by a distance b (length of the Burger’s vector), since
an extra half plane of atoms is inserted. In bending process, there
exists the length difference between the top and the bottom edges,
thus, it is necessary that a series of edge dislocations (so-called the
geometrically necessary dislocation) should be piled in the crystal
lattice after plastic bending.

For the plastic bending deformation of single crystal as shown
in Fig. 6a, the difference between the top and the bottom edges
is: (Ri + h)h � Rih = hh, where Ri is the inner radius of the bending
foil and h is the bending angle. Therefore, the number of piled edge
dislocations is hh/b in the whole crystal. The section area of the
bending crystal is Rnhh, so the geometrically necessary dislocation
density is:

qG ¼
hh=b
Rnhh

¼ 1
Rnb

ð4Þ

On the other hand, the gradient (along the thickness direction) of
plastic strain along longitudinal direction of the sheet is:

re ¼
ðRiþhÞh�Rnh

Rnh � Rih�Rnh
Rnh

h
¼ 1

Rn
¼ jn ð5Þ

where, jn is the curvature of the neutral layer and Rn = Ri + h/2 is the
neutral radius.

Eq. (3) can be deduced from Eqs. (4) and (5).
Eqs. (4) and (5) show that if the foil thickness and the tooling

size scale down, the smaller is the neutral radius Rn, the larger is
the geometrically necessary dislocation density qG and the strain
gradient re. Therefore, the flow stress will increase according to
the Eq. (2), and then the springback angle of bending will increase,
too.

The mechanism of plastic strain gradient hardening with poly-
crystal across foil thickness is different from single crystal in bend-
ing process. Simplified bending models are shown in Fig. 6, where
Fig. 6a illustrates the case of a single crystal, and Fig. 6b illustrates



Fig. 6. Geometrically necessary dislocation morphology in plastic bending of metal.
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the case with two layers grains across the foil thickness. It is as-
sumed that in both cases, the bending conditions are identical, so
their average geometrically necessary dislocation densities are
equal, and the mean strain gradient is equal to each other accord-
ing to the Eqs. (4) and (5). However, the distribution and the effects
of geometrically necessary dislocations on material hardening are
different apparently. For the polycrystalline foil, the influence of
stress field of geometrically necessary dislocations in outer layer
grains on the inner layer grains will be reduced because of the
grain boundary. For example, an edge dislocation in outer layer
grains, such as the edge dislocation a in Fig. 6b, will distort the lat-
tice around the dislocation in this grain, but will not, or only
slightly, distort the neighboring grain to inner layer grains. In addi-
tion, the geometrically necessary dislocations may be arranged to
form the grain boundary as b in Fig. 6b, which will hinder the
movement of other dislocations and increase the material strength.
This hardening mechanism is due to the statistically stored disloca-
tions and is explained by the classical plasticity model without
considering the plastic strain gradient. The above-mentioned
mechanisms weaken the hardening effects of the geometrically
necessary dislocations for polycrystal. However, Eq. (5) cannot take
into account such weakening phenomenon when grain numbers
across the characteristic scale of specimens increases. The weaken-
ing effects are grown up for the case of multilayer grain across
thickness, and the more is the grain number across the foil thick-
ness, the weaker is the effect to the material work hardening. Fur-
thermore, based on Taylor relation, for polycrystalline specimens,
because the grain boundary prevents the movement of disloca-
tions, the strain hardening owing to the statistically stored disloca-
tions will be increased. Then if the total dislocation density is
assumed to equal to each other in both Fig. 6a and b, the share
of hardening effects by geometrically necessary dislocations will
decrease in case of multilayer grains compared with the single
crystal. For metal plastic forming, Li and Chou (1970) have ex-
pressed the relation of strain, dislocation density and grain sizes
as follows:

qS ¼
e

kbd
ð6Þ

where, k is a constant parameter, d is the average grain size, b is the
length of the Burger’s vector, and e is the plastic strain. If the foil
thickness and the die radius are constant in microbending, (that
is, the plastic strain e is invariable), the work hardening due to sta-
tistically stored dislocations for fine grain material is more than that
for coarse grain material. The reason is that there are more grain
boundaries to prevent the slip of dislocations for fine grain material
and cause the statistically stored dislocations to pile up. As a result,
the hardening effect by geometrically necessary dislocations is rel-
ative weaker. In other words, if the foil thickness is very thin, at the
same time, the grain size is very small, the strain gradient harden-
ing become weaker and weaker, even neglectable, which is similar
to macro forming that there are many grains across the thickness
and without strain gradient hardening exits.

Therefore, with increasing of the grain numbers across the geo-
metrical characteristic scale direction of the specimen, the strain
hardening due to statistically stored dislocations will increase,
and the strain gradient hardening due to geometrically necessary
dislocations will decrease. For the microbending process, the geo-
metrical characteristic scale of the specimen is foil thickness. In
this paper, the increase of strain hardening with the grain numbers
through the thickness is considered into the uniaxial tensile hard-
ening model. While the decrease of strain gradient hardening
caused by the decrease of lattice distortion extent from the geo-
metrically necessary dislocations due to grain boundary will be
considered into the modified intrinsic length, which is discussed
in details in the following section. The modified intrinsic length
is introduced to calculate the non-dimensional bending moment
and the springback angle in microbending process, and the predic-
tion results fit the experimental data better.

It is assumed that the stress–strain relation is expressed as the
following equation:

r ¼ Kf ðeÞ ð7Þ

For Swift’s hardening model, f(e) = (e0 + e)n, which is a function of
conventional plastic strain. Using similar method as in Refs. (Gao
et al., 1999; Huang et al., 2000; Xue et al., 2002) and taking the plas-
tic strain gradient hardening into account in Eq. (7), a flow stress
model is proposed as:

r ¼ K½f bðeÞ þ ðljrejÞb�
1
b ð8Þ

where, f(e) and ljrej, represents the contribution of the plastic
strain and the plastic strain gradient, that is statistically stored dis-
locations and geometrically necessary dislocations, respectively, to
the flow stress; b is an adjusting parameter; l is the material intrin-
sic length.

Xue has proposed the following equation to calculate the intrin-
sic length (Xue et al., 2002),

l ¼ 18a2 G
rs0

� �2

b ð9Þ

On the other hand, the material intrinsic length is usually deter-
mined by fitting the experimental data of microbending, microtor-
sion or microindentation, in which the plastic strain gradient
hardening appears. The intrinsic lengths of the foils determined
by Eq. (9) are given in Table 1, denoted by l.

Based on the strain gradient theory and the intrinsic length Eq.
(9), Zhu and Karihaloo (2008) and Wang et al. (2003) have investi-
gated the relation of non-dimensional bending curvature and the
non-dimensional bending moment. They have indicated that for
the sheets with the same thickness, the non-dimensional bending



Fig. 7. Coordinate diagram defining the spatial quantities for the pure moment
bending.
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moment increases with increasing non-dimensional bending cur-
vature, i.e. with increasing surface strain and the strain gradient.

Considering the above-mentioned weakening effects of the
boundary between multilayer grains across thickness on the geo-
metrically necessary dislocations, Eq. (9) is adjusted as:

l ¼ 18a2 G
rs0

� �2 b
nG

ð10Þ

where, nG is the numbers of grain layer across the foil thickness,
which are also given in Table 1. In case of single grain layer foils
(nG = 1), Eq. (10) is the same as Eq. (9). When there are multilayer
grains across the foil thickness (nG > 1), the material intrinsic length
l will decrease by 1/nG according to Eq. (10), that is, the relative con-
tribution of strain gradient hardening caused by geometrically nec-
essary dislocations will decrease by 1/nG. It is found that the
predicted non-dimensional bending moment and springback angles
by using Eq. (10) are much closer to the experimental data than
those by using Eq. (9). If the average grain number is less than
1.0, the material intrinsic length is calculated by Eq. (10) setting
nG = 1 because there are no grain boundaries through the thickness.
The material intrinsic lengths of the foils determined by Eq. (10) are
also given in Table 1, denoted by ln and when using Eq. (10), the
minimal nG P 1 is assumed.

Based on Swift’s hardening model (Eq. (1)) and Eq. (8), a modi-
fied hardening law with strain gradient hardening is proposed by
the authors as:

r ¼ K½ðe0 þ �eÞbn þ ðljrejÞb�
1
b ð11Þ

where, �e ¼ ð2=3Þe0ije0ij
h i1=2

is the conventional effective plastic strain.

In this paper, a = 0.18 and b = 1 are determined by fitting experi-
mental results to capture the size effects.

Fleck has proposed a definition of effective plastic strain with
the contribution of strain gradient, �eT , for microbending as (Fleck
and Hutchinson, 1997):

�eT ¼ �el þ l2Sg
0ð1Þ
ijk g0ð1Þijk

h il=2
þ ð2=3Þl2

Rvijvij

h il=2
� �1=l

ð12Þ

where, lS is the internal material length for stretch gradient; lR is
that for rotation gradient; Let gijk denote the second gradient of

displacement ui, i.e. gijk = uk,ij, then g0ð1Þijk ¼ g0Sijk � nijk is the first
deviatoric invariant of the second gradient of displacement, where

g0Sijk ¼ 1
3 g0ijk þ g0jki þ g0kij

� �
; g0ijk ¼ 1

4 ðdikgjpp þ djkgippÞ; nijk ¼ 1
5 dijg0Skppþ
�

djkg0Sipp þ dkig0SjppÞ; vij = �eistejs, t = eits ejs,t is the deformation curvature.
dij is the Kronecker delta and eijk is the permutation tensor. Original
studies of Fleck and Hutchinson and others favor l = 2 primarily on
mathematical grounds (Evans and Hutchinson, 2009), but the non-
dimensional bending moment results for l = 1 give a slightly better
fit to the experimental data (Evans and Hutchinson, 2009; Stölken
and Evans, 1998), and so l = 1 is adopted here.

Let �eG denote the item related with plastic strain gradient in
Eqs. (11) and (12):

�eG ¼ ljrej ¼ l2
Sg
0ð1Þ
ijk g0ð1Þijk

h il
2 þ ð2=3Þl2

Rvijvij

h il
2

� �1
l

ð13Þ

then, the effective strain gradient jrej is:

jrej ¼ lS

l

� �2

g0ð1Þijk g0ð1Þijk

" #l
2

þ 2
3

lR

l

� �2

vijvij

" #l
2

8<
:

9=
;

1
l

ð14Þ

where, l ¼ 2ffiffi
5
p ls þ 1ffiffi

2
p lR

� �
.

It is very complicated to calculate strain gradients jr ej by Eq.
(14), which is required in the calculation of �eG by Eq. (13). Hence,
a simplified method to calculate �eG is adopted as follows, in which
the gradient of conventional effective plastic strain is involved in-
stead of the tensor operation in Eq. (14).

�eG ¼ ljr�ej ð15Þ

where, jr�ej is the effective value, or the modulus, of the gradient of
the conventional effective plastic strain.

Then the constitutive relation is rewritten from Eq. (11) as:

�r ¼ K ðe0 þ �eÞn þ ljr�ej
	 


ð16Þ
3.2. Gradient of effective plastic strain

The local coordinate system is established as shown in Fig. 7, in
which n1, n2, n3 are along the length, thickness and width direc-
tions, respectively. Since the foil width w is much larger than the
thickness h, plane strain is assumed.

The true strain along the longitudinal directions n1 for any layer
n2 is:

e1 ¼ lnð1þ jnn2Þ ð17Þ

The engineering strain is:

e1 ¼ jnn2 ð18Þ

The maximum engineering strain emax, on the foil surface of the
bending deformation area, depends on the foil thickness and the
bending radius of the neutral layer and is defined as:

emax ¼
h=2
Rn

ð19Þ

Because of the smaller bending clearance relative to the foil thick-
ness (C � h = 0.2 h) in bending experiments, the foil inner surface
is assumed to contact with the die and the bending radius is equal
to the die radius. Thus, the bending radius of the neutral layer can
be calculated:

Rn ¼ Rd þ h=2 ð20Þ

Because the strain is relatively small in our bending experiments
(emax = 0.167), for simplicity, it is assumed:

e1 ¼ e1 ¼ jnn2 ð21Þ

The gradient along foil thickness of the strain (along the length
direction) is:
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re ¼ 2emax

h
ð22Þ

From Eqs. (19), (20) and (22), this strain gradient can also be
deduced:

re ¼ 1
Rn
¼ jn ð23Þ

Eq. (23) is the same as Eq. (5), which is derived from the hypothesis
of the geometrically necessary dislocation morphology in plastic
bending region of metal, and therefore the hypothesis is reasonable
for bending.

Since the foil thickness and the die radius are scaled by k, the
foil surface strain remains constant (emax = emax = 0.167) for all
thickness foils in our microbending experiments, but the strain
gradient increases with the foil thickness decreasing. That is to
say, the hardening due to the statistically stored dislocations is
similar for all foil thickness according to the uniaxial tensile tests
and the size effects of springback angle are mainly attributable to
the geometrically necessary dislocations in microbending process.

For plane strain state, e3 = 0, the thickness strain is obtained by
volume constancy condition: e2 = �e1 . The conventional effective
plastic strain is:

�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
e0ije0ij

r
¼ 2ffiffiffi

3
p jnn2 ð24Þ

then, the gradient of effective plastic strain is:

r�e ¼ 0 2ffiffi
3
p jn 0

h i
ð25Þ

jr�ej ¼ 2ffiffiffi
3
p jn ð26Þ

�eG ¼ ljr�ej ¼ 2ffiffiffi
3
p ljn ð27Þ
3.3. Strain gradient and stress based on the displacement assumption

3.3.1. Displacement, strain and strain gradient
Based on the microbending experimental set-up (Shown in

Fig. 3), the detailed geometric model of microbending deformation
is illustrated in Fig. 8.
Fig. 8. Schematic diagram of the microbending.
For the microbending, the displacement field in the local coor-
dinate system (Shown in Fig. 8) is assumed as (Stölken and Evans,
1998):

u1 ¼ jnn1n2; u2 ¼ �jn n2
1 þ n2

2

� �
=2; u3 ¼ 0 ð28Þ

from it, the strain tensor is obtained,

½eij� ¼
jnn2 0 0

0 �jnn2 0
0 0 0

2
64

3
75 ð29Þ

The conventional effective strain is:

�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
e0ije0ij

r
¼ 2ffiffiffi

3
p jnn2 ð30Þ

The stretch strain gradient gijk is:

½gijk� ¼
0 jn 0
�jn 0 0

0 0 0

0
B@

1
CA

jn 0 0
0 �jn 0
0 0 0

0
B@

1
CA

0 0 0
0 0 0
0 0 0

0
B@

1
CA

2
64

3
75 ð31Þ

and the rotational strain gradient is:

½vij� ¼
0 0 jn

0 0 0
0 0 0

2
64

3
75 ð32Þ

The first deviatoric invariant of the strain gradient is:

g0ð1Þijk

h i
¼

0 7
15jn 0

7
15jn 0 0

0 0 0

0
B@

1
CA

7
15jn 0 0

0 � 9
15jn 0

0 0 0

0
B@

1
CA

0 0 0
0 0 2

15jn

0 2
15jn 0

0
B@

1
CA

2
64

3
75

ð33Þ

The effective strain gradient is obtained by Eq. (14) (l = 1):

jrej ¼ lS

l

� �2

g0ð1Þijk g0ð1Þijk

" #1
2

þ 2
3

lR

l

� �2

vijvij

" #1
2

¼ 2ffiffiffi
3
p jn ð34Þ

Then the item related with strain gradient in Eq. (13) is:

�eG ¼ ljrej ¼ 2ffiffiffi
3
p ljn ð35Þ

Eqs. (34) and (35), which is deduced from the assumption of dis-
placement field, is completely consistent with Eqs. (26) and (27)
respectively, which is from the gradient of conventional effective
strain. Therefore, the gradient of conventional effective strain can
be used to analyze the size effects in microbending without tensor
operation.

The total effective strain considering the plastic strain gradient
is calculated by Eq. (12) (l = 1):

�eT ¼ �eþ �eG ¼
2ffiffiffi
3
p ðe1 þ ljnÞ ð36Þ

Eqs. (24) or (30) and (27) or (35) are substituted into Eq. (16) or
(11), and the constitutive relation used in the analytical model is
obtained (b = 1):

�r ¼ K e0 þ
2ffiffiffi
3
p jnn2

� �n

þ 2ffiffiffi
3
p ljn

 �
ð37Þ
3.3.2. Stress
For foil microbending, the radial stress normal to the foil is

assumed to be zero (plane stress state), and only stresses along
the longitudinal and width direction are considered, i.e.
r2 ¼ 0; r3 ¼ 1

2 r1.
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Thus, the effective stress is:

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0ijr0ij

r
¼

ffiffiffi
3
p

2
r1 ð38Þ

In bending deformation, a foil section may be deformed elastically,
or contains the elastic core, as shown in Fig. 9. In such elastically de-
formed region, the stress is:

r1 ¼
E

1� m2 e1 ¼ E0e1 0 6 �eT 6 ee ð39Þ

where ee is the elastic strain limit and E0 ¼ E
1�m2.

In the plastically deformed region, the constitutive equation is
obtained by substituting Eq. (38) into Eq. (37):

r1 ¼
2ffiffiffi
3
p K e0 þ

2ffiffiffi
3
p jnn2

� �n

þ 2ffiffiffi
3
p ljn

 �
�eT P ee ð40Þ
3.4. Bending moment

3.4.1. Elastic bending moment
The bending moment is calculated as:

M ¼
Z h

0
r1n2wdn2 ¼ Me þMp ð41Þ

where, Me is the elastic bending moment caused by the stress with-
in the elastic core and Mp is that within the plastically deformed re-
gion, as shown in Fig. 9.

From Eqs. (41) and (39), the elastic bending moment can be cal-
culated as:

Me ¼
Z n2e

�n2e

r1n2wdn2 ¼
2w
3

E0jnn
3
2e ð42Þ

For pure elastic bending n2e ¼ h
2

� �
, the elastic bending moment is:

ME ¼
w
12

E0jnh3 ð43Þ
3.4.2. Plastic bending moment
The plastic component of bending moment is obtained with

Eqs. (41) and (40):

Mp ¼ 2
Z h=2

n2e

r1n2wdn2 ¼
4Kwffiffiffi

3
p

Z h=2

n2e

e0þ
2ffiffiffi
3
p jnn2

� �n

þ 2ffiffiffi
3
p jnl

 �
n2dn2

¼ 4Kwffiffiffi
3
p ljnffiffiffi

3
p h2

4
� n2

2e

 !
þ 3

4j2
n

1
nþ2

e0þ
hjnffiffiffi

3
p

� �nþ2
 "(

� e0þ
2jnn2effiffiffi

3
p

� �nþ2
!
� e0

nþ1
e0þ

hjnffiffiffi
3
p

� �nþ1

� e0þ
2jnn2effiffiffi

3
p

� �nþ1
 !#)

ð44Þ
Fig. 9. Stress distribution along foil thickness direction.
For fully plastic bending (n2e = 0), the plastic bending moment is gi-
ven by:

MP ¼
Kwffiffiffi

3
p ljnh2ffiffiffi

3
p þ 3

j2
n

1
nþ 2

e0 þ
hjnffiffiffi

3
p

� �nþ2

� ðe0Þnþ2

 !"(

� e0

nþ 1
e0 þ

hjnffiffiffi
3
p

� �nþ1

� ðe0Þnþ1

 !#)
ð45Þ
3.4.3. Bending moment distribution along longitudinal direction
A curvilinear coordinate is defined starting from point b toward

point o, as shown in Fig. 8. After bending, the center line of the foil
is assumed to consist of two segments: one is a straight line from
point b to a, the other is an arc from point a to o, where point a is
the tangential point. For simplicity, an approximated bending mo-
ment distribution is assumed as follows: zone from point b to e
(zone III) is in pure elastic bending; zone from point e to a (zone
II) is in elastic–plastic deformation; and die-sheet contact zone
from point a to o (zone I) is in pure plastic deformation. It is as-
sumed that the bending moment varies linearly from point b to a.

Therefore, the bending moment along longitudinal direction
can be calculated as follows:

MS ¼ MP ; if S P Sa

MS ¼
S
Sa

MP ; if S < Sa

ð46Þ

where, S is the curve length from point b to some point s.
The microbending deformation zone and the bending moment

distribution are illustrated in the Fig. 8.

3.5. Springback angle after bending

After springback, if the neutral radius of the bended foil changes
from Rn to R0n, the curvature change before and after bending
springback is:

Djs ¼
1
Rn
� 1

R0n
¼ MS

E0I
ð47Þ

where, MS is the bending moment at a section of the sheet; I ¼ wh3

12 is
the second moment of area.

The springback angle of an infinitesimal segment of the bended
foil is obtained as:

dhs ¼ DjsdS ¼ MS

E0I
� dS ð48Þ

where, dS is the segment length. The total springback angle of the
bended foil can be calculated by integrating Eq. (48) across the total
bending span:

hs ¼
Z Sa

0

MP

E0I
S
Sa

dSþ
Z So

Sa

MP

E0I
dS ¼ MP

E0I
1
2

Sa þ S
_

oa

� �
ð49Þ

where, S
_

oa is the die-sheet contact arc length.

S
_

oa ¼ Rd þ
h
2

� �
� hd ð50Þ

Reference to the geometric relation in the Fig. 8, the length Sa from
point b to a can be calculated as:

Sa ¼ L� Rd þ
h
2

� �
sin hd � Rp þ

h
2

� �
sin hp

 �
= cos hb ð51Þ

where, hb is the bending angle, which is assumed as the same value
as the die-sheet contact angle hd and the punch-sheet contact angle
hp; L = C + Rd + Rp, see Fig. 8.

Eq. (49) is rewritten to calculate the normalized bending mo-
ment M/wh2 with measured springback angles, hs:
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M

wh2 ¼
E0h
12
� hs

S
_

oa þ 1
2 Sa

ð52Þ

If the bending clearance is equal to the foil thickness (C = h), and the
die-sheet contact angle hd = p/2, by Eq. (51), Sa = 0 is obtained, and
then the normalized bending moment is:

M

wh2 ¼
E0h
12
� hs

S
_

oa

¼ E0h
12

1
Rn
� 1

R0n

� �
ð53Þ

In Ref. (Stölken and Evans, 1998), a expression similar to Eq. (53) is
used to determine the normalized bending moment by measured hs.
Moreover, in order to study on the plasticity size effects more
clearly, it is necessary to remove the effect of initial tensile yield
strength rs0 from the bending moment, and so, the non-dimen-
sional bending moment M

rs0wh2 is used in the following analysis.

4. Results and discussions

4.1. Non-dimensional bending moment prediction and material
intrinsic length

Fig. 10a and b show curves of non-dimensional bending mo-
ment and non-dimensional bending curvature jnh in microbend-
ing process. The hollow dots illustrate the experimental data, in
which each dot from top to down is corresponding to the thickness
from 0.025 mm up to 0.5 mm, respectively. The curves marked l = 0
are corresponding to classical plasticity for different thickness foils,
in which the non-dimensional bending moments are the same and
the curves are superposed one another. Therefore, the classical
plasticity theory cannot express the size effects of hardening in
Fig. 10. The non-dimensional bending moment versus the non-dimensional
curvature for different foil thickness h.
microbending process. In Fig. 10a, the non-dimensional bending
moment is calculated, in which the material intrinsic length by
Eq. (9) is not variable with average grain numbers along the foil
thickness, and in Fig. 10b, in which the material intrinsic length
by Eq. (10) is variable with the average grain numbers along the
foil thickness.

The results in Fig. 10a are similar to those obtained by Wang et
al. (2003), in which the non-dimensional bending moment in-
creases with the non-dimensional bending curvature increasing,
but there is no dropping as those found by Zhu and Karihaloo
(2008). Fig. 10a also shows that the difference of the non-dimen-
sional bending moments between calculated from plastic strain
gradient and material intrinsic length Eq. (9) and calculated from
the classical plasticity, which is the strain gradient hardening ef-
fect, is decreasing with the foil thickness increasing. Nevertheless,
even though the sheet thickness is up to macro scale, e.g. 0.5 mm,
the non-dimensional bending moment is much more than that
from classical plasticity theory. In addition, the prediction of
non-dimensional bending moment based on the strain gradient
and the material intrinsic length Eq. (9) is much larger than the
experimental data except for the case of the thickness 0.025 mm,
but for the thicker foils, 0.2 mm and 0.5 mm, the results based on
classical plasticity theory are approaching to the experimental
data. Fig. 10b based on the material intrinsic length Eq. (10) also
shows that there exist the size effects of strain gradient hardening
for the thinner foils and the prediction results are much closer to
the experimental data than Fig. 10a. For the thicker foil, 0.5 mm,
the prediction of non-dimensional bending moment is approaching
to the classical plasticity results and there are hardly any size ef-
fects of strain gradient hardening. In fact, the strain gradient hard-
ening effects are insignificant for foil thickness larger than 0.2 mm,
which agrees with the experimental data by Gau et al. (2007). In
their experiments, when the sheet thickness is larger than
0.35 mm for brass, the springback angle amount is consistent with
the macro scale sheet in bending process.

Fig. 11a and b show curves of non-dimensional bending mo-
ment versus foil thickness h. The thick continuous curves are plot-
ted from the strain gradient theory, and the thin continuous curves
are plotted from the classical plasticity theory (l = 0). In Fig. 11a,
the material intrinsic length is calculated from Eq. (9), and in
Fig. 11b, it is calculated from Eq. (10). Fig. 11a and b show that
the non-dimensional bending moment based on the classical plas-
ticity theory increases with the foil thickness increasing for the
same die radius bending, and with the die radius decreasing for
the same foil thickness, which is because of the increase of the
maximum strain or the surface strain according to Eq. (19). The
thick continuous curves show that the non-dimensional bending
moment based on the strain gradient theory is larger than the re-
sults based on the classical plasticity theory for the same die ra-
dius. However, the difference between them decreases with the
foil thickness increasing, which is because the strain gradient be-
comes smaller according to Eqs. (20) and (23), on the contrary,
the strain gradient hardening is significant for thinner foils.

Furthermore, Fig. 11a also shows that for the macro scale thick-
ness sheet (e.g. thickness up to 1.0 mm), whether the die radius is
smaller (e.g. Rd = 0.0625 mm) or larger (e.g. Rd = 1.25 mm), the
strain gradient effects are still significant. For the die radius
1.25 mm, its strain gradient is 0.57/mm, which is rather less than
that of the die radius 0.0625 mm (strain gradient 1.78/mm), but
the non-dimensional bending moment from the strain gradient
theory and the material intrinsic length Eq. (9) is larger than that
from classical plasticity theory for 0.06. Moreover, if the sheet
thickness is only 0.1 mm, the non-dimensional bending moment
increases 0.08 than that of classical plasticity theory for same die
radius 1.25 mm. Although the sheet thickness increases almost
10 times (sheet thickness from 0.1 mm up to 1.0 mm), the



Fig. 12. Comparison of the non-dimensional bending moment with the experi-
mental data.

Fig. 11. The non-dimensional bending moment versus the foil thickness.
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non-dimensional bending moment decreases only 25% (from 0.08
down to 0.06). In other words, the strain gradient effects are still
significant for macro scale sheet bending in Fig. 10a. For the other
die radius, the non-dimensional bending moment is still obviously
influenced by the strain gradient for the macro scale thickness
sheet according to the material intrinsic length Eq. (9).

Fig. 11b shows that there is a inflection point, which is because
when the foil thickness is less than the average grain size (i.e. nG

< 1), the material intrinsic length is equal to the value of the case of
single crystal along the foil thickness direction (i.e. nG = 1). For this
case (nG < 1), although the material intrinsic length is constant and
the strain gradient (Eq. (23)) become smaller and smaller with the
foil thickness increasing, the non-dimensional bending moment
will increase because of the surface strain (Eq. (19)) increasing.
When the foil thickness exceeds the average grain size (nG > 1),
the non-dimensional bending moment will decrease quickly due
to the strain gradient effects going down severely together with
the material intrinsic length decreasing (Eq. (10)). But for the case
of the larger die radius (e.g. Rd = 1.25 mm), because of the smaller
surface strain (Eq. (19)), the smaller strain gradient, and the more
grain numbers across the foil thickness, there exits no obvious
inflection point for the non-dimensional bending moment.
Fig. 11b shows that when the foil thicknesses are larger than
0.5 mm, the strain gradient effects to the non-dimensional bending
moment is rather small. It is worth emphasizing that, for different
die radius bending processes, the non-dimensional bending mo-
ment predicted from the present strain gradient model can be
gradually close to the value predicted from classical plasticity with
foil thickness increasing.
Fig. 12 shows the comparison of the non-dimensional bending
moment calculated by different analytical models with the exper-
imental data. The non-dimensional bending moment predicted by
the classical plastic theory (marked ‘‘Classical Plasticity”) hardly
changes with the foil thickness, and the size effects of the non-
dimensional bending moment cannot be predicted at all. The
non-dimensional bending moment predicted by strain gradient
model (marked ‘‘Strain Gradient”), in which the material intrinsic
length Eqs. (9) and (10) are used respectively, can show the size ef-
fects of the non-dimensional bending moment and the trend is
consistent with the experimental data. But the results related with
the material intrinsic length Eq. (9) (marked ‘‘l by Eq. (9)”) are lar-
ger than the experimental data especially for the macro scale foils
(e.g. thickness 0.2 mm and 0.5 mm), and the result for the foil
thickness 0.025 mm is much closer to the experimental data, in
which the material intrinsic length is equal to the value by Eq.
(10). The predictions of non-dimensional bending moment related
with the material intrinsic length Eq. (10) (marked ‘‘l by Eq. (10)”)
agree well with the experimental data. For the foil thickness
0.05 mm and 0.1 mm, the experimental data is underestimated.
However, when the foil thickness exceeds 0.2 mm the predictions
of non-dimensional bending moment from the present strain gra-
dient model are consistent with that from classical plasticity the-
ory, which is credible to analyze the macro forming. The
prediction of non-dimensional bending moment based on the pres-
ent strain gradient model is much better and reasonable than the
results in Ref. (Diehl et al., 2010), in which the experimental data
is seriously underestimated for the foil thickness less than
0.05 mm.

All the above-mentioned results show that the material intrin-
sic length expression Eq. (10) is reasonable for strain gradient
hardening model. It is used to predict the springback angle of pure
aluminum microbending as following and is proved reasonably
too.
4.2. Springback angle prediction

Eqs. (49) and (45) provide the analytical prediction of the
springback angle, from which the main influencing factors can be
identified. These factors include material elastic properties (espe-
cially Young’s modulus E), geometrical parameters of the foils
and the die set-up (such as foil thickness h, die radius Rd, bending
clearance C, etc.), process parameters ( such as bending angle hb),
and the plastic bending moment MP, which in turn depends on
the material intrinsic length l, the parameter K and hardening
exponent n etc. In this case, the elastic properties of the material,
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and the foil thickness, die radius and bending clearance are chan-
ged proportionally, so their influence can be neglected, then MP

is the main factor leading to the change of springback angle. The
springback angles after microbending are calculated with the ana-
lytical model and are compared with the experimental data, as
shown in Figs. 13, 14.

Fig. 13a, b, and c show the curves of the springback angle pre-
dictions and the experimental data versus the foil thickness for
the bending angle 30�, 45�, 65�, respectively. These figures illus-
trate that the springback angle predicted by the analytical equa-
tions based on the classical plasticity theory (marked ‘‘Classical
Plasticity”) are very close to one another. These results hardly
change with the foil thickness, in which the curve fluctuation is
caused by different values of parameters K, e0, n in hardening
Fig. 13. Springback angle of analysis equations and experimental data versus foil
thickness.

Fig. 14. Contribution of the plastic strain gradient to the microbending springback
angle.
model for each foil, and the size effects of springback angle cannot
be predicted. The smaller the foil thickness is, the larger the differ-
ence between the prediction from classical plasticity and the
experimental data is. If the proposed constitutive relations with
plastic strain gradient hardening are adopted in the analytical
model, the results (marked ‘‘Strain Gradient”) do capture the size
effects that the springback angle increases with foil thickness
decreasing. Furthermore, the results are close to the experimental
data especially for thinner foils. As the foil thickness increases,
plastic strain gradient hardening effect gets weaker and weaker,
and for the foils thicker than 0.2 mm, the result do not change
obviously whether the plastic strain gradient hardening is consid-
ered or not.

Fig. 14 shows the relationship between the relative ratio of
springback angle and the foil thickness for bending angle 30�,
45�, 65�, respectively. The vertical axis is the ratio between the
springback angle (hSG) calculated with the proposed constitutive
relation with plastic strain gradient hardening and that (hCP) calcu-
lated with the classical plasticity theory (l = 0, no considering
strain gradient). It shows that the plastic strain gradient hardening
effect increases with the foil thickness decreasing, especially when
the foil thickness is smaller than 0.2 mm. For the 0.025 mm thick-
ness foil, the ratio of analytical results is greater than 2.0, that is to
say, the springback angle is more than doubled because of plastic
strain gradient hardening. However, when the foil thickness in-
creases to the macro scale, e.g. 0.5 mm, since the plastic strain gra-
dient hardening effect becomes much weaker, the ratio is close to
1.0, and the results calculated with the classical plasticity theory
are acceptable. Fig. 14 also shows that the ratio of springback angle
from the strain gradient theory and that from classical plasticity
theory is independent on the bending angle. In summary, the con-
tribution of plastic strain gradient to the springback angle in-
creases with the foil thickness decreasing and is independent on
the bending angle.
5. Conclusions

Using a scaled method that the experimental set-up dimensions
and the foils thickness are changed proportionally, the microbend-
ing experiments are carried out for pure aluminum with different
thickness from 0.025 mm to 0.5 mm, in which the springback an-
gles are measured by an edge detection algorithm. The experimen-
tal data show that the springback angles increase with foil
thickness decreasing, especially for foils thinner than 0.1 mm,
which indicates obvious presence of size effects.

In order to analyze the size effects, a simplified constitutive
model is proposed, which takes into account the plastic strain
gradient hardening, and is applied to predict the non-dimensional
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bending moment and the springback angle after microbending. The
prediction results agree well with experimental data, while those
results predicted by the classical plasticity model cannot capture
such size effects. It is confirmed that the plastic strain gradient
hardening must be taken into account in microbending processes,
and it can be omitted for macrobending processes. In microbend-
ing process analysis of metal foils, the strain gradient can be simply
calculated by the modulus of the gradient of conventional effective
plastic strain instead of strain gradient tensor operating.

According to the proposed interaction model between geomet-
rically necessary dislocations and grain boundary, the authors ar-
gue that the grain boundary can eliminate the affecting range of
geometrically necessary dislocations and reduce the strain gradi-
ent hardening. In order to express this effect, the average grain
numbers across the foil thickness are considered into the modified
material intrinsic length equation. It is more reasonable to predict
the non-dimensional bending moment and the springback angle by
using the modified material intrinsic length equation.
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