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1. Introduction

We study the following fourth-order elliptic equation{
�2u + c�u = λh(x)|u|p−2u + f (x, u), in Ω,

u = �u = 0, on ∂Ω,
(1.1)

where Ω ⊂ R
N is a bounded smooth domain, �2 is the biharmonic operator, c is a constant, 1 < p < 2, λ � 0 is a parameter,

h ∈ L∞(Ω), h(x) � 0, h(x) �≡ 0, and f (x, s) is a continuous function on Ω × R.
The fourth-order problem (1.1) is usually used to describe some phenomena appeared in different physical, engineering

and other sciences. In [1], Lazer and McKenna studied the problem of nonlinear oscillation in a suspension bridge. They
presented a mathematical model for the bridge that takes into account the fact that the coupling provided by the stays
connecting the suspension cable to the deck of the road bed is fundamentally nonlinear (see [1–5]). Also, problem (1.1) has
been pointed out that this kind of problem furnishes a good model to the static deflection of an elastic plate in a fluid
(see [6]). In [7], the authors indicated that problem (1.1) also arises in such as communication satellites, space shuttles, and
space stations, which are equipped with large antennas mounted on long flexible masts (beams). Problem (1.1) has been
studied extensively in recent years, we refer the reader to [2,6,8–12] and the references therein.

There has been a great deal of interest on second-order elliptic problem with combined nonlinearities since the pioneer-
ing work of Ambrosetti, Brezis and Cerami in [13] (see [13–15]). However, to the author’s knowledge, it seems that very
few results are devoted to the case of the fourth-order elliptic problem (1.1). Our purpose here is to introduce some kind of
local analogues to the classical conditions of sublinearity at 0 and of superlinearity at ∞ with respect to u.

The paper is organized as follows. The functional setting and the proof of the (PS) condition are given in Section 2.
Section 3 deals with the case λ = 0. In [6], the authors have obtained at least one nontrivial solution under some strong
assumptions (see Remark 3.1). Under weaker assumptions we obtain the existence of a positive solution and a negative
solution. Then we consider the case λ > 0 in Section 4. For λ > 0 small enough, we give the existence of four solutions.
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A global result of Ambrosetti–Brezis–Cerami type also be considered, which is motivated by the results of second-order
version in [13–15]. Finally, in Section 5, we show that, besides the four solutions given in Theorem 4.1, there exists another
different solution, which can change the sign. Our method to obtain the fifth solution follows the ideas developed in [14]
for Laplacian operator. However, while in [14] the authors assumed that nonlinearity is superlinear at ∞, we discuss here a
local asymptotically linear problem.

2. Preliminary results

Let H = H2(Ω) ∩ H1
0(Ω) be the Hilbert space equipped with the inner product

〈u, v〉H =
∫
Ω

(�u�v + ∇u · ∇v)dx,

and the deduced norm

‖u‖2
H =

∫
Ω

|�u|2 dx +
∫
Ω

|∇u|2 dx.

Denote λk (k ∈ N) the eigenvalues and ϕk (k ∈ N) the corresponding eigenfunctions of the eigenvalue problem{−�u = λu, in Ω,

u = 0, on ∂Ω,
(2.1)

where each eigenvalue λk is repeated as often as the multiplicity. Recall that 0 < λ1 < λ2 � λ3 � · · · � λk → +∞ and ϕ1 > 0
for x ∈ Ω . We can easily see that Λk = λk(λk − c) are eigenvalues of the problem{

�2u + c�u = Λu, in Ω,

u = �u = 0, on ∂Ω,
(2.2)

and the corresponding eigenfunctions are still ϕk .
Assume that c < λ1. Let us define a norm of u ∈ H as follows:

‖u‖2 =
∫
Ω

|�u|2 dx − c

∫
Ω

|∇u|2 dx.

It is easy to show that the norm ‖ · ‖ is an equivalent norm on H , and for all u ∈ H , the following Poincaré inequality holds:

‖u‖2 � Λ1‖u‖2
L2 . (2.3)

We say that u ∈ H is a weak solution to problem (1.1), if u satisfies∫
Ω

(
�u�v − c∇u · ∇v − λh(x)|u|p−2uv − f (x, u)v

)
dx = 0, ∀v ∈ H∗,

where H∗ is the dual space of H .
It is well known that the weak solution of problem (1.1) is equivalent to the critical point of the Euler–Lagrange functional

Iλ(u) = 1

2
‖u‖2 − λ

p

∫
Ω

h(x)|u|p dx −
∫
Ω

F (x, u)dx, u ∈ H .

Obviously Iλ ∈ C1(H,R), and

〈∇ Iλ(u), v
〉 =

∫
Ω

(
�u�v − c∇u · ∇v − λh(x)|u|p−2uv − f (x, u)v

)
dx, ∀ u, v ∈ H .

Let u+ = max{u,0}, u− = min{u,0}.
Consider the following problem{

�2u + c�u = λh(x)
∣∣u+∣∣p−2

u+ + f +(x, u), in Ω,

u = �u = 0, on ∂Ω,
(2.4)

where

f +(x, t) =
{

f (x, t), t � 0,
0, t < 0.
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Define the corresponding functional I+λ : H → R as follows:

I+λ (u) = 1

2
‖u‖2 − λ

p

∫
Ω

h(x)
∣∣u+∣∣p

dx −
∫
Ω

F +(x, u)dx, u ∈ H,

where F +(x, u) = ∫ u
0 f +(x, s)ds. Obviously, I+λ ∈ C1(H,R). Let u be a critical point of I+λ , which implies that u is a weak

solution of (2.4). Furthermore, by the weak maximum principle it follows that u � 0 in Ω . Thus u is also a solution of
problem (1.1) and Iλ(u) = I+λ (u).

Similarly, we can define

f −(x, t) =
{

f (x, t), t � 0,

0, t > 0
(2.5)

and

I−λ (u) = 1

2
‖u‖2 − λ

p

∫
Ω

h(x)
∣∣u−∣∣p

dx −
∫
Ω

F −(x, u)dx, u ∈ H,

where F −(x, u) = ∫ u
0 f −(x, s)ds. It is easily seen that I−λ ∈ C1(H,R) and if v is a critical point of I−λ then it is a solution of

problem (1.1) with Iλ(v) = I−λ (v).
We assume that f (x, s) satisfies the following hypotheses:

(H1) f (x,0) = 0.
(H2) lims→0

f (x,s)
s = μ, lim|s|→+∞ f (x,s)

s = l, uniformly a.e. in x ∈ Ω ,

0 � μ < λ1(λ1 − c) < l < +∞, λ1 is the first eigenvalue of
(−�, H1

0(Ω)
)
.

Lemma 2.1. Suppose that (H1) and (H2) hold. Then I±λ satisfies the (PS) condition.

Proof. We just prove the case of I+λ . The arguments for the case of I−λ are similar. Since Ω is bounded and (H2) holds, then
if {un} is bounded in H , by using the Sobolev embedding and the standard procedures, we can get a subsequence converges
strongly. So we need only to show that {un} is bounded in H .

Assume that {un} ⊂ H is a (PS) sequence, i.e.,

I+λ (un) → c, ∇ I+λ (un) → 0 as n → +∞. (2.6)

From (H2) we know that
∣∣ f +(x, s)s

∣∣ � C
(
1 + |s|2).

(2.6) implies that for all ϕ ∈ H ,∫
Ω

(
�un�ϕ − c∇un · ∇ϕ − λh(x)

∣∣u+
n

∣∣p−2
u+

n ϕ − f +(x, un)ϕ
)

dx → 0. (2.7)

Setting ϕ = un and using the Hölder inequality we have

‖un‖2 =
∫
Ω

f +(x, un)un dx +
∫
Ω

λh(x)
∣∣u+

n

∣∣p
dx + 〈∇ I+λ (un), un

〉

�
∫
Ω

f +(x, un)un dx + λ|h|∞
∫
Ω

|un|p dx + o(1)‖un‖

� C |Ω| + C‖un‖2
L2 + C p‖un‖p

L2 + o(1)‖un‖. (2.8)

We claim that ‖un‖L2 is bounded. Assume, by contradiction, that passing to a subsequence,

‖un‖2
L2 → +∞, as n → +∞.

We put ωn := un‖un‖L2
. Then ‖ωn‖L2 = 1. Moreover, from (2.8) we know

‖ωn‖2 � o(1) + C + o(1) · ‖un‖ � o(1) + C + o(1)‖ωn‖.
‖un‖L2 ‖un‖L2
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Hence, ‖ωn‖ is bounded. Passing to a subsequence, we may assume that there exists ω ∈ H , ‖ω‖L2 = 1 such that

ωn ⇀ ω, weakly in H, n → +∞,

ωn → ω, strongly in L2(Ω), n → +∞.

From (2.7) we derive∫
Ω

(
�ω�ϕ − c∇ω · ∇ϕ − lω+ϕ

)
dx = 0, ∀ϕ ∈ H . (2.9)

Then ω ∈ H is a weak solution of the equation

�2ω + c�ω = lω+.

The weak maximum principle implies ω = ω+ � 0. Taking ϕ(x) = ϕ1(x), from (2.9) we have∫
Ω

(�ω�ϕ1 − c∇ω · ∇ϕ1)dx = l

∫
Ω

ωϕ1 dx. (2.10)

On the other hand, since ϕ1(x) > 0 is the Λ1-eigenfunction of (2.2), we have also∫
Ω

(�ω�ϕ1 − c∇ω · ∇ϕ1)dx = Λ1

∫
Ω

ωϕ1 dx,

from which follows that ω ≡ 0 by Λ1 < l. But this conclusion contradicts ‖ω‖L2 = 1, and hence ‖un‖L2 is bounded. Then,
from (2.8) we know that {un} is bounded in H . �
3. Asymptotically linear problem

For the case λ = 0, our main result is as follows:

Theorem 3.1. Assume that c < λ1 , λ = 0. Then under assumptions (H1) and (H2), problem (1.1) has at least two nontrivial solutions,
one of which is positive and the other is negative.

Remark 3.1. Recently, Y. An and R. Liu in [6] have obtained at least one nontrivial solution, under (H1), (H2), and the
following two conditions:

(H3∗) f (x, s) ≡ 0, ∀x ∈ Ω , s � 0; f (x, t) � 0, ∀x ∈ Ω, s > 0; f (x,s)
s is nondecreasing.

(H4∗) | f (x, s)| � a(x) + b|s|p , where a(x) ∈ Lq(Ω), b ∈ R
N , 1 < p < N+4

N−4 if N > 4 and 1 < p < ∞ if N � 4, 1
p + 1

q = 1.

Theorem 3.1 improves previous results, such as [6].

For convenience we denote I±λ with λ = 0 by I± . Now we prove that the functionals I± have a mountain pass geometry.

Lemma 3.1. Under the assumption (H2), I+ and I− are unbounded from below.

Proof. (H2) implies that, for any ε > 0 there exists C1 > 0, such that

F (x, s) � 1

2
(l − ε)s2 − C1, ∀x ∈ Ω, s �= 0. (3.1)

Taking ε > 0 such that l − ε > Λ1, φ = −ϕ1, from (3.1) we obtain

I−(tφ) � 1

2

∫
Ω

(∣∣�(tφ)
∣∣2 − c

∣∣∇(tφ)
∣∣2)

dx − 1

2
(l − ε)

∫
Ω

t2φ2 dx +
∫
Ω

C1 dx

� t2

2
‖φ‖2 − t2

2
(l − ε)‖φ‖2

L2 + C1|Ω|

� 1

2

(
1 − l − ε

Λ

)
t2‖φ‖2 + C1|Ω|, (3.2)
1
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where |Ω| denotes the Lebesgue measure of Ω . Then

lim
t→+∞ I−(tφ) = −∞.

For I+ we can choose ϕ1, then, by an analogous manner as above we get

lim
t→+∞ I+(tϕ1) = −∞.

The proof is complete. �
Lemma 3.2. Assume that (H1) and (H2) hold. Then there exist ρ, R > 0 such that I±(u) � R, if ‖u‖ = ρ .

Proof. From (H2), we can find α, such that 2 < α < 2∗ , where 2∗ =
{

2N
N−2 , N > 2;
+∞, N � 2.

(H1), (H2) imply that for all given ε0 > 0,

there exists C0 > 0, such that

F (x, s) � 1

2
(μ + ε0)|s|2 + C0|s|α. (3.3)

Combining (3.3) and the Poincaré inequality as well as the Sobolev embedding, we have

I±(u) � 1

2
‖u‖2 − μ + ε0

2

∫
Ω

|u|2 dx − C0

∫
Ω

|u|α dx

�
(

1

2
− μ + ε0

2Λ1

)
‖u‖2 − Cs‖u‖α, (3.4)

where Cs is a constant. In (3.4), by taking ε0 > 0 such that μ+ ε0 < Λ1, and choosing ‖u‖ = ρ > 0 small enough, we obtain
I±(u) � R > 0, if ‖u‖ = ρ . �
Proof of Theorem 3.1. From Lemma 3.1 and Lemma 3.2 we know that there exists e ∈ H , ‖e‖ > ρ , such that I±(e) < 0.

Define

P = {
γ : [0,1] → H: γ is continuous and γ (0) = 0, γ (1) = e

}
,

and

c± = inf
γ ∈P

max
t∈[0,1] I±

(
γ (t)

)
.

From Lemma 3.2 it follows that

I±(0) = 0, I±(e) < 0, I±(u)
∣∣
∂ Bρ

� R > 0.

Moreover, I+ and I− satisfy the (PS) condition. By the mountain pass theorem, we know c+ is a critical value of I+ and
there is at least one nontrivial critical point in H corresponding to this value. This critical point is nonnegative, then the
strong maximum principle implies that there is a positive solution of problem (1.1). By an analogous way we know there
exists at least one negative solution, which is a nontrivial critical point of I− . Hence, the problem (1.1) admits at least a
positive solution and a negative solution. �
4. Combined nonlinearities

In this section, we discuss the multiplicity of solutions of problem (1.1) for the case λ > 0, in which the nonlinearity is
locally sublinear and asymptotically linear.

Theorem 4.1. Assume that c < λ1 . Then under assumptions (H1) and (H2), there exists λ∗ > 0 such that for λ ∈ (0, λ∗), problem (1.1)
has at least four nontrivial solutions: u+ , u− , v+ , and v− , satisfying u+ > 0, u− < 0, v+ > 0, v− < 0, and Iλ(u±) > 0 > Iλ(v±).

We first give the following lemmas which will be used to prove Theorem 4.1.

Lemma 4.1. Under the assumption (H2), I+λ and I−λ are unbounded from below.

Proof. The proof is similar to the proof of Lemma 3.1. �
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Lemma 4.2. Assume that (H1) and (H2) hold. Then for λ > 0 small enough, there exist ρ, R > 0 such that I±λ (u) � R, if ‖u‖ = ρ .

Proof. (H1), (H2) imply that for all given ε0 > 0, there exists C0 > 0, such that (3.3) hold. Take ε0 > 0 such that μ+ε0 < Λ1.
From (3.3), combining the Hölder inequality and the Poincaré inequality as well as the Sobolev embedding, we have

I±λ (u) � 1

2
‖u‖2 − λ|h|∞

p

∫
Ω

|u|p dx − μ + ε0

2

∫
Ω

|u|2 dx − C0

∫
Ω

|u|α dx

�
(

1

2
− μ + ε0

2Λ1

)
‖u‖2 − λ|h|∞

p

(∫
Ω

(|u|p) α
p dx

) p
α
(∫

Ω

1 dx

) α−p
α

− Cs‖u‖α

�
(

1

2
− μ + ε0

2Λ1

)
‖u‖2 − λK‖u‖p − Cs‖u‖α

=
(

1

2

(
1 − μ + ε0

Λ1

)
− λK‖u‖p−2 − Cs‖u‖α−2

)
‖u‖2,

where Cs , K are constant, 2 < α < 2∗ .
Let

Q (t) = λKt p−2 + Cstα−2.

We claim that there exists t0 such that

Q (t0) <
1

2

(
1 − μ + ε0

Λ1

)
.

Indeed,

Q ′(t) = λK (p − 2)t p−3 + Cs(α − 2)tα−3.

Setting

Q ′(t) = 0

we know

t0 =
(

λK (2 − p)

Cs(α − 2)

) 1
α−p

.

Obviously, Q (t) has a minimum at t = t0. Let

β = K (2 − p)

Cs(α − 2)
, p̄ = p − 2

α − p
, q̄ = α − 2

α − p
, κ = 1

2

(
1 − μ + ε0

Λ1

)
.

Substituting t0 in Q (t) we have

Q (t0) <
1

2

(
1 − μ + ε0

Λ1

)
, 0 < λ < λ∗,

where λ∗ = ( κ
Kβ p̄+Csβq̄ )1/q̄ .

Take ρ = t0. Then there exists R > 0 such that the lemma holds. �
Proof of Theorem 4.1. For I±λ , we first show the existence of local minimum v± , with I±λ (v±) < 0. We just prove the case
of I+λ . The arguments for the case of I−λ are similar.

For ρ given in Lemma 4.2, we set

B(ρ) = {
u ∈ H, ‖u‖ � ρ

}
, ∂ B(ρ) = {

u ∈ H, ‖u‖ = ρ
}
.

Then B(ρ) is a complete metric space with the distance

dist(u, v) = ‖u − v‖, ∀u, v ∈ B(ρ).

By Lemma 4.2, we know for 0 < λ < λ∗ ,

I+(u)
∣∣∂ Bρ � R > 0.
λ
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Moreover, it is easy to see that I+λ ∈ C1(B(ρ),R), hence I+λ is lower semi-continuous and bounded from below on B(ρ). Let

c1 = inf
{

I+λ (u), u ∈ B(ρ)
}
.

Taking v̄ ∈ C∞
0 (Ω), with v̄ > 0, and for t > 0, we have

I+λ (t v̄) = t2

2
‖v̄‖2 − λt p

p

∫
Ω

h(x)v̄ p dx −
∫
Ω

F +(x, t v̄)dx

� t2

2
‖v̄‖2 − λt p

p

∫
Ω

h(x)v̄ p dx

< 0,

for all t > 0 small enough. Hence, c1 < 0.
By Ekeland’s variational principle, for any k > 1, there exists uk such that

c1 � I+λ (uk) � c1 + 1

k
, (4.1)

I+λ (w) � I+λ (uk) − 1

k
‖uk − w‖, ∀w ∈ B(ρ). (4.2)

Then ‖uk‖ < ρ for k large enough. Otherwise, if ‖uk‖ = ρ for infinitely many k, without loss of generality, we may assume
that for all k � 1, ‖uk‖ = ρ . Then from Lemma 4.2 it follows 0 < R � I+λ (uk) � c1 + 1

k < 0, for k large enough, a contradiction.
Now we prove that ∇ I+λ (uk) → 0 in H∗ . In fact, for any u ∈ H with ‖u‖ = 1, let wk = uk + tu. Then for a fixed k > 1, we

know ‖wk‖ � ‖uk‖ + t < ρ , for t > 0 small enough. So, (4.2) implies

I+λ (uk + tu) � I+λ (uk) − t

k
‖u‖ = I+λ (uk) − t

k
.

Thus,

I+λ (uk + tu) − I+λ (uk)

t
� −1

k
.

Setting t → 0, we derive that

∣∣〈∇ I+λ (uk), u
〉∣∣ � 1

k
,

for any u ∈ H , with ‖u‖ = 1. So, ∇ I+λ (uk) → 0 and (4.1) gives I+λ (uk) → c1. Hence, it follows from Lemma 2.1 that there
exists v+ ∈ H such that ∇ I+λ (v+) = 0. v+ is a weak solution of problem (1.1) and Iλ(v+) < 0. Moreover, the maximum
principle implies that v+ > 0 a.e. in Ω . By an analogous way we know there exists a negative solution v− , which is a
nontrivial critical point of I−λ , satisfying Iλ(v−) < 0. Using the similar arguments as in the proof of Theorem 3.1, we know
there exist two nontrivial solutions u+ > 0, u− < 0, satisfying Iλ(u±) � R > 0. �

Theorem 4.1 is local, since λ has to be small enough. A global result of Ambrosetti–Brezis–Cerami type is also given in
the following theorem. For convenience we only consider positive solutions.

Theorem 4.2. Assume that c < λ1 , h � h0 , where h0 is a positive constant, (H1) and (H2) hold. Then there exists Λ > 0 such that

1. for λ ∈ (0,Λ), problem (1.1) has at least two positive solutions: uλ and vλ , satisfying vλ < uλ , Iλ(vλ) < 0. Moreover, vλ is a
minimal solution and is increasing with respect to λ;

2. for λ = Λ, problem (1.1) has at least one positive solution;
3. for all λ > Λ, problem (1.1) has no positive solution.

The above theorem suggests that the structure of the set of positive solutions of (1.1) looks as shown in Fig. 1.
Let us define Λ = sup{λ > 0: (1.1) has a solution}.

Lemma 4.3. 0 < Λ < ∞.

Proof. From Theorem 4.1 it follows that (1.1) has at least two positive solutions whenever λ ∈ (0, λ∗) and thus Λ � λ∗ > 0.
Let λ be such that

λh(x)t p−1 + f (x, t) > Λ1t, ∀t > 0.
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Fig. 1. The structure of the set of positive solutions.

If λ is such that (1.1) has a positive solution u, multiplying (1.1) by ϕ1 and integrating over Ω we find

Λ1

∫
Ω

uϕ1 dx = λ

∫
Ω

h(x)up−1ϕ1 dx +
∫
Ω

f (x, u)ϕ1 dx.

This implies that λ < λ and shows that Λ � λ. �
Now, we recall the version of the method of upper–lower solutions which we will use to prove Theorem 4.2. Let g(x, s)

be a Carathéodory function on Ω ×R with the property that for any s0 > 0, there exists a constant A such that |g(x, s)| � A
for a.e. x ∈ Ω and all s ∈ [−s0, s0]. A function u ∈ H is called a (weak) lower solution of the problem

{
�2u + c�u = g(x, u), in Ω ,

u = �u = 0, on ∂Ω ,
(4.3)

if u � 0 � �u on ∂Ω and∫
Ω

(�u�ϕ − c∇u · ∇ϕ)dx �
∫
Ω

g(x, u)ϕ dx

for all ϕ ∈ C∞
c (Ω), ϕ � 0. An upper solution is defined by reversing the inequality signs.

Lemma 4.4. Assume that u and ū are respectively lower and upper solutions for (4.3), with u � ū a.e. in Ω . Consider the associated
functional

Φ(u) := 1

2
‖u‖2 −

∫
Ω

G(x, u)dx,

where G(x, u) = ∫ s
0 g(x, t)dt, and the interval M := {u ∈ H: u � u � ū a.e. in Ω}. Then the infimum of Φ on M is achieved at some u,

and u is a solution of (4.3).

Proof. The proof is adapted from [16] which deals with the p-Laplacian operator. By coercivity and weak lower semiconti-
nuity, the infimum of Φ on M is achieved at some u. Let ϕ ∈ C∞

c (Ω), ε > 0, and define

vε := min
{

ū,max{u, u + εϕ}} = u + εϕ − ϕε + ϕε,

where ϕε := max{0, u +εϕ − ū} and ϕε := −min{0, u +εϕ − u}. Since u minimizes Φ on M , it follows 〈∇Φ(u), vε − u〉 � 0,
which gives

〈∇Φ(u),ϕ
〉
�

(〈∇Φ(u),ϕε
〉 − 〈∇Φ(u),ϕε

〉)
/ε. (4.4)

Since ū is an upper solution, one also has
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〈∇Φ(u),ϕε
〉
�

〈∇Φ(u) − ∇Φ(ū),ϕε
〉

� ε

∫
Ωε

(
�(u − ū)�ϕ − c∇(u − ū) · ∇ϕ

)
dx − ε

∫
Ωε

∣∣g(x, u) − g(x, ū)
∣∣|ϕ|dx

where Ωε := {x ∈ Ω: u(x) + εϕ(x) � ū(x) > u(x)}. Since |Ωε| → 0 as ε → 0, it implies 〈∇Φ(u),ϕε〉 � o(ε) as ε → 0.
Similarly 〈∇Φ(u),ϕε〉 � o(ε), and by (4.4), 〈∇Φ(u),ϕ〉 � 0. Replacing ϕ by −ϕ , we conclude that u solves (4.3). �
Proof of Theorem 4.2. 1. For convenience we denote (1.1) by (1.1)λ . We first show that for all λ ∈ (0,Λ), (1.1)λ has a positive
solution vλ with Iλ(vλ) < 0. Let 0 < λ < Λ and take λ with λ < λ � Λ such that (1.1)λ has a positive solution v̄ . Then,∫

Ω

(�v̄�ϕ − c∇ v̄ · ∇ϕ)dx = λ

∫
Ω

h(x)|v̄|p−2 v̄ϕ dx +
∫
Ω

f (x, v̄)ϕ dx

� λ

∫
Ω

h(x)|v̄|p−2 v̄ϕ dx +
∫
Ω

f (x, v̄)ϕ dx

for all ϕ ∈ C∞
c (Ω), ϕ � 0. This implies that v̄ is an upper solution for (1.1)λ . Let vε = εϕ1, ε > 0. From (H2), there exists ε

small enough such that

Λ1εϕ1 < λh(x)εp−1ϕ
p−1
1 + f (x, εϕ1).

We can easily obtain∫
Ω

(�vε�ϕ − c∇vε · ∇ϕ)dx �
∫
Ω

Λ1 vεϕ dx � λ

∫
Ω

h(x)|vε|p−2 vεϕ dx +
∫
Ω

f (x, vε)ϕ dx

which shows that vε is a lower solution of (1.1)λ . Take ε small enough such that εϕ1 � v̄ . From Lemma 4.4 we know (1.1)λ
has a positive solution vλ . Moreover the minimization property provided by Lemma 4.4 leads to Iλ(vλ) � Iλ(εϕ1). By (H2),
Iλ(εϕ1) < 0 for ε small enough. Assume that vλ is isolated local minima. From Lemma 3.1 and Lemma 2.1 we can get
another solution uλ by using the mountain pass theorem. It remains to prove that vλ < v

λ̂
whenever λ < λ̂. Indeed, if λ < λ̂

then v
λ̂

is an upper solution of (1.1)λ . For ε > 0 small, εϕ1 is a lower solution of (1.1)λ and εϕ1 < v
λ̂

, then (1.1)λ has a
positive solution v with v � v

λ̂
. As vλ is the minimal solution of (1.1)λ , we have vλ � v � v

λ̂
. The strict inequality follows

from the strong maximum principle.
2. Let {μn} be a sequence such that μn ↑ Λ. Since the positive solution vn = vμn satisfies 〈∇ Iμn (vn), vn〉 = 0, we have

‖vn‖2 = λ

∫
Ω

h(x)v p
n dx +

∫
Ω

f (x, vn)vn dx

� C‖vn‖p
L2 + C |Ω| + C‖vn‖2

L2 . (4.5)

As the proof of Lemma 2.1 we obtain that ‖vn‖L2 is bounded, and hence {vn} is bounded in H . Then there exists v∗ ∈ H
such that vn → v∗ > 0 a.e. in Ω , strongly in L2(Ω) and weakly in H . v∗ is a positive solution of (1.1)Λ .

3. This follows from the definition of Λ. �
5. Existence of five solutions

This section is devoted to give more information about the multiplicity of the solutions of problem (1.1). Precisely, we
give the following multiplicity result which improves Theorem 4.1.

Theorem 5.1. Assume that c < λ1 , f (x, u) satisfies (H1) and (H2), h ∈ L∞(Ω) with h � h0 , where h0 is a positive constant. Then there
exists Λ∗ > 0 such that for λ ∈ (0,Λ∗) problem (1.1) has at least five nontrivial solutions: u+ , u− , v+ , v− , and v3 , satisfying u+ > 0,
u− < 0, v+ > 0, v− < 0, and Iλ(u±) > 0 > Iλ(v±), Iλ(v3) < 0.

Proof. First of all, by an analogous argument as in the proof of Theorem 4.1, the existence of u+ , u− , v+ and v− follows.
We need only to show the existence of v3 with Iλ(v3) < 0. The energy functional for problem (1.1) is

Iλ(u) = 1

2
‖u‖2 − λ

p

∫
Ω

h(x)|u|p dx −
∫
Ω

F (x, u)dx, u ∈ H .

Note that, according to the proof of Theorem 4.1, v+ and v− are also local minima of Iλ . We can assume that v+ and v−
are isolated local minima. Let us denote by bλ the mountain pass critical level of Iλ with base points v+ , v−:
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bλ = inf
ψ∈Ψ

max
t∈[0,1] Iλ

(
ψ(t)

)
,

where

Ψ = {
ψ ∈ C1([0,1], H

)
: ψ(0) = v+, ψ(1) = v−

}
.

We claim that bλ < 0 if λ is small enough. In fact, by (H2), for any 0 < ε∗ < μ, there exists ρ > 0, such that for |s| < ρ ,

μ − ε∗ <
f (x, s)

s
< μ + ε∗,

and

1

2
(μ − ε∗)s2 < F (x, s) <

1

2
(μ + ε∗)s2. (5.1)

We define Γ±,Υ± : [0,1] → R by

Γ±(t) = Iλ(tv±) = t2

2
‖v±‖2 − λ

t p

p

∫
Ω

h(x)|v±|p dx −
∫
Ω

F (x, tv±)dx,

Υ±(t) = t2

2
‖v±‖2 − λ

t p

p

∫
Ω

h(x)|v±|p dx − t2

2
(μ − ε∗)‖v±‖2

L2 .

Then from (5.1) we know Γ±(t) < Υ±(t), for all t ∈ [0,1].
If there exists t0 ∈ (0,1) such that Γ±(t0) = maxt∈(0,1) Γ±(t), then Γ ′±(t0) = 0. Let

M±(t) = ‖v±‖2 −
∫
Ω

f (x, tv±)

tv±
v2±.

Since

Γ ′±(t) = t‖v±‖2 − λt p−1
∫
Ω

h(x)|v±|p dx −
∫
Ω

f (x, tv±)v± dx

= t‖v±‖2 − λt p−1
∫
Ω

h(x)|v±|p dx −
∫
Ω

f (x, tv±)

tv±
tv2± dx

=
(

‖v±‖2 −
∫
Ω

f (x, tv±)

tv±
v2±

)
t − λt p−1

∫
Ω

h(x)|v±|p dx

= M±(t)t − λt p−1
∫
Ω

h(x)|v±|p dx, (5.2)

setting Γ ′±(t) = 0, we know that t0 satisfies M±(t0)t
2−p
0 = λ

∫
Ω

h(x)|v±|p dx. Then noticing 1 < p < 2 and using the Poincaré
inequality (2.3), we have

Γ±(t0) < Υ±(t0)

= t2
0

2
‖v±‖2 − λ

t p
0

p

∫
Ω

h(x)|v±|p dx − t2
0

2
(μ − ε∗)‖v±‖2

L2

=
(

1

2
‖v±‖2 − μ − ε∗

2
‖v±‖2

L2 − M±(t0)

p

)
t2

0

�
(

1

2
‖v±‖2 − μ − ε∗

2
‖v±‖2

L2 − 1

p
‖v±‖2 + μ + ε∗

p
‖v±‖2

L2

)
t2

0

=
((

1

2
− 1

p

)
‖v±‖2 +

(
μ + ε∗

p
− μ − ε∗

2

)
‖v±‖2

L2

)
t2

0

�
((

1 − 1
)

Λ1 +
(

μ + ε∗ − μ − ε∗
))

‖v±‖2
L2t2

0. (5.3)

2 p p 2
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Take ε∗ > 0, such that ε∗ <
(2−p)(Λ1−μ)

p+2 . From (5.3) it follows that Γ±(t0) < 0. Recall that Γ±(0) = 0, Γ±(1) < 0. Hence, for
t ∈ (0,1),

Γ (t) < 0.

This implies that there exists δ > 0 such that

Iλ(tv±) < 0, ∀t ∈ (0,1), 0 < λ < δ. (5.4)

Now let us consider the 2-dimensional plane Π2 containing the straightlines tv− and tv+ , and take v ∈ Π2 with ‖v‖ = ε.
Note that for such v one has ‖v‖Lp = C pε, and ‖v‖L2 = C2ε. Then we get

Iλ(v) � ε2

2
− λ

p
C p

p h0ε
p − C2

2ε
2.

For small ε,

Iλ(v) < 0. (5.5)

Consider the path γ̄ obtained glueing together the segments {tv−: ε‖v−‖−1 � t � 1}, {tv+: ε‖v+‖−1 � t � 1} and the arc
{v ∈ Π2: ‖v‖ = ε}. From (5.4) and (5.5) it follows that

bλ � max
v∈γ̄

Iλ(v) < 0,

which verifies the claim. Since the (PS) condition holds because of Lemma 2.1, the level {Iλ(v) = bλ} carries a critical point
v3 of Iλ , and v3 is different from v± . �
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