

Contents lists available at ScienceDirect Journal of Mathematical Analysis and

www.elsevier.com/locate/jmaa

Classification of Moran fractals

Hao Li^{a,b}, Qin Wang^c, Lifeng Xi^{b,*,1}

^a School of Mathematical Sciences, Soochow University, Suzhou 215021, PR China

^b Institute of Mathematics, Zhejiang Wanli University, Ningbo 315100, PR China

^c School of Computer Science and Information Technology, Zhejiang Wanli University, Ningbo 315100, PR China

ARTICLE INFO

Article history: Received 13 April 2010 Available online 20 January 2011 Submitted by Steven G. Krantz

Keywords: Fractal Quasi-Lipschitz equivalent Moran set

ABSTRACT

In the paper, we try to classify Moran fractals by using the quasi-Lipschitz equivalence, and prove that two regular homogeneous Moran sets are quasi-Lipschitz equivalent if and only if they have the same Hausdorff dimension.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

How to classify fractals in Euclidean spaces? A natural approach is the classification by using the Lipschitz equivalence:

Definition 1. Suppose that *A* and *B* are compact sets in Euclidean spaces. We say that *E* and *F* are *Lipschitz equivalent* if there are a bijection $f : A \rightarrow B$ and a constant c > 0 such that

$$c^{-1}|x-y| \leq \left| f(x) - f(y) \right| \leq c|x-y| \quad \text{for all } x, y \in A.$$

$$(1.1)$$

The Lipschitz equivalence of fractals is an interesting topic. For example, it is proved in [2] that two quasi-self-similar circles are Lipschitz equivalent if and only if they have the same Hausdorff dimension.

It is well known that the Lipschitz equivalence of sets A and B implies that $\dim_H A = \dim_H B$. However, self-similar sets with the same Hausdorff dimensions need not be Lipschitz equivalent, as in the following two examples.

(1) Let $\beta \in (0, 1)$ with $3\beta^{\log 2/\log 3} = 1$, and $E = \beta E \cup (\beta E + \frac{1-\beta}{2}) \cup (\beta E + 1-\beta)$ the self-similar set. Then dim_H $E = \dim_H C$, where C is the Cantor ternary set. However E and C are not Lipschitz equivalent (see [1]).

(2) In [6], two self-similar arcs are constructed such that they have the same Hausdorff dimension but they are not Lipschitz equivalent.

Remark 1. Please refer to [3,9] to find the conditions for self-similar sets to be Lipschitz equivalent. For nearly Lipschitz equivalence, see [3,7].

To classify self-conformal sets satisfying the strong separation condition, Xi introduced in [8] the notion of the quasi-Lipschitz equivalence.

* Corresponding author.

E-mail addresses: kevinleee9809@yahoo.com.cn (H. Li), qinwang@126.com (Q. Wang), xilifengningbo@yahoo.com (L. Xi).

¹ The research is supported by the National Natural Science of Foundation of China (Nos. 11071224, 10671180), Natural Science Foundation of Ningbo (No. 2009A610077) and Post-Doctoral Science Project of Jiangsu Province (No. 1001080c).

Definition 2. Two compact sets *E* and *F* of Euclidean spaces are said to be *quasi-Lipschitz equivalent*, if there is a bijection $f : E \to F$ such that for every $\varepsilon > 0$, there exists $\delta > 0$ satisfying

$$\frac{\log|f(x) - f(y)|}{\log|x - y|} - 1 \bigg| < \varepsilon,$$
(1.2)

whenever $x, y \in E$ with $0 < |x - y| < \delta$.

If *E* and *F* are quasi-Lipschitz equivalent, then $\dim_H E = \dim_H F$ (see [8]). It is proved in [8] that two self-conformal sets satisfying the strong separation condition are quasi-Lipschitz equivalent if and only if they have the same Hausdorff dimension.

In this paper, we will try to classify homogeneous Moran sets by using the quasi-Lipschitz equivalence. Here, homogeneous Moran set (see [5]) is defined as bellow.

Definition 3. For a given number sequence $\{c_k\}_{k \ge 1}$ and a positive integer sequence $\{n_k\}_{k \ge 1}$, we suppose that $n_k \ge 2$ and $n_k c_k \in (0, 1)$ for all k. Suppose I is a closed interval of \mathbb{R}^1 . Let $\mathcal{D}^k = \prod_{i=1}^k \{1, \ldots, n_i\}, \mathcal{D}^0 = \{\emptyset\}$ and $I_{\emptyset} = I$ where \emptyset is the empty word. Suppose that for any $i_1 \cdots i_{k-1} \in \mathcal{D}^{k-1}$, there are closed interval $I_{i_1 \cdots i_{k-1}}$ and its n_k closed sub-intervals

$$I_{i_1\cdots i_{k-1}}, I_{i_1\cdots i_{k-1}2}, \dots, I_{i_1\cdots i_{k-1}n_k} \subset I_{i_1\cdots i_{k-1}},$$
(1.3)

such that $\{int(I_{i_1\cdots i_{k-1}j})\}_{i=1}^{n_k}$ are pairwise disjoint and

$$|I_{i_1\dots i_{k-1}j}|/|I_{i_1\dots i_{k-1}}| = c_k, \quad \text{for } j = 1,\dots, n_k,$$
(1.4)

where int(I') and |I'| are the interior and length of interval I' respectively. Then

$$E = \bigcap_{k=0}^{\infty} \bigcup_{i_1 \cdots i_k \in \mathcal{D}^k} I_{i_1 \cdots i_k}$$
(1.5)

is called a homogeneous Moran set with structure $(I, \{n_k\}, \{c_k\})$. We say that $I_{i_1 \dots i_k}$ is a basic interval of rank k.

Definition 4. A structure $(I, \{n_k\}, \{c_k\})$ is said to be *regular*, if there exists $s \in (0, 1)$ such that

$$\lim_{k \to \infty} \frac{\log n_1 \cdots n_k}{-\log c_1 \cdots c_k} = s \quad \text{and} \quad \sup_k n_k < +\infty.$$
(1.6)

We say that a homogeneous Moran set is regular, if it has a regular structure.

Remark 2. For any regular homogeneous Moran set *E*, $\dim_H E = s$ as in (1.6) (see [5]).

In this paper, we discuss the quasi-Lipschitz equivalence of regular homogeneous Moran sets and the main result is stated as follows.

Theorem 1. Two regular homogeneous Moran sets E and F are quasi-Lipschitz equivalent if and only if $\dim_H E = \dim_H F$.

Remark 3. Examples of [4] show that Theorem 1 does not work for homogeneous Moran sets which are not regular, i.e., one of the following three conditions fails:

(1) $\lim_{k \to \infty} \frac{\log n_1 \cdots n_k}{-\log c_1 \cdots c_k}$ exists; (2) $\sup_k n_k < +\infty;$ (3) $\lim_{k \to \infty} \frac{\log n_1 \cdots n_k}{-\log c_1 \cdots c_k} \in (0, 1),$ i.e., $s \notin \{0, 1\}.$

The paper is organized as follows. Section 2 includes a technical lemma. Section 3 is the proof of Theorem 1, which is based on constructing a bijection from a regular homogeneous Moran set to symbolic system Σ_2 (Proposition 1).

2. Preliminary

Without loss of generality, we assume I = [0, 1]. We denote that

$$\alpha_k = \frac{\log n_1 \cdots n_k}{-\log c_1 \cdots c_k}, \qquad \beta_k = \sup_{m \ge k} |\alpha_m - s|, \qquad \rho_k = (c_1 \cdots c_{k-1}) \frac{1 - n_k c_k}{n_k + 1}$$

Lemma 1. Suppose the structure $([0, 1], \{n_k\}, \{c_k\})$ is regular. Then there is an integer sequence $\{k_t\}_t$ satisfying:

(1) $k_{t+1} > k_t, k_{t+1} \ge \frac{t(t+1)}{2}$ for all t, and $\lim_{t\to\infty} |k_{t+1} - k_t| = \infty$; (2) $\lim_{t\to\infty} \frac{k_{t+1}}{k_t} = 1;$ (3) $\lim_{t\to\infty} \frac{\log \rho_{k_t}}{\log c_1 \cdots c_{k_t-1}} = 1;$ (4) $\lim_{t\to\infty} \frac{\log \rho_{k_t}}{\log c_1 \cdots c_{k_{t-1}-1}} = \lim_{t\to\infty} \frac{\log n_1 \cdots n_{k_t}}{-s \log c_1 \cdots c_{k_{(t-1)}-1}} = 1.$

Proof. We can verify the following estimation to replace condition (3) in the lemma,

$$\frac{\log n_{k_t}}{-\log c_{k_t}} \leqslant \frac{1}{2} + \frac{s}{2} (>s) \quad \text{(for all } t \in \mathbb{N}\text{)}.$$

$$(2.1)$$

We conclude that (2.1) implies condition (3). In fact, since $n_{k_t}c_{k_t} < 1$ and $n_{k_t} \ge 2$, we have $c_{k_t} < \frac{1}{2}$, and estimation (2.1) implies that $n_{k_i}c_{k_i}^{(1+s)/2} \le 1$. Consequently,

$$n_{k_t}c_{k_t} = (n_{k_t}c_{k_t}^{(1+s)/2})c_{k_t}^{1/2-s/2} \leq \left(\frac{1}{2}\right)^{1/2-s/2},$$

which implies

$$1 - n_{k_t} c_{k_t} \ge 1 - \left(\frac{1}{2}\right)^{1/2 - s/2} > 0$$

Letting $t \to \infty$, we get condition (3),

$$\frac{\log \rho_{k_t}}{\log c_1 \cdots c_{k_t-1}} = 1 + \frac{\log(1 - n_{k_t} c_{k_t}) - \log(n_{k_t} + 1)}{\log c_1 \cdots c_{k_t-1}} \to 1.$$

where $\sup_k n_k < \infty$ and $\lim_{t \to \infty} c_1 \cdots c_{k_t-1} = 0$ since

$$0 \leq \lim_{t \to \infty} c_1 \cdots c_{k_t-1} \leq \lim_{t \to \infty} \left(\frac{1}{2}\right)^{k_t-1} \leq \lim_{t \to \infty} \left(\frac{1}{2}\right)^{t-1} = 0$$

due to $k_t \ge t$, here $k_t > k_{t-1} > k_{t-2} > \cdots > k_1$ by condition (1).

By induction, we will construct the sequence $\{k_t\}_t$. We take k_1 large so enough that $\beta_{k_1} \leq \frac{3}{32}s(1-s)$. By the induction, assume that k_t has already been defined, satisfying $\beta_{k_t} \leq \beta_{k_1} \leq \frac{3}{32}s(1-s) < \frac{1}{4}s$. Let

$$p_t = k_t + t,$$

$$q_t = \left[p_t \left(1 + \frac{32}{3s(1-s)} \frac{\log(\sup_k n_k)}{\log 2} \beta_{k_t} \right) \right] + 2,$$
(2.2)

where [x] is the integer part of x.

Then
$$\alpha_{q_t} = \frac{\log n_1 \cdots n_{p_t} + \sum_{p_t < k \leq q_t} \log n_k}{-\log c_1 \cdots c_{p_t} + \sum_{p_t < k \leq q_t} (-\log c_k)}$$
. Write
$$\Delta = \frac{\sum_{p_t < k \leq q_t} (-\log c_k)}{-\log c_k}$$

$$\Delta = \frac{1}{-\log c_1 \cdots c_{p_t}} + \sum_{p_t < k \leq q_t} (-\log c_k).$$

We conclude that there exists an integer $k_{t+1} \in (p_t, q_t]$ such that

$$\frac{\log n_{k_{t+1}}}{-\log c_{k_{t+1}}} \leqslant \frac{1}{2} + \frac{s}{2}.$$
(2.3)

Otherwise, we assume that $\frac{\log n_k}{-\log c_k} > \frac{1}{2} + \frac{s}{2}$ for $k \in (p_t, q_t]$. It follows from the definition of β_{k_t} that

$$s + \beta_{k_t} \ge \alpha_{q_t} = \frac{\log n_1 \cdots n_{p_t} + \sum_{p_t < k \le q_t} \log n_k}{-\log c_1 \cdots c_{p_t} + \sum_{p_t < k \le q_t} (-\log c_k)} = \frac{\log n_1 \cdots n_{p_t}}{-\log c_1 \cdots c_{p_t}} \cdot \frac{-\log c_1 \cdots c_{p_t}}{-\log c_1 \cdots c_{p_t} + \sum_{p_t < k \le q_t} (-\log c_k)}$$
$$+ \sum_{p_t < k \le q_t} \frac{\log n_k}{-\log c_k} \cdot \frac{-\log c_k}{-\log c_1 \cdots c_{p_t} + \sum_{p_t < k \le q_t} (-\log c_k)} \ge \alpha_{p_t} (1 - \Delta) + \left(\frac{1}{2} + \frac{s}{2}\right) \Delta$$
$$\ge (s - \beta_{k_t})(1 - \Delta) + \left(\frac{1}{2} + \frac{s}{2}\right) \Delta.$$
(2.4)

Then inequality (2.4) implies

$$\Delta \leqslant \frac{2\beta_{k_t}}{\frac{1}{2} - \frac{s}{2} + \beta_{k_t}} \leqslant \frac{4}{1 - s} \beta_{k_t}.$$
(2.5)

Notice that

$$\frac{-\log c_1 \cdots c_{q_t}}{\log n_1 \cdots n_{q_t}} \leqslant \frac{1}{s - \beta_{k_t}} \leqslant \frac{1}{s - s/4} = \frac{4}{3s}$$

$$(2.6)$$

due to $\beta_{k_t} < s/4$. Hence, by (2.6) and inequality $\frac{\log n_k}{-\log c_k} \leqslant 1$, we have

$$\left(\frac{\sum_{p_t < k \leq q_t} \log n_k}{\log n_1 \cdots n_{q_t}}\right) / \Delta = \frac{\sum_{p_t < k \leq q_t} \log n_k}{\sum_{p_t < k \leq q_t} (-\log c_k)} \cdot \frac{-\log c_1 \cdots c_{q_t}}{\log n_1 \cdots n_{q_t}} \leq \frac{4}{3s}.$$
(2.7)

It follows from (2.5) and (2.7) that

$$\frac{\sum_{p_t < k \leq q_t} \log n_k}{\log n_1 \cdots n_{q_t}} = \left(\frac{\sum_{p_t < k \leq q_t} \log n_k}{\log n_1 \cdots n_{q_t}} / \Delta\right) \cdot \Delta \leq \frac{16}{3s(1-s)} \beta_{k_t} \left(<\frac{1}{2}\right).$$
(2.8)

On the other hand,

$$\frac{\sum_{p_t < k \leqslant q_t} \log n_k}{\log n_1 \cdots n_{q_t}} \ge \frac{\sum_{p_t < k \leqslant q_t} \log 2}{\log n_1 \cdots n_{p_t} + \sum_{p_t < k \leqslant q_t} \log 2} \ge \frac{\frac{q_t - p_t}{p_t \log(\sup_k n_k)} \log 2}{1 + \frac{q_t - p_t}{p_t \log(\sup_k n_k)} \log 2}.$$
(2.9)

By (2.8) and (2.9), we have

$$\frac{\frac{q_t-p_t}{p_t\log(\sup_k n_k)}\log 2}{1+\frac{q_t-p_t}{p_t\log(\sup_k n_k)}\log 2} \leqslant \frac{16}{3s(1-s)}\beta_{k_t} < 1/2,$$

which implies $\lambda \stackrel{=}{=} \frac{q_t - p_t}{p_t \log(\sup_k n_k)} \log 2 < 1$, and thus

$$\frac{\lambda}{2} < \frac{\lambda}{1+\lambda} \leqslant \frac{16}{3s(1-s)}\beta_{k_t},$$

i.e.,

$$\frac{q_t - p_t}{p_t} \leqslant \frac{32}{3s(1 - s)} \cdot \frac{\log(\sup_k n_k)}{\log 2} \beta_{k_t}$$

which contradicts to (2.2). Therefore, we can take $k_{t+1} \in (p_t, q_t]$ such that

$$\frac{\log n_{k_{t+1}}}{-\log c_{k_{t+1}}} \leqslant \frac{1}{2} + \frac{s}{2},$$

then (2.1) follows, and thus condition (3) yields. Here

$$k_{t+1} \ge k_t + t \ge k_{t-1} + (t-1) + t \ge \frac{t(t+1)}{2},$$

which implies condition (1) holds. We also obtain that $\frac{t}{k_t} \rightarrow 0$. Consequently,

$$\frac{p_t}{k_t} = 1 + \frac{t}{k_t} \to 1 \quad \text{as } t \to \infty.$$

Letting $t \to \infty$, we notice that

$$\frac{p_t}{k_t} \leqslant \frac{k_{t+1}}{k_t} \leqslant \frac{p_t}{k_t} \cdot \frac{q_t}{p_t} \quad \text{and} \quad \frac{q_t}{p_t} \to 1$$

which implies $\frac{k_{t+1}}{k_t} \rightarrow 1$. Then condition (2) is proved. For condition (4), we notice that

$$\lim_{t \to \infty} \frac{\log n_1 \cdots n_{k_t - 1}}{\log n_1 \cdots n_{k_{(t-1)} - 1}} = 1 + \lim_{t \to \infty} \frac{\log n_{k_{(t-1)}} \cdots n_{k_t - 1}}{\log n_1 \cdots n_{k_{(t-1)} - 1}},$$

where $\left|\frac{\log n_{k(t-1)}\cdots n_{k_t-1}}{\log n_1\cdots n_{k_{t-1}}-1}\right| \leqslant \frac{k_t - k_{(t-1)}}{k_{(t-1)}} \frac{\log(\sup_k n_k)}{\log 2} \to 0$ due to condition (2). That means

$$\lim_{t \to \infty} \frac{\log n_1 \cdots n_{k_t - 1}}{\log n_1 \cdots n_{k_{(t-1)} - 1}} = 1.$$
(2.10)

It follows from (2.10) and condition (3) that

$$\lim_{t \to \infty} \frac{\log \rho_{k_t}}{\log c_1 \cdots c_{k_{(t-1)}-1}} = \lim_{t \to \infty} \frac{\log c_1 \cdots c_{k_t-1}}{\log c_1 \cdots c_{k_{(t-1)}-1}} = \lim_{t \to \infty} \frac{\log c_1 \cdots c_{k_t-1}}{\log c_1 \cdots c_{k_{(t-1)}-1}} \cdot \lim_{t \to \infty} \frac{\log n_1 \cdots n_{k_{(t-1)}-1}}{\log n_1 \cdots n_{k_t-1}} = \lim_{t \to \infty} \frac{\log n_1 \cdots n_{k_{(t-1)}-1}}{\log c_1 \cdots c_{k_{(t-1)}-1}} / \lim_{t \to \infty} \frac{\log n_1 \cdots n_{k_t-1}}{\log c_1 \cdots c_{k_t-1}} = s/s = 1.$$

Since $\sup_k n_k < \infty$, we have $\lim_{t\to\infty} \frac{\log(n_1 \cdots n_{k_t})}{\log(n_1 \cdots n_{k_t-1})} = 1$. By (2.10), we have

$$\lim_{t \to \infty} \frac{\log(n_1 \cdots n_{k_t})}{-s\log(c_1 \cdots c_{k_{(t-1)}-1})} = \lim_{t \to \infty} \frac{\log(n_1 \cdots n_{k_{(t-1)}-1})}{-s\log(c_1 \cdots c_{k_{(t-1)}-1})} \frac{\log(n_1 \cdots n_{k_t-1})}{\log(n_1 \cdots n_{k_{(t-1)}-1})} \frac{\log(n_1 \cdots n_{k_t})}{\log(n_1 \cdots n_{k_t-1})} = 1.$$

3. Proof of Theorem 1

In the following proposition, we will construct a suitable bijection from a regular homogeneous Moran set to a symbolic system $\Sigma_2 = \{0, 1\}^{\infty}$ equipped with a metric *D* satisfying

$$D(x_1x_2\cdots, y_1y_2\cdots) = 2^{-\min\{k: x_k \neq y_k\}}$$

Given a finite word $x_1 \cdots x_n$ with $x_i = 0$ or 1 for all *i*, the set $[x_1 \cdots x_n] = \{y_1 y_2 \cdots \in \Sigma_2: y_i = x_i \text{ for } i \leq n\}$ is called a cylinder (of length *n*) with respect to word $x_1 \cdots x_n$. For subsets *A*, *B* of metric space (X, d_X) , let d(A, B) denote the least distance between *A* and *B* defined by

$$d(A, B) = \inf_{a \in A, b \in B} d_X(a, b).$$

Proposition 1. Suppose *E* is a regular homogeneous Moran set with structure (I, n_k, c_k) . There exists a bijection φ from *E* to Σ_2 such that when $|x - y| \rightarrow 0$,

$$\frac{\log D(\varphi(x), \varphi(y))}{s \log |x - y|} \to 1 \quad uniformly.$$
(3.1)

Proof. Without loss of generality, let I = [0, 1]. We will construct inductively φ through the sequence $\{k_i\}_i$ mentioned in Lemma 1.

Firstly we introduce the notion of *basic element* by induction. Let [0, 1] be the basic element of order 0 and $k_0 = 0$. We say that \mathcal{J} is a basic element of order *i*, if

$$\mathcal{J} = I_1 \cup \cdots \cup I_{\chi(\mathcal{J})}$$

where $\{I_u\}_{u=1}^{\chi(\mathcal{J})}$ are basic intervals (of rank k_i) with length $c_1 \cdots c_{k_i}$ such that:

- (1) \mathcal{J} is contained in a basic element of order (i-1);
- (2) $I_1, \ldots, I_{\chi(\mathcal{J})}$ are arranged from left to right;
- (3) $d(I_u, I_{u+1}) < \rho_{k_i}$ for all $u < \chi(\mathcal{J})$;
- (4) for any other basic interval $I' \notin \{I_1, \ldots, I_{\chi(\mathcal{J})}\}$ of rank k_i ,

$$d(\mathcal{J}, I') \ge \rho_{k_i}.$$

Denote by $\operatorname{ord}(\mathcal{J}) = i$ the order of basic element. When $\chi(\mathcal{J}) = 1$, \mathcal{J} is a basic interval of rank k_i . The basic elements are well defined by above conditions (1)–(4).

Notice that $\chi(\mathcal{J})$ is uniformly bounded. In fact,

$$\chi(\mathcal{J}) \leqslant 2n_{k_{\text{ord}}(\mathcal{J})} \leqslant 2(\sup_k n_k).$$
(3.2)

Suppose $\operatorname{ord}(\mathcal{J}) = i$. Since

$$(n_{k_i}+1)\rho_{k_i}+n_{k_i}c_1\cdots c_{k_i}=c_1\cdots c_{k_i-1},$$
(3.3)

the above condition $d(I_u, I_{u+1}) < \rho_{k_i}$ implies that there are at most two basic intervals (of rank $k_i - 1$) with length $c_1 \cdots c_{k_i-1}$ which intersects $I_1 \cup \cdots \cup I_{\chi}$. Otherwise, we assume that there are basic intervals (with length $c_1 \cdots c_{k_i-1}$) intersecting \mathcal{J} ,

 L_1, L_2, \ldots, L_m arranged from left to right with $m \ge 3$.

Set $L_2 = [a, b]$ and denote

$$\{I_1,\ldots,I_{\chi(\mathcal{J})}\}\cap\{I_u\colon I_u\subset L_2\}=\{[a_1,b_1],\ldots,[a_{n_{k_i}},b_{n_{k_i}}]\},\$$

which are arranged from left to right. Therefore, we have

$$|a - a_1| < \rho_{k_i}, \qquad |b_j - a_{j+1}| < \rho_{k_i} \text{ for all } j \text{ and } |b_{n_{k_i}} - b| < \rho_{k_i}.$$

Then

$$c_{1} \cdots c_{k_{i}-1} = |a-b| = \left(|a-a_{1}| + \sum_{j} |b_{j}-a_{j+1}| + |b_{n_{k_{i}}}-b| \right) + \sum_{j} |a_{j}-b_{j}|$$

$$< (n_{k_{i}}+1)\rho_{k_{i}} + n_{k_{i}}(c_{1} \cdots c_{k_{i}}) = c_{1} \cdots c_{k_{i}-1}.$$

This is a contradiction. Then (3.2) is proved. By (3.2) and (3.3), the diameter

$$\operatorname{diam}(\mathcal{J}) \leq \chi(\mathcal{J})c_1 \cdots c_{k_i} + (\chi(\mathcal{J}) - 1)\rho_{k_i} \leq 2c_1 \cdots c_{k_{\operatorname{ord}(\mathcal{J})} - 1}.$$
(3.4)

Let *J* be a basic element with ord(J) = i - 1. We ask that how many basic elements of order *i* which are contained in *J*. Suppose that there are $Q_i(J)$ basic elements of order *i* in *J*. Then by (3.2), we have

$$\frac{n_{(k_{(i-1)}+1)}\cdots n_{k_i}}{2(\sup_k n_k)} \leqslant Q_i(J) \leqslant 2(\sup_k n_k) \cdot n_{(k_{(i-1)}+1)}\cdots n_{k_i}.$$
(3.5)

We let Γ denote the collection of all the cylinders in Σ_2 , and Ω_i the collection of all the basic elements of order *i*. Let $\psi_0 : \Omega_i \to \Gamma$ defined by

$$\psi_0([0,1]) = \Sigma_2$$

By induction, we assume that $\psi_{i-1} : \Omega_{i-1} \to \Gamma$ has already been defined and $\psi_{i-1}(J) = [x_1 \cdots x_{\omega(J)}]$, where *J* is a basic element of order i - 1. Let $\sigma(J)$ is the unique integer such that

$$2^{\sigma(J)} < Q_i(J) \le 2^{\sigma(J)+1}.$$
(3.6)

Set $T = Q_i(J) - 2^{\sigma(J)}$.

We can take $Q_i(J)$ pairwise disjoint sub-cylinders of $[x_1 \cdots x_{\omega(J)}]$ so that their lengths are

either
$$\omega(J) + \sigma(J)$$
 or $\omega(J) + \sigma(J) + 1$. (3.7)

For this, we let $w = [x_1 \cdots x_{\omega(J)}]$. By adding $\sigma(J)$ digits (0 or 1) after the word w, we get $2^{\sigma(J)}$ words of length $\omega(J) + \sigma(J)$, which have the same prefix w. We denote them by

$$w_1, w_2, \ldots, w_{2^{\sigma(J)}}.$$

By adding 0 or 1 after the first T words, we get $Q_i(J)$ words of lengths $\omega(J) + \sigma(J)$ or $\omega(J) + \sigma(J) + 1$,

 $w_1 * 0, w_1 * 1, w_2 * 0, w_2 * 1, \dots, w_T * 0, w_T * 1, w_{T+1}, \dots, w_{2^{\sigma(J)}},$

where w' * a stand for a new word generated by add digit *a* after word w'. Then

$$[x_1 \cdots x_{\omega(J)}] = \left(\bigcup_{j \leqslant T} \left([w_j * 0] \cup [w_j * 1] \right) \right) \cup \left(\bigcup_{j > T} [w_j] \right)$$
(3.8)

is a disjoint union and there are $Q_i(J)$ sub-cylinders on the right hand of (3.8). Then by induction, there is a bijection from $\{J' \subset J: \operatorname{ord}(J') = i\}$ to $Q_i(J)$ pairwise disjoint sub-cylinders of $[x_1 \cdots x_{\omega(J)}]$ as in (3.8). Then $\psi_i : \Omega_i \to \Gamma$ is well defined by induction.

For any $x \in E$, there exists a unique sequence of basic elements $\{I_i\}_i$, where I_i is of order *i*, such that $\{x\} = \bigcap_i I_i$. Let $\varphi(x) \in \Sigma_2$ be defined by

$$\left\{\varphi(\mathbf{x})\right\} = \bigcap_{i=0}^{\infty} \psi_i(I_i). \tag{3.9}$$

We shall verify formula (3.1) for φ .

Given different points $x, y \in E$, we suppose that J is the smallest basic element containing both x and y. Assume J is of order (i - 1), and J_1 and J_2 are distinct basic elements of order i contained in J such that

$$x \in J_1, \qquad y \in J_2. \tag{3.10}$$

By the condition (4) in the definition of basic element, we have

$$|\mathbf{x} - \mathbf{y}| \ge \rho_{k_i}.\tag{3.11}$$

On the other hand, by (3.4), we have

$$|\mathbf{x} - \mathbf{y}| \leq \operatorname{diam}(J) \leq 2c_1 \cdots c_{k_{d-1}-1}.$$
(3.12)

It follows from (3.11), (3.12) and condition (4) of Lemma 1 that

$$\frac{\log(n_1 \cdots n_{k_i})}{-s\log|x-y|} \to 1 \quad \text{uniformly as } i \to \infty.$$
(3.13)

On the other hand, it follows from (3.7) that

$$2^{-\omega(J)-\sigma(J)-1} \leqslant D\big(\varphi(x),\varphi(y)\big) \leqslant 2^{-\omega(J)}.$$

By (3.5) and (3.6), we have

$$\frac{1}{4(\sup_k n_k)} n_{(k_{(i-1)}+1)} \cdots n_{k_i} \leq 2^{\sigma(J)} \leq 2(\sup_k n_k) n_{(k_{(i-1)}+1)} \cdots n_{k_i}.$$
(3.14)

Denote by $\omega(J)$ the length of cylinder $\psi_{\text{ord}(J)}(J)$. Set $k_0 = 0$, and

$$\psi_0([0,1]) = \Sigma_2, \quad \omega([0,1]) = 0 \text{ and } \operatorname{ord}([0,1]) = 0.$$

We shall check the following inductive assumption:

$$\frac{n_1 \cdots n_{k_{\operatorname{ord}(J)}}}{(4 \sup_k n_k)^{\operatorname{ord}(J)}} \leqslant 2^{\omega(J)} \leqslant (4 \sup_k n_k)^{\operatorname{ord}(J)} \cdot n_1 \cdots n_{k_{\operatorname{ord}(J)}}.$$
(3.15)

For ord([0, 1])=0, we have $(4 \sup_k n_k)^{-0} \le 2^0 \le (4 \sup_k n_k)^0$. This is true.

Assume (3.15) is true for $\operatorname{ord}(J) = i - 1$, we shall check it for *i*. In fact, for basic element $J' \subset J$ with $\operatorname{ord}(J') = i$, we have $\omega(J') = \omega(J) + \sigma(J)$ or $\omega(J) + \sigma(J) + 1$. Then by (3.14),

$$\frac{1}{(4\sup_k n_k)^i}n_1\cdots n_{k_i} \leq 2^{\omega(J)+\sigma(J)} \leq 2^{\omega(J')} \leq 2^{\omega(J)+\sigma(J)+1} \leq (4\sup_k n_k)^i \cdot n_1\cdots n_{k_i}.$$

Then (3.15) is proved.

For $x \in J_1$, $y \in J_2$ mentioned in (3.10), we notice that $\omega(J_1), \omega(J_2) \in [\omega(J) + \sigma(J), \omega(J) + \sigma(J) + 1]$ and $\psi_i(J_1), \psi_i(J_2)$ are disjoint. Using (3.15), we have

$$(4\sup_k n_k)^{-i}(n_1\cdots n_{k_i})^{-1} \leqslant 2^{-\max(\omega(J_1),\omega(J_2))} \leqslant D(\varphi(x),\varphi(y)) \leqslant 2^{-\omega(J)} \leqslant (4\sup_k n_k)^{i-1}(n_1\cdots n_{k_{i-1}})^{-1}.$$

Notice that $\frac{\log n_1 \cdots n_{k_i}}{n_1 \cdots n_{k_{i-1}}} \rightarrow 1$ due to (2.10) and $\sup_k n_k < \infty$. By condition (1) of Lemma 1, we have $i/k_i \rightarrow 0$. Therefore,

$$\frac{\log D(\varphi(x), \varphi(y))}{-\log n_1 \cdots n_{k_i}} \to 1 \quad \text{uniformly as } i \to \infty.$$
(3.16)

It follows from (3.13) and (3.16) that

$$\lim_{|x-y|\to 0} \frac{\log D(\varphi(x), \varphi(y))}{s \log |x-y|} = \lim_{i\to\infty} \frac{\log n_1 \cdots n_{k_i}}{\log n_1 \cdots n_{k_i}} = 1,$$

where $i \to \infty$ uniformly when $|x - y| \to 0$ due to (3.13). \Box

Proof of Theorem 1. We only need prove that if *E* and *F* are regular homogeneous Moran sets with $\dim_H E = \dim_H F = s$, then they are quasi-Lipschitz equivalent.

It follows from Proposition 1 that there are two bijections $\varphi_1 : E \to \Sigma_2$ and $\varphi_2 : F \to \Sigma_2$ such that for $x_1, x_2 \in E$ and $\theta_1, \theta_2 \in \Sigma_2$,

 $\frac{\log D(\varphi_1(x_1),\varphi_1(x_2))}{s\log |x_1-x_2|} \to 1 \quad \text{uniformly},$

and

$$\frac{s\log|\varphi_2^{-1}(\theta_1) - \varphi_2^{-1}(\theta_2)|}{\log D(\theta_1, \theta_2)} \to 1 \quad \text{uniformly},$$

as $|x_1 - x_2| \to 0$ and $D(\theta_1, \theta_2) \to 0$. Therefore, $\varphi_2^{-1} \circ \varphi_1 : E \to F$ is a bijection satisfying

$$\frac{\log|\varphi_2^{-1}(\varphi_1(x_1)) - \varphi_2^{-1}(\varphi_1(x_2))|}{\log|x_1 - x_2|} \to 1 \quad \text{uniformly},$$

i.e., $\varphi_2^{-1} \circ \varphi_1$ is the bijection desired. \Box

References

[1] K.J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.

[2] K.J. Falconer, D.T. Marsh, Classification of quasi-circles by Hausdorff dimension, Nonlinearity 2 (3) (1989) 489-493.

[3] K.J. Falconer, D.T. Marsh, On the Lipschitz equivalence of Cantor sets, Mathematika 39 (2) (1992) 223-233.

[4] Q. Wang, L.F. Xi, Invariants of quasi-Lipschitz mappings, Int. J. Nonlinear Sci. 10 (1) (2010) 105-109.

[5] Z.Y. Wen, Moran set and Moran set class, Chinese Sci. Bull. 46 (22) (2001) 1849–1856.

[6] Z.Y. Wen, L.F. Xi, Relations among Whitney sets, self-similar arcs and quasi-arcs, Israel J. Math. 136 (2) (1990) 251-267.

[7] L.F. Xi, Lipschitz equivalence of self-conformal sets, J. Lond. Math. Soc. (2) 70 (2) (2004) 369–382.

[8] L.F. Xi, Quasi-Lipschitz equivalence of fractals, Israel J. Math. 160 (2007) 1–21.

[9] L.F. Xi, Lipschitz equivalence of dust-like self-similar sets, Math. Z. 266 (3) (2010) 683-691.