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1. Introduction

How to classify fractals in Euclidean spaces? A natural approach is the classification by using the Lipschitz equivalence:

Definition 1. Suppose that A and B are compact sets in Euclidean spaces. We say that E and F are Lipschitz equivalent if
there are a bijection f : A → B and a constant c > 0 such that

c−1|x − y| � ∣∣ f (x) − f (y)
∣∣ � c|x − y| for all x, y ∈ A. (1.1)

The Lipschitz equivalence of fractals is an interesting topic. For example, it is proved in [2] that two quasi-self-similar
circles are Lipschitz equivalent if and only if they have the same Hausdorff dimension.

It is well known that the Lipschitz equivalence of sets A and B implies that dimH A = dimH B . However, self-similar sets
with the same Hausdorff dimensions need not be Lipschitz equivalent, as in the following two examples.

(1) Let β ∈ (0,1) with 3β log 2/ log 3 = 1, and E = βE ∪(βE + 1−β
2 )∪(βE +1−β) the self-similar set. Then dimH E = dimH C ,

where C is the Cantor ternary set. However E and C are not Lipschitz equivalent (see [1]).
(2) In [6], two self-similar arcs are constructed such that they have the same Hausdorff dimension but they are not

Lipschitz equivalent.

Remark 1. Please refer to [3,9] to find the conditions for self-similar sets to be Lipschitz equivalent. For nearly Lipschitz
equivalence, see [3,7].

To classify self-conformal sets satisfying the strong separation condition, Xi introduced in [8] the notion of the quasi-
Lipschitz equivalence.
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Definition 2. Two compact sets E and F of Euclidean spaces are said to be quasi-Lipschitz equivalent, if there is a bijection
f : E → F such that for every ε > 0, there exists δ > 0 satisfying∣∣∣∣ log | f (x) − f (y)|

log |x − y| − 1

∣∣∣∣ < ε, (1.2)

whenever x, y ∈ E with 0 < |x − y| < δ.

If E and F are quasi-Lipschitz equivalent, then dimH E = dimH F (see [8]). It is proved in [8] that two self-conformal
sets satisfying the strong separation condition are quasi-Lipschitz equivalent if and only if they have the same Hausdorff
dimension.

In this paper, we will try to classify homogeneous Moran sets by using the quasi-Lipschitz equivalence. Here, homoge-
neous Moran set (see [5]) is defined as bellow.

Definition 3. For a given number sequence {ck}k�1 and a positive integer sequence {nk}k�1, we suppose that nk � 2 and

nkck ∈ (0,1) for all k. Suppose I is a closed interval of R
1. Let Dk = ∏k

i=1{1, . . . ,ni}, D0 = {∅} and I∅ = I where ∅ is the
empty word. Suppose that for any i1 · · · ik−1 ∈ Dk−1, there are closed interval Ii1···ik−1 and its nk closed sub-intervals

Ii1···ik−11, Ii1···ik−12, . . . , Ii1···ik−1nk ⊂ Ii1···ik−1 , (1.3)

such that {int(Ii1···ik−1 j)}nk
j=1 are pairwise disjoint and

|Ii1···ik−1 j|/|Ii1···ik−1 | = ck, for j = 1, . . . ,nk, (1.4)

where int(I ′) and |I ′| are the interior and length of interval I ′ respectively. Then

E =
∞⋂

k=0

⋃
i1···ik∈Dk

Ii1···ik (1.5)

is called a homogeneous Moran set with structure (I, {nk}, {ck}). We say that Ii1···ik is a basic interval of rank k.

Definition 4. A structure (I, {nk}, {ck}) is said to be regular, if there exists s ∈ (0,1) such that

lim
k→∞

logn1 · · ·nk

− log c1 · · · ck
= s and supk nk < +∞. (1.6)

We say that a homogeneous Moran set is regular, if it has a regular structure.

Remark 2. For any regular homogeneous Moran set E , dimH E = s as in (1.6) (see [5]).

In this paper, we discuss the quasi-Lipschitz equivalence of regular homogeneous Moran sets and the main result is
stated as follows.

Theorem 1. Two regular homogeneous Moran sets E and F are quasi-Lipschitz equivalent if and only if dimH E = dimH F .

Remark 3. Examples of [4] show that Theorem 1 does not work for homogeneous Moran sets which are not regular, i.e.,
one of the following three conditions fails:

(1) limk→∞ logn1···nk− log c1···ck
exists;

(2) supk nk < +∞;
(3) limk→∞ logn1···nk− log c1···ck

∈ (0,1), i.e., s /∈ {0, 1}.

The paper is organized as follows. Section 2 includes a technical lemma. Section 3 is the proof of Theorem 1, which is
based on constructing a bijection from a regular homogeneous Moran set to symbolic system Σ2 (Proposition 1).

2. Preliminary

Without loss of generality, we assume I = [0,1]. We denote that

αk = log n1 · · ·nk

− log c1 · · · ck
, βk = supm�k |αm − s|, ρk = (c1 · · · ck−1)

1 − nkck

nk + 1
.
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Lemma 1. Suppose the structure ([0,1], {nk}, {ck}) is regular. Then there is an integer sequence {kt}t satisfying:

(1) kt+1 > kt , kt+1 � t(t+1)
2 for all t, and limt→∞ |kt+1 − kt | = ∞;

(2) limt→∞ kt+1
kt

= 1;

(3) limt→∞
logρkt

log c1···ckt −1
= 1;

(4) limt→∞
logρkt

log c1···ck(t−1)−1
= limt→∞

logn1···nkt−s log c1···ck(t−1)−1
= 1.

Proof. We can verify the following estimation to replace condition (3) in the lemma,

lognkt

− log ckt

� 1

2
+ s

2
(> s) (for all t ∈ N). (2.1)

We conclude that (2.1) implies condition (3). In fact, since nkt ckt < 1 and nkt � 2, we have ckt < 1
2 , and estimation (2.1)

implies that nki c
(1+s)/2
ki

� 1. Consequently,

nkt ckt = (
nkt c(1+s)/2

kt

)
c1/2−s/2

kt
�

(
1

2

)1/2−s/2

,

which implies

1 − nkt ckt � 1 −
(

1

2

)1/2−s/2

> 0.

Letting t → ∞, we get condition (3),

logρkt

log c1 · · · ckt−1
= 1 + log(1 − nkt ckt ) − log(nkt + 1)

log c1 · · · ckt−1
→ 1,

where supk nk < ∞ and limt→∞ c1 · · · ckt−1 = 0 since

0 � lim
t→∞ c1 · · · ckt−1 � lim

t→∞

(
1

2

)kt−1

� lim
t→∞

(
1

2

)t−1

= 0

due to kt � t , here kt > kt−1 > kt−2 > · · · > k1 by condition (1).
By induction, we will construct the sequence {kt}t .
We take k1 large so enough that βk1 � 3

32 s(1 − s). By the induction, assume that kt has already been defined, satisfying

βkt � βk1 � 3
32 s(1 − s) < 1

4 s. Let

pt = kt + t,

qt =
[

pt

(
1 + 32

3s(1 − s)

log(supk nk)

log 2
βkt

)]
+ 2, (2.2)

where [x] is the integer part of x.

Then αqt = logn1···npt +
∑

pt <k�qt
lognk

− log c1···cpt +
∑

pt <k�qt
(− log ck)

. Write

� =
∑

pt<k�qt
(− log ck)

− log c1 · · · cpt + ∑
pt<k�qt

(− log ck)
.

We conclude that there exists an integer kt+1 ∈ (pt ,qt] such that

lognkt+1

− log ckt+1

� 1

2
+ s

2
. (2.3)

Otherwise, we assume that lognk− log ck
> 1

2 + s
2 for k ∈ (pt ,qt]. It follows from the definition of βkt that

s + βkt � αqt = logn1 · · ·npt + ∑
pt<k�qt

lognk

− log c1 · · · cpt + ∑
pt<k�qt

(− log ck)
= logn1 · · ·npt

− log c1 · · · cpt

· − log c1 · · · cpt

− log c1 · · · cpt + ∑
pt<k�qt

(− log ck)

+
∑

pt<k�qt

lognk

− log ck
· − log ck

− log c1 · · · cpt + ∑
pt<k�qt

(− log ck)
� αpt (1 − �) +

(
1

2
+ s

2

)
�

� (s − βkt )(1 − �) +
(

1 + s
)

�. (2.4)

2 2
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Then inequality (2.4) implies

� � 2βkt

1
2 − s

2 + βkt

� 4

1 − s
βkt . (2.5)

Notice that

− log c1 · · · cqt

logn1 · · ·nqt

� 1

s − βkt

� 1

s − s/4
= 4

3s
(2.6)

due to βkt < s/4. Hence, by (2.6) and inequality lognk− log ck
� 1, we have

(∑
pt<k�qt

log nk

logn1 · · ·nqt

)
/� =

∑
pt<k�qt

lognk∑
pt<k�qt

(− log ck)
· − log c1 · · · cqt

log n1 · · ·nqt

� 4

3s
. (2.7)

It follows from (2.5) and (2.7) that∑
pt<k�qt

lognk

logn1 · · ·nqt

=
(∑

pt<k�qt
log nk

logn1 · · ·nqt

/�

)
· � � 16

3s(1 − s)
βkt

(
<

1

2

)
. (2.8)

On the other hand,
∑

pt<k�qt
lognk

logn1 · · ·nqt

�
∑

pt<k�qt
log 2

logn1 · · ·npt + ∑
pt<k�qt

log 2
�

qt−pt
pt log(supk nk)

log 2

1 + qt−pt
pt log(supk nk)

log 2
. (2.9)

By (2.8) and (2.9), we have

qt−pt
pt log(supk nk)

log 2

1 + qt−pt
pt log(supk nk)

log 2
� 16

3s(1 − s)
βkt < 1/2,

which implies λ =̂ qt−pt
pt log(supk nk)

log 2 < 1, and thus

λ

2
<

λ

1 + λ
� 16

3s(1 − s)
βkt ,

i.e.,

qt − pt

pt
� 32

3s(1 − s)
· log(supk nk)

log 2
βkt

which contradicts to (2.2). Therefore, we can take kt+1 ∈ (pt ,qt] such that

lognkt+1

− log ckt+1

� 1

2
+ s

2
,

then (2.1) follows, and thus condition (3) yields. Here

kt+1 � kt + t � kt−1 + (t − 1) + t � t(t + 1)

2
,

which implies condition (1) holds. We also obtain that t
kt

→ 0. Consequently,

pt

kt
= 1 + t

kt
→ 1 as t → ∞.

Letting t → ∞, we notice that

pt

kt
� kt+1

kt
� pt

kt
· qt

pt
and

qt

pt
→ 1

which implies kt+1
kt

→ 1. Then condition (2) is proved.
For condition (4), we notice that

lim
t→∞

logn1 · · ·nkt−1

logn1 · · ·nk(t−1)−1
= 1 + lim

t→∞
lognk(t−1)

· · ·nkt−1

log n1 · · ·nk(t−1)−1
,
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where | lognk(t−1)
···nkt −1

logn1···nk(t−1)−1
| � kt−k(t−1)

k(t−1)

log(supk nk)

log 2 → 0 due to condition (2). That means

lim
t→∞

logn1 · · ·nkt−1

logn1 · · ·nk(t−1)−1
= 1. (2.10)

It follows from (2.10) and condition (3) that

lim
t→∞

logρkt

log c1 · · · ck(t−1)−1
= lim

t→∞
log c1 · · · ckt−1

log c1 · · · ck(t−1)−1
= lim

t→∞
log c1 · · · ckt−1

log c1 · · · ck(t−1)−1
· lim

t→∞
logn1 · · ·nk(t−1)−1

log n1 · · ·nkt−1

= lim
t→∞

logn1 · · ·nk(t−1)−1

− log c1 · · · ck(t−1)−1
/ lim

t→∞
log n1 · · ·nkt−1

− log c1 · · · ckt−1
= s/s = 1.

Since supk nk < ∞, we have limt→∞
log(n1···nkt )

log(n1···nkt −1)
= 1. By (2.10), we have

lim
t→∞

log(n1 · · ·nkt )

−s log(c1 · · · ck(t−1)−1)
= lim

t→∞
log(n1 · · ·nk(t−1)−1)

−s log(c1 · · · ck(t−1)−1)

log(n1 · · ·nkt−1)

log(n1 · · ·nk(t−1)−1)

log(n1 · · ·nkt )

log(n1 · · ·nkt−1)
= 1. �

3. Proof of Theorem 1

In the following proposition, we will construct a suitable bijection from a regular homogeneous Moran set to a symbolic
system Σ2 = {0,1}∞ equipped with a metric D satisfying

D(x1x2 · · · , y1 y2 · · ·) = 2−min{k: xk 
=yk}.
Given a finite word x1 · · · xn with xi = 0 or 1 for all i, the set [x1 · · · xn] = {y1 y2 · · · ∈ Σ2: yi = xi for i � n} is called a
cylinder (of length n) with respect to word x1 · · · xn . For subsets A, B of metric space (X,dX ), let d(A, B) denote the least
distance between A and B defined by

d(A, B) = inf
a∈A,b∈B

dX (a,b).

Proposition 1. Suppose E is a regular homogeneous Moran set with structure (I,nk, ck). There exists a bijection ϕ from E to Σ2 such
that when |x − y| → 0,

log D(ϕ(x),ϕ(y))

s log |x − y| → 1 uniformly. (3.1)

Proof. Without loss of generality, let I = [0,1]. We will construct inductively ϕ through the sequence {ki}i mentioned in
Lemma 1.

Firstly we introduce the notion of basic element by induction. Let [0,1] be the basic element of order 0 and k0 = 0.
We say that J is a basic element of order i, if

J = I1 ∪ · · · ∪ Iχ(J ),

where {Iu}χ(J )

u=1 are basic intervals (of rank ki ) with length c1 · · · cki such that:

(1) J is contained in a basic element of order (i − 1);
(2) I1, . . . , Iχ(J ) are arranged from left to right;
(3) d(Iu, Iu+1) < ρki for all u < χ(J );
(4) for any other basic interval I ′ /∈ {I1, . . . , Iχ(J )} of rank ki ,

d
(

J , I ′
)
� ρki .

Denote by ord(J ) = i the order of basic element. When χ(J ) = 1, J is a basic interval of rank ki . The basic elements are
well defined by above conditions (1)–(4).

Notice that χ(J ) is uniformly bounded. In fact,

χ(J ) � 2nkord(J )
� 2(supk nk). (3.2)

Suppose ord(J ) = i. Since

(nk + 1)ρk + nk c1 · · · ck = c1 · · · ck −1, (3.3)
i i i i i
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the above condition d(Iu, Iu+1) < ρki implies that there are at most two basic intervals (of rank ki − 1) with length
c1 · · · cki−1 which intersects I1 ∪ · · · ∪ Iχ . Otherwise, we assume that there are basic intervals (with length c1 · · · cki−1)

intersecting J ,

L1, L2, . . . , Lm arranged from left to right with m � 3.

Set L2 = [a,b] and denote

{I1, . . . , Iχ(J )} ∩ {Iu: Iu ⊂ L2} = {[a1,b1], . . . , [anki
,bnki

]},
which are arranged from left to right. Therefore, we have

|a − a1| < ρki , |b j − a j+1| < ρki for all j and |bnki
− b| < ρki .

Then

c1 · · · cki−1 = |a − b| =
(

|a − a1| +
∑

j

|b j − a j+1| + |bnki
− b|

)
+

∑
j

|a j − b j|

< (nki + 1)ρki + nki (c1 · · · cki ) = c1 · · · cki−1.

This is a contradiction. Then (3.2) is proved. By (3.2) and (3.3), the diameter

diam(J ) � χ(J )c1 · · · cki + (
χ(J ) − 1

)
ρki � 2c1 · · · ckord(J )−1. (3.4)

Let J be a basic element with ord( J ) = i − 1. We ask that how many basic elements of order i which are contained in J .
Suppose that there are Q i( J ) basic elements of order i in J . Then by (3.2), we have

n(k(i−1)+1) · · ·nki

2(supk nk)
� Q i( J ) � 2(supk nk) · n(k(i−1)+1) · · ·nki . (3.5)

We let Γ denote the collection of all the cylinders in Σ2, and Ωi the collection of all the basic elements of order i. Let
ψ0 : Ωi → Γ defined by

ψ0
([0,1]) = Σ2.

By induction, we assume that ψi−1 : Ωi−1 → Γ has already been defined and ψi−1( J ) = [x1 · · · xω( J )], where J is a basic
element of order i − 1. Let σ( J ) is the unique integer such that

2σ ( J ) < Q i( J ) � 2σ ( J )+1. (3.6)

Set T = Q i( J ) − 2σ( J) .
We can take Q i( J ) pairwise disjoint sub-cylinders of [x1 · · · xω( J )] so that their lengths are

either ω( J ) + σ( J ) or ω( J) + σ( J ) + 1. (3.7)

For this, we let w = [x1 · · · xω( J )]. By adding σ( J ) digits (0 or 1) after the word w , we get 2σ( J ) words of length ω( J )+σ( J ),
which have the same prefix w . We denote them by

w1, w2, . . . , w2σ ( J ) .

By adding 0 or 1 after the first T words, we get Q i( J ) words of lengths ω( J ) + σ( J ) or ω( J ) + σ( J ) + 1,

w1 ∗ 0, w1 ∗ 1, w2 ∗ 0, w2 ∗ 1, . . . , wT ∗ 0, wT ∗ 1, wT +1, . . . , w2σ ( J ) ,

where w ′ ∗ a stand for a new word generated by add digit a after word w ′ . Then

[x1 · · · xω( J )] =
( ⋃

j�T

([w j ∗ 0] ∪ [w j ∗ 1])
)

∪
( ⋃

j>T

[w j]
)

(3.8)

is a disjoint union and there are Q i( J ) sub-cylinders on the right hand of (3.8). Then by induction, there is a bijection from
{ J ′ ⊂ J : ord( J ′) = i} to Q i( J ) pairwise disjoint sub-cylinders of [x1 · · · xω( J )] as in (3.8). Then ψi : Ωi → Γ is well defined
by induction.

For any x ∈ E , there exists a unique sequence of basic elements {Ii}i , where Ii is of order i, such that {x} = ⋂
i I i . Let

ϕ(x)(∈ Σ2) be defined by

{
ϕ(x)

} =
∞⋂

i=0

ψi(Ii). (3.9)

We shall verify formula (3.1) for ϕ .
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Given different points x, y ∈ E , we suppose that J is the smallest basic element containing both x and y. Assume J is of
order (i − 1), and J1 and J2 are distinct basic elements of order i contained in J such that

x ∈ J1, y ∈ J2. (3.10)

By the condition (4) in the definition of basic element, we have

|x − y| � ρki . (3.11)

On the other hand, by (3.4), we have

|x − y| � diam( J ) � 2c1 · · · ck(i−1)−1. (3.12)

It follows from (3.11), (3.12) and condition (4) of Lemma 1 that

log(n1 · · ·nki )

−s log |x − y| → 1 uniformly as i → ∞. (3.13)

On the other hand, it follows from (3.7) that

2−ω( J )−σ ( J )−1 � D
(
ϕ(x),ϕ(y)

)
� 2−ω( J ).

By (3.5) and (3.6), we have

1

4(supk nk)
n(k(i−1)+1) · · ·nki � 2σ ( J ) � 2(supk nk)n(k(i−1)+1) · · ·nki . (3.14)

Denote by ω( J ) the length of cylinder ψord( J )( J ). Set k0 = 0, and

ψ0
([0,1]) = Σ2, ω

([0,1]) = 0 and ord
([0,1]) = 0.

We shall check the following inductive assumption:

n1 · · ·nkord( J )

(4 supk nk)
ord( J )

� 2ω( J ) � (4 supk nk)
ord( J ) · n1 · · ·nkord( J ) . (3.15)

For ord([0,1])= 0, we have (4 supk nk)
−0 � 20 � (4 supk nk)

0. This is true.
Assume (3.15) is true for ord( J )= i − 1, we shall check it for i. In fact, for basic element J ′ ⊂ J with ord( J ′) = i, we have

ω( J ′) = ω( J ) + σ( J ) or ω( J ) + σ( J ) + 1. Then by (3.14),

1

(4 supk nk)
i
n1 · · ·nki � 2ω( J )+σ ( J ) � 2ω( J ′) � 2ω( J )+σ ( J )+1 � (4 supk nk)

i · n1 · · ·nki .

Then (3.15) is proved.
For x ∈ J1, y ∈ J2 mentioned in (3.10), we notice that ω( J1),ω( J2) ∈ [ω( J ) +σ( J ),ω( J ) +σ( J ) + 1] and ψi( J1), ψi( J2)

are disjoint. Using (3.15), we have

(4 supk nk)
−i(n1 · · ·nki )

−1 � 2−max(ω( J1),ω( J2)) � D
(
ϕ(x),ϕ(y)

)
� 2−ω( J ) � (4 supk nk)

i−1(n1 · · ·nki−1)
−1.

Notice that
logn1···nki
n1···nki−1

→ 1 due to (2.10) and supk nk < ∞. By condition (1) of Lemma 1, we have i/ki → 0. Therefore,

log D(ϕ(x),ϕ(y))

− log n1 · · ·nki

→ 1 uniformly as i → ∞. (3.16)

It follows from (3.13) and (3.16) that

lim|x−y|→0

log D(ϕ(x),ϕ(y))

s log |x − y| = lim
i→∞

logn1 · · ·nki

logn1 · · ·nki

= 1,

where i → ∞ uniformly when |x − y| → 0 due to (3.13). �
Proof of Theorem 1. We only need prove that if E and F are regular homogeneous Moran sets with dimH E = dimH F = s,
then they are quasi-Lipschitz equivalent.

It follows from Proposition 1 that there are two bijections ϕ1 : E → Σ2 and ϕ2 : F → Σ2 such that for x1, x2 ∈ E and
θ1, θ2 ∈ Σ2,

log D(ϕ1(x1),ϕ1(x2)) → 1 uniformly,

s log |x1 − x2|
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and

s log |ϕ−1
2 (θ1) − ϕ−1

2 (θ2)|
log D(θ1, θ2)

→ 1 uniformly,

as |x1 − x2| → 0 and D(θ1, θ2) → 0. Therefore, ϕ−1
2 ◦ ϕ1 : E → F is a bijection satisfying

log |ϕ−1
2 (ϕ1(x1)) − ϕ−1

2 (ϕ1(x2))|
log |x1 − x2| → 1 uniformly,

i.e., ϕ−1
2 ◦ ϕ1 is the bijection desired. �
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