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1. Introduction
How to classify fractals in Euclidean spaces? A natural approach is the classification by using the Lipschitz equivalence:

Definition 1. Suppose that A and B are compact sets in Euclidean spaces. We say that E and F are Lipschitz equivalent if
there are a bijection f: A — B and a constant ¢ > 0 such that

cTMx—yI<[f0— fF)|<clx—y| forallx,yeA. (11)

The Lipschitz equivalence of fractals is an interesting topic. For example, it is proved in [2] that two quasi-self-similar
circles are Lipschitz equivalent if and only if they have the same Hausdorff dimension.

It is well known that the Lipschitz equivalence of sets A and B implies that dimy A = dimy B. However, self-similar sets
with the same Hausdorff dimensions need not be Lipschitz equivalent, as in the following two examples.

(1) Let B € (0, 1) with 381982/1083 —1 ‘and E = BEU(BE + #)U(ﬁE—H — B) the self-similar set. Then dimy E = dimp C,
where C is the Cantor ternary set. However E and C are not Lipschitz equivalent (see [1]).

(2) In [6], two self-similar arcs are constructed such that they have the same Hausdorff dimension but they are not
Lipschitz equivalent.

Remark 1. Please refer to [3,9] to find the conditions for self-similar sets to be Lipschitz equivalent. For nearly Lipschitz
equivalence, see [3,7].

To classify self-conformal sets satisfying the strong separation condition, Xi introduced in [8] the notion of the quasi-
Lipschitz equivalence.
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Definition 2. Two compact sets E and F of Euclidean spaces are said to be quasi-Lipschitz equivalent, if there is a bijection
f : E— F such that for every ¢ > 0, there exists § > 0 satisfying

log|f(x) = fW)I
log|x — |
whenever x, y € E with 0 < |x — y| <.

1 <e, (1.2)

If E and F are quasi-Lipschitz equivalent, then dimy E = dimpy F (see [8]). It is proved in [8] that two self-conformal
sets satisfying the strong separation condition are quasi-Lipschitz equivalent if and only if they have the same Hausdorff
dimension.

In this paper, we will try to classify homogeneous Moran sets by using the quasi-Lipschitz equivalence. Here, homoge-
neous Moran set (see [5]) is defined as bellow.

Definition 3. For a given number sequence {cy}r>1 and a positive integer sequence {ny}y>1, we suppose that n, > 2 and
nkck € (0,1) for all k. Suppose I is a closed interval of R!. Let DX = ]_[L]{l,...,ni}. DO = {@} and Iy =1 where ¢ is the
empty word. Suppose that for any i ---i_; € D¥"1, there are closed interval Ij,...i,_, and its ny closed sub-intervals

Tiy it Ty g20 oo Tigei e © Tieiy (13)
such that {int(Iil...,-,(7]]4)}?":1 are pairwise disjoint and
iy iy 1/ iy iy | =€y for j=1,...,m, (1.4)

where int(I’) and |I’| are the interior and length of interval I’ respectively. Then

E=() U Ili-i (15)

k=0 i;...i,eDk

is called a homogeneous Moran set with structure (I, {n.}, {ck}). We say that I;,.., is a basic interval of rank k.

Definition 4. A structure (I, {ny}, {ck}) is said to be regular, if there exists s € (0, 1) such that

logny---n
OB o and supy Ny, < +00. (1.6)
k—oo —logcy -+ - ¢y

We say that a homogeneous Moran set is regular, if it has a regular structure.
Remark 2. For any regular homogeneous Moran set E, dimy E = s as in (1.6) (see [5]).

In this paper, we discuss the quasi-Lipschitz equivalence of regular homogeneous Moran sets and the main result is
stated as follows.

Theorem 1. Two regular homogeneous Moran sets E and F are quasi-Lipschitz equivalent if and only if dimy E = dimy F.

Remark 3. Examples of [4] show that Theorem 1 does not work for homogeneous Moran sets which are not regular, i.e.,
one of the following three conditions fails:

(1) limg_ 00 % exists;
(2) supyng < +o0;
(3) limyes.oo B2 € (0, 1), fe., 5 ¢ {0, 1.

— logq —Ck

The paper is organized as follows. Section 2 includes a technical lemma. Section 3 is the proof of Theorem 1, which is
based on constructing a bijection from a regular homogeneous Moran set to symbolic system X, (Proposition 1).

2. Preliminary

Without loss of generality, we assume I = [0, 1]. We denote that

— MkCk

logny - --ny 1
Oy = Bk = supp >k lotm — s1, Pk = (1" Ck-1) .
ne+1

T —logcy gy
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Lemma 1. Suppose the structure ([0, 11, {ny}, {ck}) is regular. Then there is an integer sequence {k;}; satisfying:

(1) kes1 > ke, kesr = "G forall t, and limg_ o ket1 — kel = 00;
(2) limeoe 2 =15

. log pi, .
(3) limg— Togcrc, 1 1;

. log py, T logny--ny, _
(4) limg o T E =1lim; o0 e TR —— =1

Proof. We can verify the following estimation to replace condition (3) in the lemma,

logn 1 s
ﬂ<—+—(>s) (forallt € N). (2.1)
—logc,, 2 2
We conclude that (2.1) implies condition (3). In fact, since ny,cy, <1 and ny, > 2, we have ¢, < % and estimation (2.1)
implies that ny, CI(C?H)/Z < 1. Consequently,

145)/2y _1/2—s/2 1\"/*?
+ —_
nkfckt = (nkt C’(([ S)/ )th/ S/ < <§) )

which implies
1)\ 1/2-5/2
1 —ngcp, =>1— <§> > 0.
Letting t — oo, we get condition (3),
logpk,  _ 14 log(1 — ng,c,) — log(ng, + 1) N
logey - ¢t logcy - cp—1
where supy ny < oo and lim¢_, €1 -+ - ck,—1 =0 since
1 ke—1 1 t—1
0< lim ¢1---Cg—1 < lim (—) < lim (—) =0
t—00 t—>oo\ 2 2

due to k; > t, here k; > ki—1 > k¢—» > --- > ky by condition (1).
By induction, we will construct the sequence {k;};.
We take kq large so enough that gy, < %s(l — 5). By the induction, assume that k; has already been defined, satisfying

B < Bl < 595(1—5) < gs. Let

1

’

pr =kt +t,

32 log(supy ng)
= 1 2 2.2
=14 5oy g ) | 2, 22)

where [x] is the integer part of x.
logny~np +3° 5 k<q, 1087k
—10g61~-Cpt+2p[<k<qt(—1°gfk)'

_ 2 p <k<q (—108Ck)
—loger---cp, + 2, ckgq, (—108CH)

We conclude that there exists an integer k;11 € (p¢, ] such that

Write

Then ag, =

logn 1 s
108 My <=+ = (2.3)
—logcy,,, 2 2

Otherwise, we assume that l‘}g;”ék > 1+ 3 for k € (p¢, q¢. It follows from the definition of f, that
S+ Br, = logn -y, +Zpt<k<qf log logn ---np, —logcy---cp,
ke = = = .
t ™ _logcy e Cp F Zpr<k<qt(_ logcy) —logeq---cp, —logcy---cp, + ZPK,{gqt(—logck)
logn —logc 1 s
p> 1gk - . 1 2“‘”(1_A)+<5+5>A
o e, 1080k —loger - cp 3 g, (— 108 CK)

> =g -+ (5+3)a. 2.4
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Then inequality (2.4) implies
2Bk, . 4

X S ﬂk.
1 t
5_%+ﬁkt T-s
Notice that
—logcy---¢ 1 1
gC1 qr <

logny ---ng, s — Bk, s—s/4 T35

logny
“Togts < 1, we have

due to By, < s/4. Hence, by (2.6) and inequality

(Zpr<k<qt lognk) Ao 2 pe<k<q 1081k  loger-cq 4
logny -+ g, > pe<k<q (—logcp)  logny---ng, 35
It follows from (2.5) and (2.7) that

2 pi<k<a. 1081k _ (pr<k<qr lognk/A> Ac_ 1B B ( 1).

logny - - ng, logny - - - ng, S 35(1—s) "k 2

<
2
On the other hand,

2 p <k<q 108"k S D p<k<q; 1082 S P IOE(SUpk”k)l g2

logny ---ng, - logny ---np, + Zp[<k<qt log2 1 + ml g2

By (2.8) and (2.9), we have

q
Pt lOgt(SUPtk ) log2 16

<
1+ log2 3s(1-—5)

B <1/2,

Pt lOg(SUPk ()

which implies A = log2 < 1, and thus

Pt log(supk )
A A 16

25112 S3sa-sk

ie.,

qe—pe _ 32 log(supym)
P 3s5(1—5) log2 ke

which contradicts to (2.2). Therefore, we can take k1 € (pt, q¢] such that

lOgnkr+1 < 1 + s
—logey,, 2 2

then (2.1) follows, and thus condition (3) yields. Here

tt+1
keviZke+t2>2ke 1+ (=14t 2> €+ ),

which implies condition (1) holds. We also obtain that — 0. Consequently,

Dt
=1 1 ast
kt —f-kt—) — 0.

Letting t — oo, we notice that

k
Pt Ke+1 Pt G and ﬁ_}l

kt kt kt Dt Dt

which implies kj(—*tl — 1. Then condition (2) is proved.
For condition (4), we notice that

logny ---ng, 1 logng_y, -+ Mk —1
t—o0 logny -+ Nk, -1 t—o0 logny -+ Nk, -1

233

(2.6)

(2.7)

(2.8)
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10g g, _y) g1 |< ke—k—1) log(supy ng)

where | logn1~-nk(t71),1 ke—1) log2

— 0 due to condition (2). That means
logny ---ny, 1

lim

A St (2.10)
t—o00 10gn1 ot 'nk(t,nfl

It follows from (2.10) and condition (3) that

i logp . logergen o logorocgoy o logni Mk
t—o0 IOgCl e Ck([_1)—l t—o0 IOgCl e Ck(t_1)—l t—o0 lOgCl e Ck([_1)—l t—o0 lOgn] s M —1

logny -+ N,y -1

logny ---ny, 1

= lim / lim =s/s=1.
t—>00 — logc.l N Ck([_“*l t—00 — lOgCl s Che—1
Since supj ng < oo, we have lim;_, » k}gfﬁ%;:"‘i) =1. By (2.10), we have
o
log(ny - - - ng,) _ lim log(ny---ng,_,,—1) log(ng---ng_1) log(ng---my) .0

t>00 —510g(C1 -+ Cy_yy 1) t=>00 —S10g(C1 -+ Cy_y 1) log(ny -+ -y, 1) log(ny - -my—q)
3. Proof of Theorem 1

In the following proposition, we will construct a suitable bijection from a regular homogeneous Moran set to a symbolic
system X5 = {0, 1}*° equipped with a metric D satisfying

D(x1X2 -+, y1Y2---) = o~ min{k: Xe£Y}

Given a finite word x1---x, with x; =0 or 1 for all i, the set [x1---X;] = {y1y2--- € Xo: y;j =x; for i <n} is called a
cylinder (of length n) with respect to word x; - - - x,. For subsets A, B of metric space (X, dx), let d(A, B) denote the least
distance between A and B defined by

d(A,B)= inf dx(a,b).
acA,beB

Proposition 1. Suppose E is a regular homogeneous Moran set with structure (I, ny, c). There exists a bijection ¢ from E to X such
that when |x — y| — 0,

log D(p(x), 9(¥))

— 1 uniformly. (3.1)
slog|x — y|

Proof. Without loss of generality, let I = [0, 1]. We will construct inductively ¢ through the sequence {k;}; mentioned in
Lemma 1.

Firstly we introduce the notion of basic element by induction. Let [0, 1] be the basic element of order 0 and ko = 0.
We say that 7 is a basic element of order i, if

j=1]UU1X(J)7
x ()

where {I,};_

are basic intervals (of rank k;) with length ¢y - - - ¢, such that:

(1) J is contained in a basic element of order (i — 1);
(2) I,...,Iy(g) are arranged from left to right;

(3) dy, Iyy1) < py; for all u < x (7);
(4) for any other basic interval I’ ¢ {Iy, ..., I, (7))} of rank k;,

d(j’ 1/) 2 Pi;-
Denote by ord(J) =i the order of basic element. When () =1, J is a basic interval of rank k;. The basic elements are

well defined by above conditions (1)-(4).
Notice that x (7) is uniformly bounded. In fact,

X (J) < znkord(J) < 2(supy n). (3.2)
Suppose ord(/) =i. Since

(nki + 1)pk,- +nk,‘C1 "'Ck,' =0 "'Ck,'—'lv (33)
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the above condition d(Iy,Iy4+1) < p, implies that there are at most two basic intervals (of rank k; — 1) with length
€1---C—1 which intersects Iy U--- U I,. Otherwise, we assume that there are basic intervals (with length c1---cy;—1)
intersecting 7,

Li,Ly, ..., Ly arranged from left to right withm > 3.
Set Ly =[a, b] and denote

I, ... Iyt N {lut Iy C Lo} = {[ahb]L---,[ankisbnki]}v

which are arranged from left to right. Therefore, we have

la—a1| <pi;.  Ibj—ajpil <py forallj and |by, —b| < py;.
Then
Cl"'Ck,-—l=|a_b|=<|a—al|+2|bj_aj+l|+|bnki—b|>+2|aj_bj|
J j

< (Mg; + 1) Pk; + Nk (€1 -+ C;) =C1 -+~ Cy—1-
This is a contradiction. Then (3.2) is proved. By (3.2) and (3.3), the diameter

diam(7) < x(J7)c1 -~k + (X (T) = 1) Py <201+ Chgg -1 (34)

Let J be a basic element with ord(J) =i — 1. We ask that how many basic elements of order i which are contained in J.
Suppose that there are Q;(J) basic elements of order i in J. Then by (3.2), we have

n([<(ii1)+1) e nki
— o < Qi()) < 2(supgmp) - g T 15
2(supy ng) QD (supy k) (ki—1)+1) ki (3.5)

We let I denote the collection of all the cylinders in X», and £2; the collection of all the basic elements of order i. Let
Yo : 2; — I’ defined by

Yo([0, 1]) = X3.

By induction, we assume that ;_q : £2;_1 — I" has already been defined and ¥;_1(J) = [X1 - Xu(j)], where J is a basic
element of order i — 1. Let o (J) is the unique integer such that

20() Qi()H < 20(D+1. (3.6)
Set T=0Q;(J)—2°W),
We can take Q;(J) pairwise disjoint sub-cylinders of [x1 - - - X ()] so that their lengths are
either w(J)+o(J) or w(J)+o())+1. (3.7)
For this, we let w = [x1 - - - ()] By adding o (J) digits (0 or 1) after the word w, we get 27)) words of length w(J)+o (J),
which have the same prefix w. We denote them by
Wi, W2, ..., Wyo()).

By adding 0 or 1 after the first T words, we get Q;(J) words of lengths w(J) + 0o (J) or w(J)+o(J)+1,

wikx0, wix1, w0, wax1,...,wr*0, wr*x1, Wriq,..., Wao(p,

where w’ xa stand for a new word generated by add digit a after word w’. Then

[X1 - Xl = ( L (tw 01U [w; * 1])) U ( U[wj]) (3.8)
J<T j>T
is a disjoint union and there are Q;(J) sub-cylinders on the right hand of (3.8). Then by induction, there is a bijection from
{J/ c J: ord(J") =i} to Q;i(J) pairwise disjoint sub-cylinders of [x; -« X, ()] as in (3.8). Then ; : £2; — I" is well defined
by induction.
For any x € E, there exists a unique sequence of basic elements {I;};, where [; is of order i, such that {x} =), I;. Let
@(x)(€ X>) be defined by

o} =il (3.9)
i=0

We shall verify formula (3.1) for ¢.
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Given different points x, y € E, we suppose that J is the smallest basic element containing both x and y. Assume J is of
order (i — 1), and J; and J, are distinct basic elements of order i contained in ] such that

xX€ J1, Y€ Ja (3.10)

By the condition (4) in the definition of basic element, we have

X =yl = px;- (3.11)
On the other hand, by (3.4), we have

Ix— yI < diam()) <261+ €y 1. (312)
It follows from (3.11), (3.12) and condition (4) of Lemma 1 that

log(ny ---ny,

M — 1 uniformly asi — oo. (3.13)

—slog|x — y|

On the other hand, it follows from (3.7) that

y—w())=o())-1 < D(QD(X), (P(Y)) < 2—w())
By (3.5) and (3.6), we have
1
4(supy ni)
Denote by w(J) the length of cylinder vorq(jy(J). Set ko =0, and

n(k(i_1)+1) e nki < 20(]) < z(supk nl{)n(k(i_1)+1) e nk,‘- (314)

¥o([0,1])= %2, ([0,1])=0 and ord([0, 1]) =0.
We shall check the following inductive assumption:
M1 Mhorag)
(4supy ng)0rd))

For ord([0, 1])=0, we have (4sup;, ;)0 < 2° < (4supy, ni)°. This is true.
Assume (3.15) is true for ord(J)=i— 1, we shall check it for i. In fact, for basic element J' C J with ord(J’) =i, we have
o)) =w(])+o(J) or w(])+0o(J)+1. Then by (3.14),

1
—m
(4supy ng)'!

Then (3.15) is proved.

For x € J1, y € J» mentioned in (3.10), we notice that w(J1), w(J2) € [w(])+o(]),w(]J)+0o(J)+ 1] and ¥i(J1), ¥i(J2)
are disjoint. Using (3.15), we have

<290 < (@supgm)® 4 ny -y (315)

ord(J)

ey, < 20()+a () < 20" < gw(N+o()+1 < (4supy nk)i RO

(Asuppn) T (ng - -my) T < 27 MAE@UD@UD) < D (p(x), o)) <279 < @supn) T (g mg )T

logny--n,

Notice that T L — 1 due to (2.10) and sup, ny < oo. By condition (1) of Lemma 1, we have i/k; — 0. Therefore,

i—1
log D(p(x), ()

— 10gn1 - nk,'
It follows from (3.13) and (3.16) that

— 1 uniformly as i — oc. (3.16)

logD(¢®). p(¥) _ 1. logny - - -ny, _q
Ix-y|-0  slog|x —y| i—oo logny - --ny, ’

where i — oo uniformly when |x — y| — 0 due to (3.13). O

Proof of Theorem 1. We only need prove that if E and F are regular homogeneous Moran sets with dimy E =dimy F =,
then they are quasi-Lipschitz equivalent.

It follows from Proposition 1 that there are two bijections ¢q : E — X3 and ¢, : F — X, such that for x1,x, € E and
01,02 € X,

log D(¢1(x1), ¢1(x2)) N
slog[x1 — x2|

1 uniformly,
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and

slogley ' (1) — 95 ' (62)]
log D (61, 62)

— 1 uniformly,

as |x; —x2| — 0 and D (6, 62) — 0. Therefore, go;] o@1: E— F is a bijection satisfying

logle, ' (@1(x1)) — @5 ' (@1(x2))]
log|x1 — x2|

— 1 uniformly,

ie., gaz_] o ¢ is the bijection desired. O
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