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The property of asynchronous exponential growth is analyzed for the abstract 
nonlinear differential equation i’(f) = AZ(~) + F(z(t)), t 2 0, z(0) =x E X, where A is 
the infinitesimal generator of a semigroup of linear operators in the Banach space 
X and F is a nonlinear operator in X. Asynchronous exponential growth means that 
the nonlinear semigroup S(t), I B 0 associated with this problem has the property 
that there exists i, > 0 and a nonlinear operator Q in X such that the range of Q 
lies in a one-dimensional subspace of X and lim,,, em”‘S(r)x= Qx for all XE X. 
It is proved that if the linear semigroup generated by A has asynchronous 
exponential growth and F satisfies \/F(x)11 < f( llxll) ilxll, where f: [w, --t Iw + and 

1” (f(rYr) dr < ~0, then the nonlinear semigroup S(t), t >O has asynchronous 
exponential growth. The method of proof is a linearization about infinity. Examples 
from structured population dynamics are given to illustrate the results. 0 1992 

Academic Press. Inc. 

INTRODUCTION 

The concept of asynchronous exponential growth arises from linear 
models of cell population dynamics. It is well known to cell biologists that 
a population of dividing cells that is initially synchronized with respect to 
position in the cell cycle loses synchrony after a few generations [29]. This 
asynchronization of the population results from an inherent variability of 
cells with respect to their age or size at time of division. Asynchronization 
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means a loss of initial information, but not a loss due to convergence to 
equilibrium. Instead the population continues to grow exponentially and as 
it does population structure reorganizes so that proportions of the popula- 
tion with respect to structure converge to constant values independent of 
initial data. This kind of behavior is called asynchronous exponential 
growth by cell biologists. It is observed in growing cell populations 
unconstrained by resource limitations. The mathematical models that 
describe these phenomena fall within the subject of linear structured 
population dynamics and have been extensively developed by many 
researchers [l-3, 11, 14, 15, 17, 19, 21, 26, 28, 31, 33, 341. 

The phenomenon of asynchronous exponential growth is also recognized 
by mathematical demographers in linear models of age-structured human 
populations. These models predict dispersion of any initial age distribution 
to a stable age distribution even as the population grows exponentially to 
infinity. This dispersion proceeds in such a way that the proportion of the 
population within any age range converges to a limiting value independent 
of the initial age distribution. Demographers call this kind of behavior 
strong ergodicity and it is commonly observed in human populations with 
fertility and mortality rates unaffected by crowding. Many mathematical 
researchers have analyzed asynchronous exponential growth in linear 
age-structured population dynamics [4, 16, 18, 22-25, 30, 32, 351. 

It is the purpose of this paper to study the phenomenon of asynchronous 
exponential growth in nonlinear models of population growth. The 
inclusion of nonlinearities in population models is usually designed to halt 
exponential growth and force convergence to stable equilibria or stable 
cycles. The role of nonlinearities in these models is to account for crowding 
effects and to stabilize population growth. For some models of population 
growth nonlinearities play a different role. Their role is not to control 
unlimited and unstabilized growth, but to control dispersion and interac- 
tion of subpopulations. Such models allow exponential growth to infinity, 
but still describe population behavior as nonlinearities become important 
before crowding effects become dominant. An example of such a model is 
tumor cell population growth with proliferating and quiescent cell sub- 
populations. It is not expected that a tumor will grow until it stabilizes to 
equilibrium, but that it will simply grow. The importance of nonlinearities 
in this model lies in the increasing inclination of proliferating cells to 
become quiescent as tumor size increases. Clinicians describe this 
phenomenon as the diminishing growth fraction, which is just the 
decreasing proportion of proliferating tumor cells as the tumor grows. This 
type of growth is analogous to asynchronous exponential growth found in 
linear models of population dynamics. 

To formulate a nonlinear version of asynchronous exponential growth 
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we will view a nonlinear model of an exponentially growing population as 
being asymptotically linear. We thus require that the nonlinear processes in 
the model converge to linear processes as the population becomes large. 
The abstract nonlinear differential equation describing this growth has the 
form 

z’(t) = Az( t) + F(z( t)), t>o, z(O)=xeX, 

where X is a Banach space, A is a linear operator in X, and F is a nonlinear 
operator in X. We hypothesize that llF(z)ll <f(Ilzlj) 11~11, wheref: R, -+ R, 
satisfies l” (f(r)/r) dr < co. We also hypothesize that A is the infinitesimal 
generator of a strongly continuous semigroup T(t), t > 0 of bounded 
linear operators in X. We require that T(t), t 3 0 has asynchronous 
exponential growth with intrinsic growth constant 1>0. This means that 
lim,,, e -“‘T(t) = P, where P is a rank one projection in X. We will 
provide sufficient conditions to establish that for x E X, lim,, m e-“‘z(t) 
exists, is nonzero, and lies in the range of P. The solutions will therefore 
exhibit nonlinear asynchronous exponential growth in the sense that after 
multiplication by an exponential factor in time they converge to a nonzero 
limit lying in the range of P. 

Our analysis of the nonlinear problem is a linearization about infinity. 
Our hypotheses will guarantee that as the solutions become infinite they 
inherit the properties of solutions of the linearized problem i’(t) = Ai( In 
particular, the solutions of the nonlinear problem will have the property 
that proportions of the population converge to a limit independent of the 
initial data. That is, if k,, k,EX*, then the ratio (z(t), k,)/(z(t), k2) 
converges to a limit independent of z(0) as t approaches infinity. This 
convergence of proportions is characteristic of age-structured or size- 
structured populations during their growth phase. 

The organization of this paper is as follows: In Section 1 we state and 
prove our main results for the nonlinear semigroup of operators associated 
with the abstract nonlinear differential equation. In Section 2 we extend 
these results using the duality theory of semigroup theory. In Section 3 we 
illustrate the results with examples. 

1. MAIN RESULTS 

Let X be a Banach space, let X* be its dual space, and let B(X) be the 
space of bounded linear operators in X. If X is also an ordered Banach 
space, let X,, X*, , and B(X) + be the positive cones of X, X*, and B(X), 
respectively. 
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DEFINITION 1.1. A strong/y continuous semigroup is a family of map- 
pings T(t), t 3 0 in X such that (i) for every t 3 0, T(t) is a continuous 
(possibly nonlinear) operator from X into X, (ii) T(O)x = x for XE X, 
(iii) T(~+s)x= T(t) T(s)x for s, ~30, XEX, and (iv) T(t)x is continuous 
in t for x E X. If r(t) E B(X) for t > 0, then the semigroup is called linear 
and if T(t)(X+) c X, for t 3 0, then the semigroup is called positive. 

DEFINITION 1.2. T(t), t 2 0 has asynchronous exponential growth if and 
only if there exists a positive constant A> 0 and a nonzero (possibly non- 
linear) operator P in X such that R(P) is contained in a one-dimensional 
subspace of X and for each x E X, lim, _ 3c e ~ rtr( t) x = Px. The constant ;1. 
is called the intrinsic growth constant (it is uniquely determined, since P is 
nonzero). In the linear case P is a projection called the spectral projection. 
The asynchronous exponential growth is called uniform if and only 
if lim,+,e -“T(t)x= Px uniformly for x in bounded sets of X. It is 
exponential if and only if there exists M> 0 and 6 > 0 such that 
lie-“T(t)x- Pxll d Me-“’ llxl/ for all x in X. If X is an ordered Banach 
space, Y c X, , and Px20, Px#O for all XE Y-(O), then the 
asynchronous exponential growth is strictly positiue on Y. If, in addition, 
Px is a quasi-interior point of X, for all XE Y- (Oj, then the 
asynchronous exponential growth is ergodic on Y (X is a quasi-interior 
point of X, if and only if XE X, and (x, x* ) > 0 whenever 
x*ex*, - (0)). 

Remark 1.1. In the linear case it is known that the linear semigroup 
T(t), t > 0 with infinitesimal generator A has uniform asynchronous 
exponential growth with intrinsic growth constant A> 0 if and only if (1) 
1 is a simple eigenvalue of A, (2) ;1> Re I, for any i, #A in G(A), and (3) 
lim,,, (l/t) log(cc[T(t)])<%, where cr[T(t)] is the measure of noncom- 
pactness (see [24, Proposition 3.1; 36, Proposition 2.31). In the linear case 
uniform asynchronous exponenal growth is necessarily exponential (see 
[36, Proposition 2.31) and uniform asynchronous exponential growth is 
ergodic on X, provided that T(t), t > 0 is irreducible; that is, if 
XEX, - (O}, x*ex: - {0), there exists ~20 such that (T(t)x,x*)>O 
(see [ 10, Theorem 9.111). Example 3.1 in Section 3 shows that for a linear 
semigroup strictly positive asynchronous exponential growth in X, need 
not be uniform or ergodic. Example 3.2 shows that for a linear semigroup 
uniform asynchronous exponential growth need not be ergodic in X, . 

Consider the abstract semilinear differential equation in X 

z’(t)=Az(t)+F(z(t)), t20, z(O)=xEX. (1.1) 

We require the following hypotheses: 
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(H.l) A is the infinitesimal generator of a strongly continuous linear 
semigroup T(t), t > 0 in X and there exists A > 0 such that for each x E X, 
Px :=limtdoo e -‘?(t)x exists (P is necessarily in B(X) and is a projection 
on X). 

(H.2) F maps X into X and is Lipschitz continuous on each bounded 
set of X. 

(H.3) There is a nonincreasing functionffrom IR, into R, such that 
IIF(x)ll <f(Ilxll) llxll for all x~x. 

(H.4) lz (f(r)/r) dr < cc for all y0 > 0. 

The hypotheses (H.l k(H.3) guarantee the existence of a unique mild 
solution to (l.l), that is, a continuous function z: R! + + X satisfying 

z(t)= T(t)x+I’ T(t-S) F(z(s))ds, t 2 0. 
0 

(1.2) 

Furthermore, the solutions of (1.2) form a strongly continuous semigroup 
S(t), t>O in X by the formula S(t)x :=z(t) (see [27, Chap. 81). (We note 
that the full strength of the hypotheses (H.1))(H.3) is not needed for 
the existence of solutions to (1.2) and in particular the asynchronous 
exponential growth of T(t), t b 0 is not needed.) 

THEOREM 1.1. Let (H.1))(H.4) hold. If XEX, then lim,,,eeA’S(t)x 
exists and is Qx := P(x +sF e-““F(S(s)x) ds). Zf the convergence of 
e -‘,‘T(t)x to Px is uniform on bounded sets of x E X, then the convergence 
of e-“‘S(t)x to Qx is also uniform on bounded sets of x E S. 

Prooj From (H.l) and the Principle of Uniform Boundedness there 
exists a constant C1 such that 

e-‘.’ II T(t)ll 6 C, for t 3 0. (1.3) 

From (1.2) we obtain 

e -“‘S(t)x=e-“‘T(t)x+j’e- ‘(‘-s) T(t -s)e-““F(S(s)x) ds, 
0 

x E x, t 2 0, (1.4) 

e --If Ils(t)Xll dc, jlxll+ C,f(O)~~e-" llS(s)xll ds, 

x E x, t 2 0. (1.5) 
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By Gronwall’s lemma 

e-“’ llS(t)xll < c, IIx~I eC”“o”, .Y E x, t 3 0. (1.6) 

Let c > 0 and let B, := {x E A’: I~.Y// d c}. We claim 

There exists a constant K,. such that e-” l(S( t)xll < K,. for x E B,. and t 2 0. 

(1.7) 

Let 0 < 6 < A and use (H.4) to choose t, such that j~&,tdzA! (f(r)/r) dr < 
(6/2C,).Let XEB,., t>t,, and define 52:={s~[t,,t]:e~ “IIS(s)xlj<c}. 
From (1.4) and (H.3) 

C,f(llS(sblI )e -A’ IIS(s)xll ds, t, 6 t. (1.8) 

By (1.6) the first integral in (1.8) is bounded by a constant independent 
of t > t, and XE B,. The second integral in (1.8) is bounded by 

ji, Clf(OW - (’ ‘)‘c ds< C,cf(O)/(A- 6). The third integral in (1.8) is 
bounded by j:, C,f(cess)eMis lIS(s)xlI dsd(s~p,,~~~~e~~’ IlS(s)xll)(CJS) 

S” rexptgr,, (f(r)/r) dr. The claim (1.7) now follows. 
We next claim that for c > 0 

lim ‘ePis F(S(s)x) ds 
s 

exists uniformly for x E B,. (1.9) t+oc ” 

Let 0 < t, < t and let $2 be as before. Then (1.9) follows from 

To prove the claims of Theorem 1.1 let 0 < t, < t, let x E B,, let $2 be as 
before, and observe that 

x Ij(e-4-s) T(t-s)-P)ep”“F(S(s)x)l( ds. 

The claims of Theorem 1.1 now follow using arguments similar to the ones 
above. 1 
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In the following theorem we establish some properties of Q. 
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THEOREM 1.2. Let (H.l)-(H.4) hold. 

Qx = e-l’ QS(t)x 

and (1.11) 

Qx=P e 
[ 

-lr S(t)x + !^: e -” F(S(s) x) ds for x E X, 1 t 2 0. 

Q is uniformly continuous on bounded sets of X. (1.12) 

Qx=Px+o(llxll)as llxll --$ co 

(that is, if& > 0 there exists M, > 0 such that if llxll > M,, 

then IlQx - PxJI < E jlxll). (1.13) 

lim 1 Q(rx) = Px for x E X. 
r-m r 

If Px # 0, then Q(rx) # 0 for r sufficiently large, 

Let x E X and let there exist a sequence t, + co such that 
IIS(t,)xll -+ 00. Zf Qx=O, then lim,,, PS(t,)x/llS(t,)xll 
= 0. Zf Qx # 0, then lim, _ o. P~(tnb/ll~(~,bll = QxillQxll. 

(1.14) 

(1.15) 

(1.16) 

Proof Claim (1.11) follows from Theorem 1.1 and the fact that 
Qx = e-i.’ lim,, o. epA(s-r) S(s - t) S( t)x. We next claim 

If c > 0 and t > 0 there exists a constant C(c, t) such that 
epAt IlS(t)x, -S(t)x,(( dC(c, t) (lx, -x2(/ for x,, x~EB,. (1.17) 

By (H.2) and (1.6) there exists C’> 0 such that for 0 <s 6 t, xi, x2 E B,, 
IIF(S(s)x,) - F(S(s)x,)ll 6 C’ IIS(s)x, - S(s)x,l(. Then (1.4) implies (with 
C, as in (1.3)) 

e-” IlS(t)x, - S(t)x,ll d C, 11x1 -x211 + C,C’ ji ep”” (IS(s)x, - S(s)x,ll ds 

and Gronwall’s Lemma yields (1.17) with C(c, t) = CleCtC”. To prove 
(1.12) let O<kA, let c>O, let E>O, and let t,>O such that 
SE% (f(r)lr) dr < s/4K ( w h ere K, is as in (1.7)) andf(0)e-(AP6)‘1/(A-d)< 
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e/4. Let x,,x~EB, and let sZ,:= {s3t,:e I” l1S(s)x,ll 6 I}, i= 1,2. From 
(1.11) and (1.17) we obtain 

d IIPII CC(c, t,) I/x, -x*1/ + El. 

and claim (1.12) follows. 
We next claim there exists C > 0 and A4 > 0 such that 

e-‘.’ llS(t)xll <c llxll for llxll aA4, t30. (1.18) 

Let 0 < 6 < /z and choose M such that (l/S) fz (f(r)/r) dr -c 1. Let x E A’ be 
such that llxll aM, and let D := ($20: lIS(s)xll <es’ llxll}. Then for t 20 

e?’ IIs de-” II T(t)xll + f(IIS(s)xll) cAS IIS(sbll ds 

G c1 llxll +f(O) Ilxlll(~ - 6) 

+( max e-‘” 
O<S<! 

IIO)xll) f I,;,$) dr li 

which implies (1.18). Let E>O, let llxli aM, and let Q,:= (~30: 
IjS(s)xll <aesS Ilxll}. From (1.18) we obtain 

IIQx-WI d IlPll 1 + j 1 S(II~(~)xll) epis II~(~bll ds 
Q, ro.=)bnz 

which implies (1.13), and then (1.14) and (1.15) 
(1.13). 

To prove (1.16) let XE X and let there exist 
t, + co and IIS(t,)xll + cc. Let E >O and let 
ll~(t,Jxll > Me, then 

J 4’Il r 

follow immediately from 

a sequence t, such that 
M, be as in (1.13). If 

Ii 
&S(t,)x PS(r,)x 
II~(Lbll- IIs(t,)xll <&. II 

By (1.11) QS(t,)x/llS(t,)xll =Qx/llep”‘nS(t,)xjl and (1.16) then follows. 1 
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Remark 1.2. If X is an ordered Banach space, s(t)X+ c X, for t > 0, 
PxEX, - (0) for XEX, - {0}, x E X, - {0}, and there is a sequence 
t,+ co such that IlS(t,)xll + cc and S(t,)x/llS(t,)xll converges, then 
Qx#O. This claim follows from (1.16) since if S(t,)x/llS(t,)xll + z, then 
z E X,, /Iz(I = 1, z # 0, and PS(t,)x/l/S(t,)xll + Pz # 0. If X is finite dimen- 
sional, then S(t,)x/llS(t,)xll has a convergent subsequence, and thus 
Qx#O if IlS(t,)x(l + ~0. 

THEOREM 1.3. Let (H.1))(H.4) hold. If T(t), t 20 has (uniform) 
asynchronous exponential growth, then S(t), t > 0 has (uniform) 
asynchronous exponential growth. 

Proof. If P # 0, then Q # 0 by (1.14). If R(P) is one-dimensional, then 
R(Q) lies in a one-dimensional subspace by Theorem 1.1. If the 
convergence of ee”‘T(t) to Px is uniform on bounded sets, then the 
convergence of e-“‘S(t)x to Qx is uniform on bounded sets by 
Theorem 1.2. 1 

Remark 1.3. A useful consequence of asynchronous exponential growth 
is that ratios determined by linear functionals converge to a limit indepen- 
dent of initial data. For the nonlinear semigroup S(t), t 2 0 corresponding 
to (1.1) we make the following observation: Let (H.l )-(H.4) hold, let 
k,, k, E X*, let T(t), t > 0 have asynchronous exponential growth, and let 
Y= {xEX: (Qx, k2)) #O, and (Px, k,) #O}. Since R(P) is one-dimen- 
sional, there exists x0 E X and k E X* such that Px = (x, k ) x0 for all x E X. 
Let XE Y and let y :=x+jFep2”F(S(s)x)ds. Then lim,,, (S(t)x, k,)/ 

(s(tb> kz) = (Qx, k, >l(Qx, k,) = (PY, k, >/<PY, kz) = (xc,, k, >I 
(x,,k,)=(Px,k,)/(Px,k,)=lim,,, (T(t)x,k,)/(T(t)x,k,). Thus, 
the limit of the ratio determined by k, and k, with S(t), t > 0 is the same 
as with T(t), t 3 0 and is independent of y E Y. 

Additional information concerning the set on which Q is nonzero can be 
obtained in the setting of an ordered Banach space. 

THEOREM 1.4. Let X be an ordered Banach space, let (H. 1 )-( H.4) hold, 
and let YC X, be such that 

(H.5) PF(S(t)x)>Ofor XE Y, tap. 

If T(t), t > 0 has asynchronous exponential growth strictly positive (ergodic) 
on Y, then S(t), t 2 0 has asynchronous exponential growth strictly positive 
(ergodic) on Y. 

Proof: The claims of the theorem follow immediately from Theorem 1.1 
and the fact that Qx > Px for all x E Y. [ 
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THEOREM 1.5. Let X he un ordered Banach space, let (H.l))(H.4) hold, 
and 

(H.6) There exists L E B(X) and a constunt M, > 0 such that A -L is 
the infinitesimal generator of a positive linear semigroup T,(t), t 2 0 in X 
having asynchronous exponential growth strictly positive on X, with intrinsic 
growth constant i L, spectral projection P,, and satisfying Lx + F(x) 3 0 ,for 
all x E X, such that llxll > M,. 

(H.7) There exists c > 0 such that 11 Pxll 3 c I/XII for all x E X, 

Then, S(t), t > 0 has asynchronous exponential growth strictly positive on 
Y= {xEX,: IlS(t)xll 3M, and S(t)xEX+ - (0) for t suffiiently large]. 

Proof Let x E Y. There exists t, such that IIS( t)xll 2 M, for t 3 t, . Let 
x1 := S(t,)x. For t30 

I 
I 

S(t)x, = TL(t)x, + TL(t-s) [LS(s)x, + F(S(s)x,)l ds2 TL(t)x,, 
0 

which means ePALrS(t)xl -epiLrT,(t)x, EX, for all t>O. By (H.6) 
lim,+, e p’LrTL(t)x, = P,x, EX, - (0). Since X, is norm closed and 
proper (see [lo, p. 265]), there exists d>O such that ePAL’ Il,S(t)x,II >d for 
all t 20. Thus, lim,,, IlS(t)xll = co, and the conclusion of the theorem 
follows from (H.7) and (1.16). 1 

2. ASYNCHRONOUS EXPONENTIAL GROWTH OF SEMIGROUPS 
ON DUAL BANACH SPACES 

Many concrete problems that arise in applications, most notably models 
of structured populations and functional differential equations, can be for- 
mulated abstractly as Cauchy problems of the form (1.1) with the excep- 
tion that the function F takes values, not in B(X) but in B(X, Z), where Z 
is a superspace of X. For instance, age dependent population problems 
with nonlinearities in the birth rate cannot be treated as abstract Cauchy 
problems in L’ within the framework of the previous section. If, on the 
other hand, one lets the nonlinear terms take on values in the bigger space 
A4 of Bore1 measures, then the problem can at least formally be written as 
an equation of type (1.1). This is due to the fact that all neonates enter the 
population with age zero; thus the source term describing the birth process 
is a measure concentrated at the origin and not an L’-density (see [S]). 

It is the purpose of this section to show that the results of the previous 
sections hold, mutatis mutandis in the case where the nonlinear part takes 
on values in a superspace. Of course, this problem does not even make 
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sense if the semigroup generated by the linear part cannot be extended to 
the bigger space. We will therefore start by looking at the linear problem 
in the spirit of the theory of weakly * continuous semigroups and the per- 
turbation theory of dual semigroups as developed in [S-9, 12, 131 which 
provides a means of such an extension and a functional analytic framework 
for the nonlinear theory. 

Typically, the solutions to a linear population problem define an integral 
w*-semigroup T x (t), t 2 0 of bounded linear operators on a dual Banach 
space A’*. This means, by definition, that in addition to the properties 
T x (0) = Z, T ’ (t + S) = T x (t) T x (s), t, s 2 0, T x (t), t 2 0 satisfies 

(x, T”(t)x*-x”) +O as tJ0 for all xEXand all x*EX*, (2.1) 

T”(t)j;T”(r)x*d~=j’T”(t+r)x*dt, t, s k 0. (2.2) 
0 

The integrals in (2.2) are w*-Riemann integrals. The semigroup T x (t), 
t > 0 is generated by an operator A x on X* in the following sense 

x*ED(A*) and AXx*=y* if and only if 

-$(x, T”(tb*)= (x, T”(t)y*), XEX, t>o. 

s I For all x* E X*, t > 0, Tx(~)~*d~~D(AX) and 
0 

A” ji T”(T)x* dz= T”(t)x*-xx*. 

(2.3) 

(2.4) 

The subspace X0 := D(A X ) of X* is the maximal subspace on which 
T ’ (t), t > 0 is strongly continuous. TO(t) := T x (t) 1 X~ is a Co-semigroup 
with infinitesimal generator Ao-the part of A x in X0. In age dependent 
population problems X0 can be identified with L’[O, cc) and the 
C,-semigroup TO(t), t > 0 is the usual solution semigroup on this space. 
The semigroup T x (t), t 2 0 acting on the bigger space X* z M[O, co) is 
then obtained by some sort of extension procedure, for instance by using 
the following duality framework. 

Let To*(t), t b 0 be the dual semigroup on the dual space X0* of X0 
and let Too := TO* I+, where X00 := D(Ao*) is the maximal subspace 
of strong continuity of TO*(t), t > 0. The infinitesimal generator ,400 of 
TOO(t), t 2 0 is the part of AO* in X00. There is a pairing [ , ] between 
X00 and A’*, which satisfies 

lcxm, x*11 GM llx~ll IIx*lL XOEXO, x*EX* (2.5) 
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for some constant M < a. The pairing is canonical in the sense that 
whenever the ordinary duality pairing is defined (i.e., if either x-O(JE X or 
x* EXO) then the [ , ]-pairing coincides with the ordinary one. It was 
shown in [8] that although T x (t), t > 0 is in general not the adjoint of any 
strongly continuous semigroup on A’, it is always the adjoint of Too(t), 
t > 0 with respect to the pairing [ , 1, that is 

[T”O(t)xsc, x*] = [x00, T x (t)x**], t 3 0. (2.6) 

Moreover. 

[Aoox’m, x*1 = [x-), A xx*], XC~c: E D(A=)), x* E D(A x ). (2.7) 

We refer the reader to [S] for more details. 
In the previous section we proved results stating that if the linear 

problem had asynchronous exponential growth, then the same was true of 
the nonlinear problem. When the nonlinear perturbation takes on values in 
a bigger space we need to know that the linear semigroup T ’ (t), t 3 0 
acting on the bigger space has asynchronous exponential growth. In 
practical problems the semigroup TO(t), t 2 0 acting on the smaller space 
can usually be obtained by a constructive procedure (successive 
approximations) and it is often a relatively easy task to determine whether 
TO(t), t 2 0 has anynchronous exponential growth or not. The following 
theorem which states that T x (t), t 3 0 has asynchronous exponential 
growth provided TO(t), t 2 0 has (the converse is almost trivial) is 
therefore of importance for the nonlinear problem although it has some 
intrinsic interest as well. Since we do not want to introduce yet another 
concept of asynchronous exponential growth (corresponding to the weak 
topology on X* induced by X(10) we will restrict ourselves to at least 
uniform asynchronous exponential growth. 

THEOREM 2.1. Let T x (t), t 3 0 be an integral w*-semigroup with 
generator A x (in the sense of (2.3), (2.4)). T”(t), t 30 has uniform 
asynchronous exponential growth if and only if TO(t), t > 0 has. If this is the 
case, they have the same intrinsic growth constant II and there exists an 
eigenvector e0 of A0 and an eigenvector eO0 of Aa, both corresponding to 
the eigenvalue 1, such that the spectral projection P X of T X (t), t 2 0 is given 
bv 

Pxx* = [coo, x*]eO. (2.8) 

The spectral projection PO of Ta( t), t > 0 is the restriction of P” to X0. 
Moreover, both TO*(t), t > 0 and TOO(t), t 2 0 have uniform asynchronous 
exponential growth with intrinsic growth constant 1 and spectral projections 
PO* and Pm := PO* JXoo, respectively. 
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Proof: Let T x (t), t >, 0 have uniform asynchronous exponential growth 
with intrinsic growth constant 1 and spectral projection P x. Since P x is of 
rank one, it is of the form 

P”x* = (x*, e** >e* (2.9) 

for some e** E X**, e* E X*. Since P” is a projection we must have 
(e*, e** ) = 1. The defining property P x := lim, _ 3. epirT x (t) implies 

P”T”(t)=T”(t)P” =eirPX. 

Thus t + e”T” (t) P x x* is even strongly differentiable for all x* E X* with 
derivative LT x (t) P Xx*. It follows from the definition of the generator A x 
that P”x*~ll(A”)cX~ and A”P”x*=2P”x*. Since Aa is the part of 
A” in X0, it follows that in fact P”x* E D(Ao). In particular, 
e* =: eoe 9(Ao) c X0 is an eigenvector of A0 corresponding to the 
eigenvalue 2 and 

P”x* = (x*, e**)eo. (2.11) 

It is now obvious that Ta( t), t 2 0 has uniform asynchronous exponential 
growth with spectral projection 

Pox0 = (x0, eO* ) eo, (2.12) 

where ea* is the restriction of e** to X0. 
Assume now that To(t), t 2 0 has uniform asynchronous exponential 

growth with intrinsic growth constant A. The spectral projection is then 
necessarily of the form (2.12). Since taking adjoints preserves the operator 
norm, it is clear that TO*(t), t > 0 has uniform asynchronous exponential 
growth with the same intrinsic growth constant and spectral projection 

p~*~o* = (x0*, e(3) ea*. (2.13) 

Exactly as we above concluded that e* =: e0 is an eigenvector of AO, we 
now conclude that eO* =: em E 9(AOo) c X0> is an eigenvector of Aa 
corresponding to the eigenvalue A. In particular Ta( t), t > 0 has uniform 
asynchronous exponential growth with spectral projection 

POOxOO = (x00, e0) eO0. (2.14) 

From expression (2.14) it is clear that Pa is continuous with respect to 
the weak topology on X00 induced by X* through the pairing [ , 1. Pm 
thus has a unique adjoint P x with respect to this pairing. Obviously P” 
is given by 

P xx* = [eoa, x*] eo. (2.15) 

409/167/2-11 



456 GYLLENBERG AND WEBB 

Taking adjoints with respect to the pairing [ , ] does not preserve norms, 
but by (2.5) 

/I(’ j’TX(t)-PX 11 <M I/e “‘T )~.j(f)-p~~~:l~. (2.16) 

Thus T x (t), t 3 0 has uniform asynchronous exponential growth with 
intrinsic growth constant ;1 and spectral projection P” defined by 
(2.15). 1 

We now turn to the nonlinear problem. As mentioned above we shall 
assume that T x (t), t > 0 satisfies the following modified version of (H.l): 

(H.l)’ T ’ (t), t 3 0 is an integral o* semigroup with generator A X 
having uniform asynchronous exponential growth with spectral projection 
P” and intrinsic growth constant i. 

Hypothesis (H.2) is replaced by 

(H.2)’ F maps X0 into X* and is Lipschitz continuous on bounded 
subsets of X0. 

By (H.3)’ we simply mean (H.3) where XEX is replaced by ~0~x0. 
Consider the abstract Cauchy problem 

z’(t)=A”z(t)+F(z(t)), t30, z(o)=xoEx~‘. (2.17) 

Observe that we restrict our attention to initial values in X0. 

THEOREM 2.2. Let (H.l )‘-(H.3)’ hold. The variation of constants formula 

s I S(t)xo= To(t)xo+ T’(t-s)F(S(s)xo)ds (2.18) 
0 

uniquely determines a strongly continuous semigroup of nonlinear operators 
S(t), t > 0 on X0, where z(t) = S(t)xo is the unique mild solution to (2.17). 

For a proof of Theorem 2.2 see [7, 81. As in the corresponding result of 
Section 1, asynchronous exponential growth of T”(t), t g0 is irrelevant in 
Theorem 2.2. The proof of Theorem 2.2 depends on the following lemma. 

LEMMA 2.3. Let T x (t), t 2 0 be as above and let g: R + + X* be 
continuous. Let A42 1, w E (w be chosen such that 11 T x (t)ll 6 Me”‘. Then 

(i) The mapping t + s; T x (t - s) g(s) d s is continuous with values 
in X0. 

(ii) There exists a constant M, 2 A4 such that 11s; T x (t-s) g(s) dsli < 
M,((e”‘- 1)/w) woGsGr II&)ll. 
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Part (i) of Lemma 2.3 shows that the variation of constants formula 
(2.18) makes sense in X0 and part (ii) shows that (2.18) can be solved by 
successive approximations in the standard manner. Lemma 2.3 also shows 
that all the estimates in the proofs of Theorem 1.1-1.5 hold verbatim in this 
more general situation. For instance we have the following analogues of 
Theorems 1.1 and 1.3. 

THEOREM 2.4. Let (H.l)‘-(H.3)’ and (H.4) hold. If xOEXO, then 
Q~O:=lirn~_~ e ~ “S( t ) x0 exists and 

QxO=Px -““F(S(x)xo) ds . (2.19) 

Moreover, the convergence of ee”S( t)xa to Qxo is untform on bounded sets 
of X0, and hence S(t), t > 0 has untform asynchronous exponential growth. 

It is immediately clear that the operator Q : X0 + X0 has all the proper- 
ties proved in Theorem 1.2 provided that x E X is replaced by x0 E X0 and 
P is replaced by PO (or by P” in (1.11)). Theorem 1.4 and 1.5 have 
analogues, too. Since these results depend on the order structure of the 
spaces we recall that if X is an ordered Banach space, then so are X* and 
X0. One has Xy= XOn X*, . The proof of the following theorem is as 
obvious as its analogue Theorem 1.4. 

THEOREM 2.5. Let X be an ordered Bunach space, let (H.l)‘-(H.3)’ and 
(H.4) hold, and let Y c X ‘: be such that 

(H.5)’ P”F(S(t)xo)>O for XOE Y, t>O. 

Zf T x (t), t Z 0 as asynchronous exponential growth strictly positive (ergodic) 
on Y, then S(t), t > 0 has asynchronous exponential growth strictly positive 
(ergodic) on Y. 

For the sake of completeness we close this section by stating the 
analogue of Theorem 1.5. 

THEOREM 2.6. Let X be an ordered Banach space, let (H.l )‘-(H.3)‘, 
(H.4) hold, and 

(H.6)’ There exists L E W(XO, X*) and a constant M, 2 0 such that 
A x -L is the generator of a positive integral w*-semigroup TL (t), t > 0 
having uniform asynchronous exponential growth strictly positive on X(; with 
intrinsic growth constant A,, spectral projection PT , and satisfying 
Lx0 + P(xQ) 2 0 for all X~E X(: such that llxoll > M,. 

(H.7)’ There exists c > 0 such that IIPOxOll > c llxall for all x0 E X(j. 
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Then, S(t), t 3 0 has uniform asynchronous exponential growth strictl). 
positive on Y= (xOEX9: IIS(t)x”ll >M,~ andS(t)x’EX+ {O},for t .wf 
ficiently large }. 

3. EXAMPLES 

The examples below illustrate linear and nonlinear asynchronous 
exponential growth. An additional example of nonlinear asynchronous 
exponential growth for a size-structured cell model of tumor growth with 
proliferating and quiescent classes is given in [21]. 

EXAMPLE 3.1. Let X= I,, IlXlI :=x7=, ]xkl for X= {xk} EX. Define 
A: X-+X by (Ax), := C,“=, x,/k, (AX)I, := ((k - l)/k)x,, k = 2, 3, . . . . It 
is easily seen that A is the infinitesimal generator of a linear semigroup 
T(t), t>O given by (T(t)Z), :=e’(x, +C& (1 -ep”“)xk), (T(t)X)k := 
eV- l)‘lkX 

c,“=, Xk,kr 

k=2, 3, . . . Obviously, lim,, 5 e-‘T(t)x= PZ, where (P.%)l := 
(PA?)~ :=O, k= 2, 3, . . . . Further, for XEX 

lie-‘T(t)?-- PZII =2 f. emm”klxkj. 
k=2 

Then, for X E X, lim, _ m e -‘T(t).?=PZ, but lie-‘T(t)-PII=2forall t>O. 
Consequently, T(t), t > 0 has asynchronous exponential growth with intrin- 
sic growth constant 1 and spectral projection P, but the asynchronous 
exponential growth is not uniform. Notice that the asynchronous exponen- 
tial growth is strictly positive on X, , but not ergodic, and T(t), t 3 0 is not 
irreducible. 

EXAMPLE 3.2. Let X= L’(0, co; R) and consider the following linear 
model of age-structured population dynamics (see [ 16, Remark 2.5; 35, 
Theorem 4. lo] ): 

z,(a, t) +z,(a, t) = --p(a) 44 t), a > 0, t > 0, 

40, t) = J‘I B(a) da, t) da, t > 0, (3.1) 
0 

44 0) = d(a), a > 0. 

The age density of the population at time t is z(a, t) (the total population 
in the age range [a,, a*] at time t is si: z(a, t) da). It is assumed that 
~EL~(O, co; W), O<ess inf,,, p(a), PEL~(O, co; [w), and VEX. The mor- 
tality modulus. p has the interpretation that Z7(a,, az) := exp[ -SE: l*(a) da] 
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is the probability of survival from age a, to age a2. The fertility modulus 
/3 has the interpretation that j: P(a) z(a, t) da is the birth rate at time t. 
The (generalized) solutions of (3.1) yield a linear semigroup of positive 
operators in X given by (T(t)d)(a) = ~(a, t). The infinitesimal generator 
of T(t), t>O is Ad:= -4’-~4, D(A):= {~EX:~‘EX and b(O)= 
j: B(a) 4(a) da). Th’ is semigroup has uniform asynchronous exponential 
growth if the net reproductive rate j; b(a) n(a, 0) da is positive. 
The intrinsic growth constant is then the unique real (necessarily positive) 
solution A of the characteristic equation 1 = s: e-“Ofi(a) n(a, 0) da. The 
spectral projection P is given by (P#)(a) = e-l“ Zl(a, 0) R,(b)/M,, where 

R,(d) :=[Oa /l(a)e~Au(~~e~“Z7(a, b)d(b)db) da 

is the natural reproductive value of the initial age distribution 4 and 

is the mean age of childbirth. It is easily seen that T(t), t > 0 is ergodic on 
X, if and only if T(t), t 2 0 is irreducible if and only if there exists no 
a,>0 such that B(a) vanishes a.e. on (a,, co). If /?(a) does vanish a.e. on 
(a,, 00) for some a0 > 0, then T(t), t > 0 is ergodic on Y := {&X+ : 4 is not 
0 a.e. on (0, a,)}. 

EXAMPLE 3.3. Let X= R and consider the scalar ordinary differential 
equation 

zyt,=(~~~;~;)z(t,, t30, z(O)=x, (3.2) 

where a, b, c, d> 0, ad # bc. Take Ax = (b/d)x and F(z) = 
((ad-bc)/(d(c+dz)))z and (3.2) has the form (1.1). Obviously, (H.l) 
is satisfied with A= b/d, Px=x, and (H.2)-(H.4) are satisfied with 
f(r)= (ad- bc)/(d(c+dr)). If ad> bc, then (H.5) holds. If ad< bc, then 
(H.6) and (H.7) hold with Lx= (b/d-a/c)x, AL= u/c, PLx=x, and 
M, =O. Consequently, Theorems 1.1-1.5 apply and the solutions of (3.2) 
have asynchronous exponential growth strictly positive on R+ with 
intrinsic growth constant A= b/d. Separation of variables of (3.2) yields 

epcbld)‘(u+ bz(t)) ‘padibc, Qx=Xbc,ad bc’adp1 ep(‘ld)‘z(t) = ,y 
a+bx 1 

If a = 0 in (3.2) then choose A, E., P, f as above and (H.6) is satisfied with 
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Lx = lx, 1 E (0, b/d), R, = b/d- I, P,x = x, M, = (c/ld)(b/d- I). Theorem 1.5 
now applies to show that the solutions of (3.2) (with a = 0) have 
asynchronous exponential growth strictly positive on R, with intrinsic 
growth constant % = b/d. Separation of variables in this case yields 

EXAMPLE 3.4. Let X= R and consider the scalar ordinary differential 
equation 

z(t), t>o, z(O)=x, (3.3) 

where a>O, be R, p>O. Take Ax=ax and F&x)= bx/xP for x> E and 
F,(x) = bx/&P for 0 < r < E (where E > 0). Then (H.l) is satisfied with R = a, 
Px=x, and (H.2 j(H.4) are satisfied with YE(r) = b/rP for r 3 E and 
f,(r) = b/.sP for 0 < r < E. If b > 0, then (H.5) is satisfied. If b < 0, then (H.6) 
and (H.7) are satisfied with Lx=Ix, 0~ I<a, 2, =a- 1, M, = E = 
(-b/l)““. Thus, the solutions of (3.3) have asynchronous exponential 
growth with intrinsic growth constant a strictly positive on OX+ if b > 0 and 
on Y= [( -b/a)‘lP, co) if b < 0. The following formulas are easily verified: 

EXAMPLE 3.5. Let X= R and consider the equation 

( 1 z’(t)= 1 -~ 
log(z(t)) > 

z(t)3 tao, z(O)=x. 

Take Ax=x, F(x)= -x/log(x) for x>e and F(x)=x for O<x<e and 
(3.4) has the form ( 1.1). Separation of variables yields 

e-Iz(t) = ax(x) - 1) 
log(z(t)) - 1 ’ 

x Z e, t 3 0. 

Since lim, _ m z(t)= cc for x>e, lim,,, e --‘z(t) = 0 for x > e. Thus, the 
solutions of (3.4) do not have strictly positive asynchronous exponential 
growth on Y= (e, co). Notice that (H.4) is not satisfied, since 
s” (l/r log(r)) dr = 00. 

Consider also the equation 

z’(t)= 1 + ( 1 

1ogMt)) > 
4th t > 0, z(0) = x. 
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If x > 1, then z(t) is increasing. Since (C’z(t))‘= e-‘z(t)/log(z(t)), eC*z(t) 
is also increasing for x > 1. Assume eP’z(t) < M for some M > 1. Then 
ePrz(t)/log(z(t)) > x/(log(M) + t), which implies e-‘z(t) + co, since 

e-‘z(t) =x + 
s 

’ e-“z(s)/log(z(s)) ds. 
0 

Thus, the solutions of (3.5) do not have asynchronous exponential growth. 

Example 3.6. Let X= R* with norm 11 [xi, xz]ll = lx11 + Ix21 and 
consider the system 

p’(t) = (B, - pLp - r,(n(t)))p(t) + r,(n(t)) 4(t), 

4’(t) = r,(n(t))p(t) - (r,(n(t)) + pq) 4th 

n(t) =p(t) + q(t), P(O) = Xl, q(O) = x2. 

(3.6) 

This system describes a population of tumor cells with proliferating cell 
subpopulation p and quiescent cell subpopulation q (see [20]). p, > 0 is 
the division rate of proliferating cells, pP 2 0, p4 > 0 are the mortality rates 
of proliferating and quiescent cells, respectively, r,(n) > 0 is the (nonlinear) 
transition rate from the proliferating class to the quiescent class, and 
r,(n) 2 0 is the (nonlinear) transition rate from the quiescent class to the 
proliferating class. For this tumor population we suppose that r,(n) is non- 
decreasing in n and r,(n) is nonincreasing in 12. We suppose that r,(n) and 
r,(n) are Lipschitz continuous on bounded sets of n in [w +, rP(co) := 
limn-tm r,(n) < co, r4( co) := lim,,, r,(n)>@ jr4: Irp(~)-rp(n)l/ndn<~, 
and fz Ir,( co) - r,(n) I/n dn < co for r. > 0. 

Define a=/lp-pp-rYp(m), b=r,(co), c=r,(co), d= -(rq(co)+pq), 
ACx,, x21 = [axI +b, cxl+dx21, f(n) Cx,,xJ = C(r,(~)-r,(n))~~ + 
(r,(n)-r,(~)h (r,(n)-r,(~))xl + (ry(~)--r,(n)b21 and then (3.6) 
has the form (1.1) with F([x,,x2])=f(l~[x1,x2]~l) [x,,x,]. We 
require that a > 0, b > 0, c> 0. The eigenvalues of A are A, := 
(a+d+ [(a-d)*+4bc]“*)/2. Further, A+ >O and A[l, u+] =n+[l, u,], 
A[l, u-1 =A-[l, u-1, where U+ = (d-af[(a-d)*+4bc11’*)/2b, u, >O, 
U- <O. The hypothesis (H.l) is satisfied with 2=1+ and P[x,, x2] = 
(x2-xluP)/(u+ -up) [l, u,]. The hypotheses (H.2)-(H.4) are satisfied, 
as wellas (H.5), sinceP[l, -l]=(l+u-)/(u+-U-) [l,u+]~X+-{O}. 
By Theorem 1.4 the solutions of (3.6) have asynchronous exponential 
growth strictly positive on rW: with intrinsic growth constant I = 2,. 
Notice that if a > 0 then no nontrivial equilibria of (3.6) exist in X, . The 
case that a<0 and ~~>0 (so that equilibria exist in X, - (0)) is 
considered in [20]. 
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EXAMPLE 3.7. Let X= L’(0, 1; R) and consider the nonlinear diffusion 
problem 

Z-JO, t) = z,( 1, t) = 0, t > 0, (3.7) 

4-T 0) =4(x), Odxd 1. 

We require that f:[O,l]xR+-+R+, f is Lipschitz continuous on 
bounded sets of [0, 11 x R + , and there exists a continuous function a(x) 
on [0, 11, ~$0, such that lim,,, f(x, Y) = a(x) uniformly for x E [0, 11. 
We require also that a > 0 and 

sup i‘ 
m I.0-T r) - 4x)l & < o. 

> r. > 0. 
o<\-<I ‘0 r 

We consider two cases-case 1: f(x, r) is nonincreasing in r for x E [0, 11, 
and Case 2: f(x, r) is nondecreasing in r for XE (IO, 11. Define 
(l@)(x) := (b”(x) + u(x) (b(x), D(A) := (4 E x: qY EX, (b’(O) = f$‘( 1) = O}. It 
can be shown that A is the infinitesimal generator of a linear semigroup 
T(t), t 2 0 in X having asynchronous exponential growth ergodic in X with 
intrinsic growth constant A> 0 and spectral projection P. Further, 
P~#J = (4, 4: ) do, where A#o = AdO, A *#,* = A$,*, #o and 4: are strictly 
positive on [0, 11, and P satisfies (H.7). Hypotheses (H.l)-(H.4) are 
satisfied and (3.7) can be written abstractly as 

Z’(f) = ‘wf) + (fM~)ll) -a) z(t), Z(O)=$bEx 

In Case 1 (H.5) is satisfied and the nonlinear semigroup S(t), t B 0 for (3.7) 
(S(t)4 = z( ., t)) has asynchronous exponential growth ergodic on A’, with 
intrinsic growth constant A. In Case 2 choose ZE (0, A), define Ld = 14, and 
choose M, such that if 4 E X, and /I& 3 M, then Z+f(x, 11&l) - u(x) 2 0. 
Then (H.6) is satisfied and the nonlinear semigroup S(t), t 2 0 has 
asynchronous exponential growth strictly positive on Y = {+5 E X, : 
IlS(t)$(l 2 M, for t sufficiently large}. In case 2 there may exist nontrivial 
equilibria for (3.7), since for suficiently small positive r, f(x, r) could be 
identically 0. 

EXAMPLE 3.8. Consider the following nonlinear k-state age-structured 
demographic model in L’(0, a; R?): 
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%(a, t) + %(a, t) = &a, N(f)) 44 t), a > 0, t > 0, 

n(0, t) = 1’ B(a, N(t)) n(a, t) da, t > 0, 
0 (3.8) 

n(a, 0) =$(a), a > 0, 

N(t) = 114.9 [Ill 1. 

Here n(a, t) = (n,(a, t), . . . . n,(u, t))‘, ni(u, t), 1 < if k, is the ith-subpopula- 
tion density function at time t. R(a, N) is the density dependent state- 
transition rate matrix whose ijth entry rii(a, N) 2 0, i #j, is the transition 
rate at age a from state j to state i when the total population is N, and 
whose diagonal entries are rii(a, N) = -pi(a) - cjgi rji(a, N), where 
pi(u) > 0 is the (density-independent) natural mortality in the ith state, 
@a, N) is the fertility matrix whose ijth entry bii(u, N) is the average 
number of offspring in state i per unit time produced by an individual at 
age a in state j when the total population is N, CI is the maximum 
reproductive age, and 4 E L \ (0, ~1; lRk) is the initial population distribution. 

We require that each rii and b, is Lipschitz continuous in N on bounded 
sets of [0, al-x R + either nondecreasing or nonincreasing in N, and that 
the limits rV(u, co) :=lim,, o? rV(u, N) and bv(u, co) := lim,, a, b,(a, N) 
are finite and exist uniformly for a E [0, a] with 

max s m (Irv(a, NJ--r,(a, oa)I/N)dN< 00, 
aECO.~l ro 

max i m (lb&, N - b,( a, ~)l/N) dN< 00, r. > 0. 
uElo.al i-g 

Let Q(a) be the matrix with entries qQ(a)=rU(a, co), i#j, qii(a)= 
--p,(~)-~~+~r~~(a, co) and let M(a) be the matrix with entries my(a) = 
b,(u, co). We require that pi, qiE C+[O, cc; W] and m,eLT(O, cr; R). 
Finally define h(u, N) as the matrix with entries hv(a, N) = rii(u, N)- 
rij(a, cc), i#j, and hii(a, N)= -c,,i [r,,(a, N)-r,,(u, co)] and define 
g(u, N) as the matrix with entries g,(u, N) = bti(a, N)- bv(u, co). The 
model (3.8) can now be written as a perturbed linear system 

da, t) + nata, t) = Q(a) da, t) + Na, N(t)) n(a, t), 

n(0, t) = jz M(a) n(u, t) da + jx g(u, N(t)) n(a, t) da, 
0 0 (3.9) 

44 0) =&a), 

N(t) = IM .y f)ll I 

409/167/2-I2 
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The linear system (h = 0, g=O) has been analyzed by Inaba [24]. 
He showed that the operator A:’ defined by (K+)(a) = -&a)+ 
Q(a) d(a), WAC11 = (4 E L’(O, a; Iw”): 4 is absolutely continuous, d(O) = 
J; M(a) 9(u) da 1 is the infinitesimal generator of a strongly continuous 
semigroup To(t), t > 0 of positive linear operators in L’(0, r, iw”) (the 
reason for the use of the symbol 0 will become clear below). Following 
Inaba we define $(j.) = j; e ‘“M(a) J(u) da, where J(u) is the solution of 
the matrix differential equation J’(u) = Q(a) J(u), J(0) = I ($(O) is the net 
reproductive matrix). We suppose that tj(O) is indecomposable (that is, 
there do not exist two subsets K and H of integers such that K n H = 4, 
Ku H= { 1, . . . . k}, and iji/ = 0 for iE K, Jo H) and that its Frobenius root 
is greater than 1. Consequently i”o( t), t 3 0 has uniform asynchronous 
exponential growth ergodic in L\ (0, tl; iWk) with intrinsic growth constant 
i > 0 (A is the unique real root of the equation G(%) = 1, where G(A) is the 
Frobenius root of $(A)) (see [24, Propositions 3.2, 3.31). 

The semigroup TO(t), t > 0 could also have been obtained using pertur- 
bation theory of dual semigroups (see [S]). In this way one obtains an 
integral w*-semigroup T x (t), t 3 0 on X* = A4( [0, a); I@) with generator 
A x d = -4’ + Q( .)# + j;, M(a) d(a) da 6, 9(A x ) = (4 is an absolutely 
continuous measure and -4’ + Q( .)$ E M( [0, a); [Wk)}. Here 6 is the Dirac 
measure concentrated at the origin. In this case T x (t), t 3 0 is actually a 
dual semigroup T*(t), t 30 since X= C,( [0, c(); rWk) is sun-reflexive 
(cf. [S]). Moreover, X0= 9(A “) can be identified with L’(0, cc; rWk) and 
TO(t), t 3 0 and A0 are exactly the semigroup and generator found in 
[24]. The model (3.9) can now be written abstractly as a semilinear 
Cauchy problem of the form (2.17) with F: X0 + X* defined by 

In the first term on the right the L’-density 4 is interpreted as an absolutely 
continuous measure (recall the RadonNikodym isometry between L’ and 
the absolutely continuous measures). 

By the assumptions made it is obvious that F satisfies (H.2)‘, (H.3)‘, and 
(H.4). By Theorem 2.1 T x (t), t 2 0 satisfies (H.l)’ and thus we conclude 
from Theorem 2.2 that the nonlinear semigroup S(t), t 2 0 on X0 
associated with (3.9) also has uniform asynchronous exponential growth. 

Next we show using Theorem 2.6 that the uniform asynchrononous 
exponential growth of S(t), t > 0 is strictly positive on A’?. By [24, 
Proposition 3.21, (H.7)’ holds. We have to define L such that (H.6)’ is 
satisfied. First note that hii(u, N) > 0 if and only if r,(u, N) is nonincreasing 
in N (i #j) and gq(u, N) 2 0 if and only if b,(u, N) is nonincreasing in N. 
Define for i #j, Ii.(u) = - [r,(u, 0) - rv(u, co)] if rq(u, N) is nondecreasing 
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in N and E:(a) = 0 otherwise. Define 12(a) = C[rji(a, 0) - r,(a, co)], where 
the sum is taken over all j for which r,(u, N) is nonincreasing. Define 
l;(u) = - [bii(u, 0) -bij(u, co)] if bii(u, N) is nondecreasing in N and 
I;(u) = 0 otherwise. These definitions determine matrix valued functions 1” 
and lg. Define the bounded linear operator L: X0 -+ X* by 

Lf#I = Pd + SE P(u) f&u) da 6. 
0 

By the definitions made above Ld + F(4) > 0 for all q5 E X(?. Moreover, the 
generator A? (the part of A x -L in X0) defines a strongly continuous 
linear semigroup T$(t), t > 0 on X0 associated with the problem 

da, t) + da, 2) = &(4 n(a, 2). 

n(0, t) = j’ &?(a) n(u, t) da, 
0 

(3.10) 

where gij(u) is either rv(u, co) or rv(u, 0) depending on whether rv(u, N) is 
nonincreasing on nondecreasing in N (i#j) and gii(u) = -~~(a) - 
z,zi&ii(U), and fi,i(u)=bi,(u, co) if bq(u, N) is nonincreasing and 
G,(u) = bii(u, 0) otherwise. Thus problem (3.10) is of exactly the same type 
as the unperturbed version of (3.9) and we may conclude exactly as above 
that Tp(t), t B 0 is a positive semigroup having uniform asynchronous 
exponential growth strictly positive on Xy. Thus we may apply 
Theorem 2.6. 

The ijth entry qii(u) of Q( ) a re p resents the rate at which an individual 
born in the jth state will survive and be in the ith state at age a. Indecom- 
posibility of the net reproduction rate matrix $(O) means there does not 
exist Ku H= { 1, . . . . k) such that Kn H= 4 and C, m+(u) ski(u)=0 for 
i E K, j E H, a E [0, a]; that is, no proper set K of population states is closed 
with respect to self-reproduction in the sense that individuals in K can only 
be reproduced by individuals from K (see [24]). Indecomposibility of $(O) 
means that no proper set K of population states is closed with respect to 
self-reproduction when the total population is sufficiently large. 
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