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1. Introduction

The motion of self-gravitating inviscid gaseous stars in the universe can be described by the fol-
lowing free boundary problem for the compressible Euler equations coupled with Poisson equation:

ρt + ∇ · (ρu) = 0 in Ω(t), (1.1)

ρ[ut + u · ∇u] + ∇ P = ρ∇φ in Ω(t), (1.2)

−�φ = 4πρg on Ω(t), (1.3)

ν
(
Γ (t)

) = u, (1.4)

(ρ, u) = (ρ0, u0) on Ω(0). (1.5)

The open, bounded domain Ω(t) ⊂ R
3 denotes the changing domain occupied by the gas. Γ (t) :=

∂Ω(t) denotes the moving vacuum boundary, ν(Γ (t)) denotes the velocity of Γ (t). The density ρ > 0
in Ω(t) and ρ = 0 in R

3 \Ω(t). u denotes the Eulerian velocity field. p denotes the pressure function,
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and ρ denotes the density of the gas. φ is the potential function of the self-gravitational force, and
g is the gravitational constant. The equation of state for a polytropic gas is given by:

P = Cγ ργ for γ > 1, (1.6)

where Cγ is the adiabatic constant which we set to be one. For more details of the related physical
background, see, for instance, [2].

With the sound speed given by c2 := √
∂ P/∂ρ , and with c0 = c(·,0), the condition

−∞ <
∂c2

0

∂N
< 0 on Γ (1.7)

defines a “physical vacuum” boundary, where N denoting the outward unit normal to the initial
boundary Γ := ∂Ω(0). This definition of physical vacuum was motivated by the case of Euler equa-
tions with damping studied in [15,17] and the physical vacuum behavior can be realized by some
self-similar solutions and stationary solutions for different physical systems such as Euler equations
with damping. For more information of this concept, please see [15,16,22].

The local existence theory of classical solutions featuring the physical vacuum boundary even for
one-dimensional compressible Euler equations was only established recently. This is because if the
physical vacuum boundary condition is assumed, Euler equations become a degenerate and charac-
teristic hyperbolic system and the classical theory of hyperbolic systems cannot be directly applied.
In [8], Jang and Masmoudi considered the one-dimensional Euler equations in mass Lagrangian co-
ordinates and proved local existence by using a new structure lying upon the physical vacuum in
the framework of free boundary problems. Independently of this work, in [3], Coutand and Shkoller
constructed H2-type solutions with moving boundary in Lagrangian coordinates based on Hardy in-
equalities and degenerate parabolic regularization. Both of them also studied three-dimensional case
([4] and [9]).

In this paper, we will focus on the 1-D case for the system (1.1)–(1.5) with the physical vacuum
condition:

ρt + (ρu)η = 0 in I(t), (1.8)

ρ[ut + uuη] + (
ργ

)
η

= ρφη in I(t), (1.9)

−φηη = Cρ on I(t), (1.10)

(ρ, u) = (ρ0, u0) on I(0), (1.11)

ν
(
Γ (t)

) = u, (1.12)

0 <

∣∣∣∣∂c2
0

∂η

∣∣∣∣ < +∞ on Γ, (1.13)

where I(0) = I = {0 < η < 1} and Γ := ∂ I and prove the local existence result for it (the 3-D case will
appear soon).

Our main result is the following theorem:

Theorem 1.1 (Local well-posedness). For 1 < γ < 3, assume that initial data ρ0 > 0 in I , M0 < ∞ (defined
in (2.26)), and the physical vacuum condition (1.13) holds. Then there exists a unique solution to (2.3)–(2.6)
(and hence (1.8)–(1.12)) on [0, T ] for some sufficiently small T > 0 such that

sup
t∈[0,T ]

E(t) � 2M0. (1.14)
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The local well-posedness result for the corresponding Euler equation was proved by Coutand and
Shkoller in [3] (also by Jang and Masmoudi [8]). Following the intuition of [3], we also use the La-
grangian coordinates to reduce the original system to that in a fixed domain. In our problem, we have
the extra potential force term φη in (1.9). To handle this term, we will give an explicit formula for it
and show that it is a function of ρ0. Then we construct the approximate solution in two steps. Firstly,
we use Galerkin scheme to find the solution to linearized problem of the degenerate parabolic reg-
ularization. In this step, we would make fundamental use of the higher-order Hardy-type inequality
introduced by [3] (we would give a new proof). But we will define an intermediate variable which is
different from the one used in [3]. By using our intermediate variable, the improvement of the space
regularity for the solution of linear problem will be easy and clear with less computation. Secondly,
we use fixed-point scheme to get the solution to the degenerate parabolic regularization. Lastly we
would derive a priori estimates for the approximate solution. This part is more or less similar to that
in [3]. For a self-contained presentation, we will still carry out the proof in Section 6. Below we will
mainly focus on the case of γ = 2. The general case for 1 < γ < 3 is treated in Section 8.

Now we briefly review some related theories and results from various aspects. For Euler–Poisson
equations, the existence theory for the stationary solutions has been proved by Deng, Liu, Yang, and
Yao in [6]. For Navier–Stokes–Poisson equations, Li, Matsumura and Zhang [11] studied optimal decay
rate for the system and Zhang, Fang studied global behavior for spherically symmetric case with
degenerate viscosity coefficients in [26].

For compressible fluids, Makino proved the local-in-time existence of solution in [19] with bound-
ary condition ρ = 0 for some non-physical restrictions on the initial data. And Lindblad proved the
local-in-time existence with vacuum boundary condition P = 0 for general case of initial data with
the main tool which is the passage to the Lagrangian coordinates for reducing the original problem to
that in a fixed domain in [14]. And H.L. Li, J. Li, Xin [12], Luo, Xin, Yang [18], Xin [24] also did many
works on compressible Navier–Stokes equation with vacuum.

For incompressible flows, Wu solved local well-posedness for the irrotational problem, with no
surface tension in all dimensions in [20] and [21]. Lindblad proved local existence of solutions for
general problem with no surface tension, assuming the Rayleigh–Taylor sign condition for rotational
flows in [13]. For the problem with surface tension, B. Schweizer proved existence for the general
three-dimensional irrotational problem in [23]. And we also mention the works by Ambrose and
Masmoudi [1], Coutand and Shkoller [5], and P. Zhang and Z. Zhang [25].

This paper is organized as follows: In Section 2, we formulate the problem in Lagrangian coordi-
nates. In Section 3, we present some lemmas that are used. In Sections 4–5, we introduce a degenerate
parabolic approximation and solve it by a fixed-point method. In Sections 6–7, we derive the a priori
estimates and prove the local well-posedness for γ = 2. In Section 8, we discuss the general case for
1 < γ < 3.

2. Lagrangian formulation

Here, we denote η as Eulerian coordinates and denote x as Lagrange coordinates: η(x, t) denotes
the “position” of the gas particle x at time t and

∂tη = u ◦ η for t > 0 and η(x,0) = x, (2.1)

where ◦ denotes the composition [u ◦ η](x, t) = u(η(x, t), t). We also have:

v = u ◦ η (Lagrangian velocity),

f = ρ ◦ η (Lagrangian density),

Φ = φ ◦ η (Lagrangian potential field). (2.2)
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2.1. Fixing the domain and the Lagrangian version of the system

Noticing (2.1) and (2.2), the Lagrangian version of system (1.8)–(1.12) can be written on the fixed
reference domain I as

ft + f
∂

ηx∂x
v = 0 in I × (0, T ], (2.3)

f vt + ∂

ηx∂x

(
f 2) = f

∂

ηx∂x
Φ in I × (0, T ], (2.4)

−
(

∂

ηx∂x

)2

Φ = C f in I × (0, T ], (2.5)

( f , v, η) = (ρ0, u0, e) in I × {t = 0}, (2.6)

where e(x) = x denotes the identity map on I .
By conservation law of mass, we have

f = ρ ◦ η = ρ0/ηx. (2.7)

Hence, the initial density function ρ0 can be viewed as a parameter in the Euler equations.
Since ρ0 > 0 in I , (1.13) implies that for some positive constant C and x ∈ I near the vacuum

boundary Γ ,

ρ0 � C dist(x,Γ ). (2.8)

Hence, for every x ∈ I , we have:

∣∣∣∣∂ρ0

∂x
(x)

∣∣∣∣ � C when d(x, ∂ I) � α, (2.9)

ρ0 � Cα > 0 when d(x, ∂ I) � α (2.10)

for some α > 0 and a constant Cα depending on α.
In summary, we write the compressible Euler–Poisson system as

ρ0 vt + (
ρ2

0/η2
x

)
x = ρ0Φx/ηx in I × (0, T ], (2.11)

−(Φx/ηx)x = Cρ0 in I × (0, T ], (2.12)

(v, η) = (u0, e) in I × {t = 0}, (2.13)

ρ0 = 0 on Γ, (2.14)

with ρ0 � C dist(x,Γ ) for x ∈ I near Γ .

2.2. The formula for potential force

Now we try to give an explicit formula for the potential force φη in (1.8) and corresponding term
Φx/ηx in (2.11). Set I(t) = (a(t),b(t)) = (η(0, t), η(1, t)).
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First, for every t , we can directly get

φη(η, t) = −
η∫

a(t)

ρ(y, t)dy + M(t). (2.15)

It is reasonable to assume that |φη(−∞)| = |φη(+∞)|. Since the gas only occupied bounded interval,
the force of gas produced in −∞ and +∞ can be regarded as the same large (see [7]). Noticing
φηη = −Cρ � 0, we get:

φη(+∞) = −1

2

+∞∫
−∞

ρ(y, t)dy, (2.16)

φη(−∞) = 1

2

+∞∫
−∞

ρ(y, t)dy, (2.17)

M(t) = 1

2

( +∞∫
a(t)

ρ(y, t)dy −
a(t)∫

−∞
ρ(y, t)dy

)
. (2.18)

Since ρ(η, t) > 0 in I(t) and ρ(η, t) = 0 when η � a(t) or η � b(t), we have

φη(η, t) = −
η∫

a(t)

ρ(y, t)dy + 1

2

b(t)∫
a(t)

ρ(y, t)dy. (2.19)

Then we transform the formula (2.19) to Lagrange variables:

Φx/ηx(x, t) = φη

(
η(x, t), t

)

= −
η(x,t)∫
a(t)

ρ(y, t)dy + 1

2

b(t)∫
a(t)

ρ(y, t)dy

= −
η(x,t)∫

η(0,t)

ρ
(
η(z, t), t

)
dη(z, t) + 1

2

η(1,t)∫
η(0,t)

ρ
(
η(z, t), t

)
dη(z, t)

= −
x∫

0

f (z, t)ηz dz + 1

2

1∫
0

f (z, t)ηz dz. (2.20)

With (2.7), we can finally derive

F := Φx

ηx
= −

x∫
0

ρ0(y)dy + 1

2

1∫
0

ρ0(y)dy. (2.21)
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Remark 2.1. If ρ0 ∈ Cα , then F ∈ C1+α , we will see that this regularity is important for the case γ 	= 2
in Section 8.

With formula (2.21), we can write the whole system as

ρ0 vt + (
ρ2

0/η2
x

)
x = ρ0 F in I × (0, T ], (2.22)

(v, η) = (u0, e) in I × {t = 0}, (2.23)

ρ0 = 0 on Γ, (2.24)

with ρ0 � C dist(x,Γ ) for x ∈ I near Γ .

2.3. The higher-order energy function

The higher-order energy function is defined as follows:

E(t; v) =
4∑

s=0

∥∥∂ s
t v(t, .)

∥∥2

H2− s
2 (I)

+
2∑

s=0

∥∥ρ0∂
2s
t v(t, .)

∥∥2
H3−s(I)

+ ∥∥√
ρ0∂t∂

2
x v(t, .)

∥∥2
L2(I) + ∥∥ρ 3

2
0 ∂t∂

3
x v(t, .)

∥∥2
L2(I)

+ ∥∥√
ρ0∂

3
t ∂x v(t, .)

∥∥2
L2(I) + ∥∥ρ 3

2
0 ∂3

t ∂2
x v(t, .)

∥∥2
L2(I). (2.25)

Let P denote a generic polynomial function of its arguments whose meaning may change from line
to line. Let

M0 = P
(

E(0; v)
)
. (2.26)

3. Weighted spaces and a higher-order Hardy-type inequality

3.1. Embedding of a weighted Sobolev space

Using d to denote the distance function to the boundary Γ , and letting p = 1 or 2, the weighted

Sobolev space H1
dp (I), with norm given by (

∫
I d(x)p(|R(x)|2 + |∂x R(x)|2)dx)

1
2 for any R ∈ H1

dp (I), sat-
isfies the following embedding:

H1
dp (I) ↪→ H1− p

2 (I). (3.1)

So that there is a constant C > 0 depending only on I and p such that

‖R‖2
1−p/2 � C

∫
I

d(x)p(∣∣R(x)
∣∣2 + ∣∣∂x R(x)

∣∣2)
dx. (3.2)

See, for example, Section 8.8 in [10].
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3.2. A higher-order Hardy-type inequality

The following two lemmas can be found in [3]. We will use Lemma 3.1 to construct the approxi-
mate solution in Section 5 and use Lemma 3.2 to obtain estimates independent of the regularization
parameter defined in Section 4.

Lemma 3.1. Let s � 1 be a given integer, and suppose that

u ∈ Hs(I) ∩ H1
0(I), (3.3)

and d is the distance function to ∂ I , then we have that u
d ∈ Hs−1(I) with

∥∥∥∥u

d

∥∥∥∥
Hs−1

� C‖u‖Hs . (3.4)

Proof. Let u ∈ Hs(I) ∩ H1
0(I), then for 0 � m � s:

∂m
x

(
u

d

)
= f

dm+1
, (3.5)

where

f =
m∑

k=0

Ck
m∂m−k

x u(−1)kk!dm−k. (3.6)

With simple calculation, we can get

∂x f = ∂m+1
x u(−1)mm!dm. (3.7)

Now using the fundamental calculus theorem, when 0 � x � 1
2 , we have:

f (x) = f (0) +
x∫

0

∂x f (y)dy (3.8)

= x

1∫
0

∂x f (θx)dθ (3.9)

= (−1)mm!xm+1

1∫
0

∂m+1
x u(θx)θm dθ. (3.10)

Similarly, when 1
2 � x � 1, we have:

f (x) = (−1)m+1m!(1 − x)m+1

1∫
∂m+1

x u
(
1 − θ(1 − x)

)
θm dθ. (3.11)
0
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Then:

∥∥∥∥∂m
x

(
u

d

)∥∥∥∥2

L2
=

1
2∫

0

(
f

xm+1

)2

dx +
1∫

1
2

(
f

(1 − x)m+1

)2

dx

=
1
2∫

0

[
(−1)mm!

1∫
0

∂m+1
x u(θx)θm dθ

]2

dx

+
1∫

1
2

[
(−1)m+1m!

1∫
0

∂m+1
x u

(
1 − θ(1 − x)

)
θmdθ

]2

dx

� C
∥∥∂m+1

x u
∥∥2

L2(I). (3.12)

In this way, we finally get:

∥∥∥∥u

d

∥∥∥∥
Hs

� C‖u‖Hs+1 . � (3.13)

Lemma 3.2. Let κ > 0 and g ∈ L∞(0, T ; Hs(I)) be given, and let f ∈ H1(0, T ; Hs(I)) be such that

f + κ ft = g in (0, T ) × I. (3.14)

Then,

‖ f ‖L∞(0,T ;Hs(I)) � C max
{∥∥ f (0)

∥∥
Hs(I),‖g‖L∞(0,T ;Hs(I))

}
, (3.15)

where C is independent of κ .

4. The degenerate parabolic approximation of the system

4.1. Smoothing the initial data

For the purpose of constructing solutions, we will smooth the initial velocity field u0 and density
field ρ0 while preserving the conditions ρ0 > 0 in I and (2.8) firstly.

For κ > 0, let 0 � ακ(x) ∈ C∞
c (R) denote the standard family of mollifiers with spt(ακ) = {x |

|x| � κ} and let E I denote a Sobolev extension operator mapping Hs(I) to Hs(R) for s � 0.
Now we set the smoothed initial velocity filed uκ

0 as:

uκ
0 = α1/|lnκ | ∗ E I (u0), (4.1)

and smoothed initial density function ρκ
0 is defined as the solution of the elliptic equation:

∂2
x ρκ

0 = ∂2
x

[
α1/|lnκ | ∗ E I (ρ0)

]
in I, (4.2)

ρκ
0 = 0 on Γ. (4.3)
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So for sufficiently small κ > 0, uκ
0 ,ρκ

0 ∈ C∞(I), ρκ
0 > 0 in I , and vacuum condition (2.8) is pre-

served. Details can be found in [3].
From now on, we will denote uκ

0 by u0 and ρκ
0 by ρ0 for convenience and it is easy to show that

Theorem 1.1 holds with the optimal regularity by a standard density argument.

4.2. Degenerate parabolic approximation

For notational convenience, we write

η′ = ∂η

∂x
(4.4)

and similarly for other functions. Now for κ > 0, we consider the following nonlinear degenerate
parabolic approximation of the compressible Euler–Poisson system (2.22)–(2.24):

ρ0 vt +
(

ρ2
0

η′2

)′
= ρ0 F + κ

(
ρ2

0 v ′)′
in I × [0, T ], (4.5)

(v, η) = (u0, e) in I × {t = 0}, (4.6)

ρ0 = 0 on Γ (4.7)

with ρ0(x) � C dist(x,Γ ) for x ∈ I near Γ . We emphasize that the data (ρ0, u0) is smoothed as in
Section 4.1.

We will first obtain the existence of the solution to (4.5)–(4.7) on a short time interval [0, Tκ ]
(with Tκ possibly depending on κ ). Then we will show that the time of existence does not depend
on κ via a priori estimates in Section 6 for this sequence of solutions independent of κ . Then the
existence of a solution to the compressible Euler–Poisson system is obtained as the weak limit as
κ → 0 of the sequence of solutions to (4.5)–(4.7).

5. Solving the parabolic κ-problem by a fixed-point method

5.1. Assumption on initial data

Using the fact that η(x,0) = x and F = − ∫ x
0 ρ0(y)dy + 1

2

∫ 1
0 ρ0(y)dy, the quantity vt |t=0 for the

degenerate parabolic κ-problem can be computed using (4.5):

u1 : = vt |t=0

=
(

−
x∫

0

ρ0(y)dy + 1

2

+∞∫
−∞

ρ0(y)dy + κ

ρ0

[
ρ2

0 v ′]′ − 1

ρ0

(
ρ2

0

η′2

)′)∣∣∣∣∣
t=0

=
(

−
x∫

0

ρ0(y)dy + 1

2

+∞∫
−∞

ρ0(y)dy + κ

ρ0

[
ρ2

0 u′
0

]′ − 2ρ ′
0

)
. (5.1)

Inductively, for all k � 2, k ∈ N:

uk : = ∂k
t v|t=0 = ∂k−1

t

(
κ

ρ0

[
ρ2

0 v ′]′ − 1

ρ0

(
ρ2

0

η′2

)′)∣∣∣∣
t=0

. (5.2)

These formulae make it clear that each ∂k
t v|t=0 is a function of space-derivatives of u0 and ρ0.
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5.2. Functional framework for the fixed-point scheme

For T > 0, we shall denote by XT the following Hilbert space:

XT = {
v

∣∣ v ∈ W 5,2(0, T ; H1(I)
) ∩ W 4,2(0, T ; H2(I)

);
ρ0 v ∈ W 5,2(0, T ; H2(I)

) ∩ W 4,2(0, T ; H3(I)
)}

, (5.3)

which is endowed with its natural Hilbert norm:

‖v‖2
XT

= ‖v‖2
W 5,2(0,T ;H1(I)) + ‖v‖2

W 4,2(0,T ;H2(I))

+ ‖ρ0 v‖2
W 5,2(0,T ;H2(I)) + ‖ρ0 v‖2

W 4,2(0,T ;H3(I)). (5.4)

Given sufficiently large M > 0, we can define the following closed, bounded, convex subset of XT :

CT (M) = {
v ∈ XT : ∂a

t v|t=0 = ua, a = 0,1,2,3,4,5,6, ‖v‖2
XT

� M
}
, (5.5)

which is indeed non-empty if M is large enough and which would be determined by initial data.
Henceforth, we assume that T > 0 is given independently of the choice of v ∈ CT (M), such that

η(x, t) = x +
t∫

0

v(x, s)ds (5.6)

is injective for t ∈ [0, T ], and that 1
2 � η′(x, t) � 3

2 for t ∈ [0, T ] and x ∈ I . This can be achieved by
taking T > 0 sufficiently small: with e(x) = x, notice that

∥∥η′ − e
∥∥

H1 =
∥∥∥∥∥

t∫
0

v ′(x, s)ds

∥∥∥∥∥
H1

�
√

T M. (5.7)

We will apply the fixed-point methodology in XT to prove the existence of a solution to the κ-
regularized parabolic problem (4.5)–(4.7).

Finally, we define a polynomial function N0 of norms of the non-smoothed initial data u0 and ρ0
as follows:

N0 = Pκ

(‖ρ0‖L2 ,‖u0‖L2

)
, (5.8)

where Pκ is a generic polynomial with coefficients dependent on powers of |lnκ |.
Using the properties of the convolution (4.1) and (4.2), ∀s � 1, ∀k ∈ 1,2,3,4,5,6, the quantities

defined in (5.2) (using the smoothed initial data uκ
0 and ρκ

0 ) satisfy:

‖uk‖Hs � P
(∥∥ρκ

0

∥∥
Hs+k ,

∥∥uκ
0

∥∥
Hs+2k

)
� Cs Pκ

(‖ρ0‖L2 ,‖u0‖L2

)
� N0. (5.9)
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5.3. Linearizing the degenerate parabolic κ-problem

For every v ∈ CT (M), we define η = x + ∫ t
0 v(x, τ )dτ and consider the linear equation for v:

ρ0 vt − κ
[
ρ2

0 v ′]′ = −
[

ρ2
0

η′2

]′
+ ρ0 F ,

v(·,0) = u0, (5.10)

where F is defined in (2.21).
In order to use the high-order Hardy-type inequality, it will be convenient to introduce the new

variable X = ρ0 v , which belongs to H1
0(I) (can be seen below). Here we choose a different variable X

from that used by Coutand and Shkoller in [3], which would simplify the process of improving the
space regularity for solution of (5.10).

By a simple computation, we can see that (5.10) is equivalent to

vt − κ
1

ρ0

[
ρ2

0 v ′]′ = − 1

ρ0

[
ρ2

0

η′2

]′
+ F , (5.11)

and hence that

Xt

ρ0
− κ X ′′ + κ

ρ ′′
0

ρ0
X = G in I × [0, T ], (5.12)

X = 0 on Γ × [0, T ], (5.13)

X |t=0 = ρ0u0 in I, (5.14)

where

G = F + 2

η′

(
ρ0

η′

)′
= −

x∫
0

ρ0(y)dy + 1

2

1∫
0

ρ0(y)dy + 2

η′

(
ρ0

η′

)′
. (5.15)

We shall therefore solve the degenerate linear parabolic problem (5.12)–(5.14) with Dirichlet
boundary conditions, which (as we will prove) will surprisingly admit a solution with arbitrarily high
space regularity (depending on the regularity of G on the right-hand side of (5.12) and the initial data
of course), not just an H1

0(T )-type weak solution. After we obtain the solution X , we then find our
solution v to (5.10).

In order to apply the fixed-point theorem, we shall obtain estimates for v with certain high space–
time regularity. Here, we study the sixth time-differentiated problem and define the new variable

Y = ∂6
t X = ρ0∂

6
t v. (5.16)

We consider the following equation for Y

Yt

ρ0
− κY ′′ + κ

ρ ′′
0

ρ0
Y = ∂6

t G in I × [0, T ], (5.17)

Y = 0 on Γ × [0, T ], (5.18)

Y |t=0 = ρ0u6 in I, (5.19)

where u6 is given by (5.2).
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5.4. Existence of a weak solution to the linear problem (5.17)–(5.19) by a Galerkin scheme

First we show that ∂6
t G is a function in L2(0, T ; L2(I)).

T∫
0

∥∥∂6
t G

∥∥2
L2(I) =

T∫
0

∥∥∥∥∂6
t

(
2

η′

(
ρ0

η′

)′)∥∥∥∥2

L2(I)

� C

T∫
0

∥∥ρ0∂
5
t v ′′ + ∂5

t v ′∥∥2
L2(I) + l.o.t.

� C

T∫
0

∥∥ρ0∂
5
t v

∥∥2
H2(I) + C

T∫
0

∥∥∂5
t v

∥∥2
H1(I) + l.o.t.

� C P
(‖v‖2

XT

)
. (5.20)

Now we begin our Galerkin scheme. Let {en}n∈N denote a Hilbert basis of H1
0(I). Such a choice of

basis is indeed possible as we can take for instance the eigenfunctions of the Laplace operator on I
with vanishing Dirichlet boundary conditions. We then define the Galerkin approximation at order
n � 1 of (5.19) as Yn = ∑n

i=0 λn
i (t)ei , with λn

i (t) being the solution of the ODE system:(
Ynt

ρ0
, ek

)
L2(I)

+ (
κY ′

n, e′
k

)
L2(I) +

(
ρ ′′

0

ρ0
Yn, ek

)
L2(I)

= (
∂6

t G, ek
)

L2(I),

λn
i (0) = (Y init, ei)L2(I),

∀k ∈ 0, . . . ,n. (5.21)

Since each ei is in H1
0(I), we have by the high-order Hardy-type inequality (3.1) that ei

ρ0
∈ L2(I).

Therefore each integral in (5.21) is well defined. Furthermore, as the {ei} are linearly independent, so
are the { ei√

ρ0
} and therefore the determinant of the matrix

((
ei√
ρ0

,
e j√
ρ0

)
L2(I)

)
(i, j)∈Nn={1,...,n}

is nonzero. This implies that our finite-dimensional Galerkin approximation (5.21) is a well-defined
first-order differential system of order n + 1, which therefore has a solution on a time interval [0, Tn],
where Tn may depend on the dimension n of the Galerkin approximation.

Next we show that Tn � T , with T independent of n.
Noticing that Yn is a linear combination of the ei (i ∈ Nn), we have that(

Ynt

ρ0
, Yn

)
L2(I)

+ κ
(
Y ′

n, Y ′
n

)
L2(I) +

(
ρ ′′

0

ρ0
Yn, Yn

)
L2(I)

= (
∂6

t G, Yn
)

L2(I). (5.22)

Hence, we have

1

2

d

dt

∫
I

Y 2
n

ρ0
− κ

∥∥ρ ′′
0

∥∥
L∞

∫
I

Y 2
n

ρ0
+ κ

∫
I

Y ′2
n

�
∥∥∂6

t G
∥∥2

L2(I) +
∥∥∥∥ Yn√

ρ0

∥∥∥∥2

2
‖ρ0‖L∞(I). (5.23)
L (I)
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Using Poincaré’s inequality ‖Yn‖2
L2(I)

� ‖Y ′
n‖2

L2(I)
and Gronwell’s inequality, then we can find T > 0

(independent of n) such that:

sup
t∈[0,T ]

C

∫
I

Y 2
n

ρ0
+ κ

T∫
0

‖Yn‖2
H1(I) �

T∫
0

∥∥∂6
t G

∥∥2
L2(I) +

∥∥∥∥ρ0u6√
ρ0

∥∥∥∥2

L2(I)
(5.24)

noticing (5.20) and the fact v ∈ CT (M),

sup
t∈[0,T ]

C

∫
I

Y 2
n

ρ0
+ κ

T∫
0

‖Yn‖2
H1(I) � N0 + C P

(‖v‖XT

)
(5.25)

where N0 is defined in (5.8). Thus, there exists a subsequence of (Yn) which converges weakly to
some Y ∈ L2(0, T ; H1

0(I)), which satisfies

sup
t∈[0,T ]

C

∫
I

Y 2

ρ0
+ κ

T∫
0

‖Y ‖2
H1(I) � N0 + C P

(‖v‖XT

)
. (5.26)

Now taking the limit n → ∞ in (5.21), we have

(
Yt

ρ0
, ek

)
L2(I)

+ κ
(
Y ′, e′

k

)
L2(I) +

(
ρ ′′

0

ρ0
Y , ek

)
L2(I)

= (
∂6

t G, ek
)

L2(I) (5.27)

for every k.
Hence, (5.17) is satisfied in the sense of distributions, and that

Yt

ρ0
∈ L2(0, T ; H−1(I)

)
. (5.28)

Now we define

Z =
t∫

0

Y (., τ )dτ + ρ0u5, (5.29)

W =
t∫

0

Z(., τ )dτ + ρ0u4, (5.30)

and

X =
t∫

0

t1∫
0

t2∫
0

t3∫
0

t4∫
0

Z(., τ )dτ dt4 dt3 dt2 dt1 +
5∑

i=0

ρ0uiti

i! . (5.31)

We then see that X ∈ W 6,2([0, T ]; H1
0(I)) is a solution of (5.12)–(5.14), with ∂6

t X = Y .
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5.5. Improving space regularity

In order to prove that v ∈ CT (M) and then obtain a fixed point for the map Θ : v �→ v , we need
to establish better space regularity for Z , and hence X and v .

As Z is defined in (5.29), then Z satisfies the following equation:

Zt

ρ0
− κ Z ′′ + κ

ρ ′′
0

ρ0
Z = ∂5

t G. (5.32)

With the high-order Hardy-type inequality, we have

κ
∥∥Z ′′∥∥

L2(I) �
∥∥∥∥ Zt

ρ0

∥∥∥∥
L2(I)

+
∥∥∥∥ρ ′′

0

ρ0
Z

∥∥∥∥
L2(I)

+ ∥∥∂5
t G

∥∥
L2(I)

� ‖Y ‖H1(I) + ∥∥ρ ′′
0

∥∥
L∞‖Z‖H1(I) + ∥∥∂5

t G
∥∥

L2(I). (5.33)

So the regularity of Z = ρ0∂
5
t v can be improved to L2(0, T ; H2(I)), and then v = X

ρ0
is well defined

and can be easily proved that it is a solution to (5.10).
Furthermore, as W defined in (5.30), we can see that W = ρ0∂

4
t v and W ∈ L2(0, T ; H2(I)). And

we have a similar estimate:

κ
∥∥W ′′∥∥

H1(I) �
∥∥∥∥ Wt

ρ0

∥∥∥∥
H1(I)

+
∥∥∥∥ρ ′′

0

ρ0
W

∥∥∥∥
H1(I)

+ ∥∥∂4
t G

∥∥
H1(I)

� ‖Z‖H2(I) + ∥∥ρ ′′
0

∥∥
L∞‖W ‖H2(I) + ∥∥∂4

t G
∥∥

H1(I). (5.34)

Hence that ρ0∂
4
t v ∈ L2(0, T ; H3(I)) and ∂4

t v ∈ L2(0, T ; H2(I)), and we have v ∈ XT .

5.6. The existence of a fixed-point

First it is clear that there is only one solution v ∈ L2(0, T ; H2(I)) of (5.10) with v(0) = u0, since if
we denote by ω another solution with the same regularity, then the difference δv = v − ω satisfies
δv(·,0) = 0 and ρ0δvt − κ[ρ2

0δv ′]′ = 0, which implies

1

2

d

dt

∫
I

ρ0δv2 + κ

∫
I

ρ0δv ′2 = 0 (5.35)

which together with δv(·,0) = 0 implies δv = 0. So the mapping v → v is well defined.
Now we will prove v ∈ CT (M) when T is sufficiently small.
First, we need to re-estimate L2(0, T ; H2(I))-norm of Z = ρ0∂

5
t v . Like in (5.23), we can easily have

the following:

1

2

d

dt

∫
I

Y 2

ρ0
− κ

∥∥ρ ′′
0

∥∥
L∞

∫
I

Y 2

ρ0
+ κ

∫
I

Y ′2 �
∣∣(∂6

t G, Y
)

L2(I)

∣∣, (5.36)

and

sup
t∈[0,T ]

C

∫
Y 2

ρ0
+ 2κ

T∫
‖Y ‖2

H1(I) �
T∫ ∣∣(∂6

t G, Y
)

L2(I)

∣∣ +
∥∥∥∥ Y init√

ρ0

∥∥∥∥2

L2(I)
. (5.37)
I 0 0
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Since

T∫
0

∣∣(∂6
t G, Y

)
L2(I)

∣∣ =
T∫

0

∣∣∣∣
(√

ρ0∂
6
t G,

Y√
ρ0

)
L2(I)

∣∣∣∣

�
T∫

0

∥∥√
ρ0∂

6
t G

∥∥
L2(I)

∥∥∥∥ Y√
ρ0

∥∥∥∥
L2(I)

� sup
t∈[0,T ]

∥∥∥∥ Y√
ρ0

∥∥∥∥
L2(I)

( T∫
0

12

)1/2( T∫
0

∥∥√
ρ0∂

6
t G

∥∥2
L2(I)

)1/2

� C T P
(‖v‖2

XT

) + C T sup
t∈[0,T ]

∥∥∥∥ Y√
ρ0

∥∥∥∥2

L2(I)
, (5.38)

so when T is sufficiently small, we can get

sup
t∈[0,T ]

C

∫
I

Y 2

ρ0
+ 2κ

T∫
0

‖Y ‖2
H1(I) � N0 + C T P

(‖v‖2
XT

)
. (5.39)

Considering (5.32), and using the high-order Hardy-type inequality (3.1) and the estimate (5.39),
we have

C

T∫
0

∥∥Z ′′∥∥2
L2(I) �

T∫
0

∥∥∥∥ Zt

ρ0

∥∥∥∥2

L2(I)
+

T∫
0

∥∥∥∥ρ ′′
0

ρ0
Z

∥∥∥∥2

L2(I)
+

T∫
0

∥∥∂5
t G

∥∥2
L2(I)

�
T∫

0

‖Y ‖2
H1(I) +

T∫
0

∥∥ρ ′′
0

∥∥
L∞‖Z‖2

H1(I) + N0 + C T P
(‖v‖2

XT

)
� N0 + C T P

(‖v‖2
XT

)
. (5.40)

This implies ∥∥ρ0∂
5
t v

∥∥2
L2(0,T ;H2(I)) � N0 + C T P

(‖v‖2
XT

)
,∥∥∂5

t v
∥∥2

L2(0,T ;H1(I)) � N0 + C T P
(‖v‖2

XT

)
. (5.41)

The second inequality follows by using the high-order Hardy-type inequality. The left part of XT
norm can be estimated in almost the same way.

So finally we get

‖v‖2
XT

� N0 + C T P
(‖v‖2

XT

)
. (5.42)

Taking

T � N0

C P (M)
, (5.43)

we have ‖v‖2
X � 2N0. Let us fix M = 2N0, then v ∈ CT (M).
T
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Now we have the mapping Θ : v → v is actually from CT (M) into itself for T = Tκ satisfying (5.43).
Then, we can get a sequence of functions v(n) ∈ CT (M), where v(n+1) = Θ(v(n)). It is obvious that
v(n) converges weakly in XT . Furthermore, we have the following lemma which shows that ρ0 v(n)

converges strongly in L2(0, T ; H1(I)) and hence v(n) converges strongly in L2(0, T ; L2(I)), which will
lead a fixed-point to the system (4.5)–(4.7).

Lemma 5.1. For the sequence of functions v(n) we defined before, we have:

∥∥ρ0
(

v(n+2) − v(n+1)
)∥∥2

L2(0,T ;H1(I))

� C T P
(∥∥ρ0

(
v(n+1) − v(n)

)∥∥2
L2(0,T ;H1(I))

)
. (5.44)

Proof. It is clear that v(n+2) − v(n+1) satisfies the equation:

ρ0
(

v(n+2) − v(n+1)
)

t − κ
[
ρ2

0

(
v(n+2) − v(n+1)

)′]′ = ρ0
[
G
(

v(n+1)
) − G

(
v(n)

)]
,(

v(n+2) − v(n+1)
)∣∣

t=0 = 0. (5.45)

Let U = ρ0(v(n+2) − v(n+1)), similar as (5.36), and we have:

1

2

d

dt

∫
I

U 2

ρ0
− κ

∥∥ρ ′′
0

∥∥
L∞

∫
I

U 2

ρ0
+ κ

∫
I

U ′2

�
∣∣([G

(
v(n+1)

) − G
(

v(n)
)]

, U
)

L2(I)

∣∣
=

∣∣∣∣
(
ρ0

(η(n+1))′2 − (η(n))′2

(η(n+1))′2(η(n))′2
,ρ0

(
v(n+2) − v(n+1)

)′
)

L2(I)

∣∣∣∣
� Cδ

∥∥∥∥∥
t∫

0

ρ0
(

v(n+1) − v(n)
)′
∥∥∥∥∥

2

L2

+ δ
∥∥ρ0

(
v(n+2) − v(n+1)

)′∥∥2
L2

� Cδ

∥∥∥∥∥
t∫

0

ρ0
(

v(n+1) − v(n)
)′
∥∥∥∥∥

2

L2

+ δC‖U‖2
H1 . (5.46)

Then choose δ small enough, and using Poincaré’s inequality, Gronwell’s inequality and the high-
order Hardy-type inequality, we finally have

κ

2

T∫
0

‖U‖2
H1 � C T P

(∥∥ρ0
(

v(n+1) − v(n)
)′∥∥2

L2(0,T ;L2(I))

)

� C T P
(∥∥ρ0

(
v(n+1) − v(n)

)∥∥2
L2(0,T ;H1(I))

)
. � (5.47)

Thereby, we prove the following theorem:

Theorem 5.2. If the initial data is smooth, then there exists a unique solution vκ ∈ XT to the degenerate
parabolic κ-problem (4.5)–(4.7) for sufficiently small T .
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6. Asymptotic estimates for vκ independent of κ

Our objective in this section is to show that the higher-order energy function E defined in (2.25)
satisfies the inequality

sup
t∈[0,T ]

E(t) � M0 + C T P
(

sup
t∈[0,T ]

E(t)
)

(6.1)

where P denotes a polynomial function, and for T > 0 taken sufficiently small, with M0 being a
constant depending only on the initial data. The norms in E are for solutions vκ to our degenerate
parabolic κ-problem (4.5)–(4.7).

According to Theorem 5.2, vκ ∈ XTκ with the additional bound ‖∂4
t vκ‖L2(0,Tκ ) < ∞. As such, the

energy function E is continuous with respect to t , and the inequality (6.1) would thus establish a
time interval of existence and bound which are both independent of κ . For the sake of notational
convenience, we shall denote vκ by v . We will generally follow the computation in [3, Section 6].

6.1. A κ-independent energy estimate on the ∂5
t -problem

Our starting point shall be the fifth time differentiated problem of (4.5) for which we have, by
naturally using ∂5

t v ∈ L2(0, Tκ ; H1(I)) (since v ∈ XTκ ) as a test function, the following identity:

1

2

d

dt

∫
I

ρ0
∣∣∂5

t v
∣∣2

︸ ︷︷ ︸
I1

−
∫
I

∂5
t

[
ρ2

0

η′2

]
∂5

t v ′

︸ ︷︷ ︸
I2

+ κ

∫
I

ρ2
0

(
∂5

t v ′)2

︸ ︷︷ ︸
I3

= 0. (6.2)

Noticing the fact that ∂6
t v ∈ L2(0, Tκ ; L2(I)), which follows from (5.16), (5.26) and the high-order

Hardy-type inequality, (6.2) is well defined. Upon integration in time, both the terms I1 and I3 pro-
vide sign-definite energy contributions, so we focus our attention on the nonlinear estimates required
of the term I2.

We see that

−I2 = 2
∫
I

∂4
t v ′

[
ρ2

0

η′3

]
∂5

t v ′ −
4∑

α=1

bα

∫
I

∂α
t

1

η′3
∂4−α

t v ′ρ2
0∂5

t v ′

= d

dt

∫
I

(
∂4

t v ′)2 ρ2
0

η′3
+ 3

∫
I

(
∂4

t v ′)2
v ′ ρ

2
0

η′4
−

4∑
α=1

bα

∫
I

∂α
t

1

η′3
∂4−α

t v ′ρ2
0∂5

t v ′. (6.3)

Hence integrating (6.2) from 0 to t ∈ [0, Tκ ], we find that

1

2

∫
I

ρ0∂
5
t v2(t) +

∫
I

(
∂4

t v ′)2 ρ2
0

η′3
(t) + κ

t∫
0

∫
I

ρ2
0

(
∂5

t v ′)2

= 1

2

∫
I

ρ0∂
5
t v2(0) +

∫
I

(
∂4

t v ′)2 ρ2
0

η′3
(0) − 3

t∫
0

∫
I

(
∂4

t v ′)2
v ′ ρ

2
0

η′4

+
4∑

α=1

bα

∫
∂α

t
1

η′3
∂4−α

t v ′ρ2
0∂5

t v ′. (6.4)
I
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We next show that all of the error terms can be bounded by Ct P (sup[0,t] E). First, it is clear that

−3

t∫
0

∫
I

(
∂4

t v ′)2
v ′ ρ

2
0

η′4
� C

t∫
0

∥∥v ′∥∥
L∞

∥∥ρ0∂
4
t v ′∥∥2

L2

� C

t∫
0

‖v‖H2

(∥∥ρ0∂
4
t v

∥∥2
H1 + ∥∥∂4

t v
∥∥2

L2

)

� Ct P
(

sup
[0,t]

E
)
. (6.5)

Then using integration-by-parts in time, we have that

t∫
0

∫
I

4∑
α=1

bα∂α
t

1

η′3
∂4−α

t v ′ρ2
0∂5

t v ′

=
t∫

0

∫
I

(
4∑

α=1

bα∂α
t

1

η′3
∂4−α

t v ′
)

t

ρ2
0∂4

t v ′

︸ ︷︷ ︸
J

+
∫
I

4∑
α=1

bα∂α
t

1

η′3
∂4−α

t v ′ρ2
0∂4

t v ′
∣∣∣∣t

0
. (6.6)

The term J can be written under the form of the sum of space–time integrals of the following
types:

J1 =
t∫

0

∫
I

ρ0∂
4
t v ′v ′R

(
η′)ρ0∂

4
t v ′,

J2 =
t∫

0

∫
I

ρ0∂
3
t v ′(v ′)2

R
(
η′)ρ0∂

4
t v ′,

J3 =
t∫

0

∫
I

ρ0∂
3
t v ′∂t v ′R

(
η′)ρ0∂

4
t v ′,

J4 =
t∫

0

∫
I

ρ0∂
2
t v ′∂t v ′v ′R

(
η′)ρ0∂

4
t v ′,

J5 =
t∫

0

∫
I

ρ0
(
∂2

t v ′)2
R
(
η′)ρ0∂

4
t v ′,

J6 =
t∫ ∫

ρ0∂
2
t v ′(v ′)3

R
(
η′)ρ0∂

4
t v ′,
0 I
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J7 =
t∫

0

∫
I

ρ0
(
∂t v ′)3

R
(
η′)ρ0∂

4
t v ′,

J8 =
t∫

0

∫
I

ρ0
(
∂t v ′)2(

v ′)2
R
(
η′)ρ0∂

4
t v ′, (6.7)

where R(η′) denotes a rational function of η′ .
We first immediately see that

| J1| � C

t∫
0

∥∥v ′∥∥
L∞

∥∥ρ0∂
4
t v ′∥∥2

L2

∥∥R
(
η′)∥∥

L∞ � Ct P
(

sup
[0,t]

E
)
. (6.8)

Next, we have that

| J3| � C

t∫
0

∥∥ρ0∂
3
t v ′∥∥

L4

∥∥∂t v ′∥∥
L4

∥∥R
(
η′)∥∥

L∞
∥∥ρ0∂

4
t v ′∥∥

L2

� Ct P
(

sup
[0,t]

E
)
, (6.9)

and

| J7| � C

t∫
0

∥∥∂t v ′∥∥3
L6

∥∥R
(
η′)∥∥

L∞
∥∥ρ0∂

4
t v ′∥∥

L2

� Ct P
(

sup
[0,t]

E
)
, (6.10)

where we used Sobolev embedding inequalities in 1-D, ‖ · ‖L∞ � C p‖ · ‖H1 and ‖ · ‖Lp � C p‖ · ‖
H

1
2

, for

all 1 < p < ∞.
J2, J4, J5, J6 and J8 can be estimated almost in the same way.

The term
∫

I bα∂α
t

1
η′ 3 ∂4−α

t v ′ρ2
0∂4

t v ′|t0 can be estimated by

E
1
2

(
M0 + Ct P

(
sup

t∈[0,T ]
E
))

(6.11)

in the similar way by using the fundamental theorem of calculus.
Therefore, using Young’s inequality, we have

1

2

∫
ρ0∂

5
t v2(t) +

∫ (
∂4

t v ′)2 ρ2
0

η′3
(t) + κ

t∫ ∫
ρ2

0

(
∂5

t v ′)2 � M0 + Ct P
(

sup
[0,t]

E
)
, (6.12)
I I 0 I
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and thus, using the fundamental theorem of calculus,

1

2

∫
I

ρ0∂
5
t v2(t) +

∫
I

(
ρ0∂

4
t v ′)2

(t) + κ

t∫
0

∫
I

ρ2
0

(
∂5

t v ′)2

� M0 + Ct P
(

sup
[0,t]

E
)
. (6.13)

6.2. Elliptic and Hardy-type estimates for ∂2
t v(t) and v(t)

Having obtained the energy estimate (6.13) for the ∂5
t -problem, we can begin our bootstrapping

argument. We now consider the 1
ρ0

∂3
t -problem of (4.5)

1

ρ0

[
∂3

t
ρ2

0

η′2

]′
− κ

ρ0

[
ρ2

0∂3
t v ′]′ = −∂4

t v, (6.14)

which can be written as

− 2

ρ0

[
ρ2

0∂2
t v ′

η′3

]′
− κ

ρ0

[
ρ2

0∂3
t v ′]′ = −∂4

t v + c1

ρ0

[
ρ2

0∂t v ′v ′

η′4

]′
+ c2

ρ0

[
ρ2

0 v ′3

η′5

]′
, (6.15)

and finally be rewritten as the following identity:

− 2

ρ0

[
ρ2

0∂2
t v ′]′ − κ

ρ0

[
ρ2

0∂3
t v ′]′ = −ρ0∂

4
t v + c1

ρ0

[
ρ2

0∂t v ′v ′

η′4

]′
+ c2

ρ0

[
ρ2

0 v ′3

η′5

]′

− 2
1

ρ0

[
ρ2

0∂2
t v ′]′(1 − 1

η′3

)
− 6ρ0∂

2
t v ′ η′′

η′4
. (6.16)

Here, c1 and c2 are constants whose exact values are not important.
Therefore, using Lemma 3.2 and the fundamental theorem of calculus for the fourth term on the

right-hand side of (6.16), we obtain that for any t ∈ [0, Tκ ]:

sup
[0,t]

∥∥∥∥ 2

ρ0

[
ρ2

0∂2
t v ′]′∥∥∥∥

L2
� sup

[0,t]
∥∥∂4

t v
∥∥

L2 + sup
[0,t]

∥∥∥∥ c1

ρ0

[
ρ2

0∂t v ′v ′

η′4

]′∥∥∥∥
L2

+ sup
[0,t]

∥∥∥∥ c2

ρ0

[
ρ2

0 v ′3

η′5

]′∥∥∥∥
L2

+ sup
[0,t]

∥∥∥∥ 2

ρ0

[
ρ2

0∂2
t v ′]′∥∥∥∥

L2

∥∥∥∥∥3

.∫
0

v ′

η′4

∥∥∥∥∥
L∞

+ 6 sup
[0,t]

∥∥∥∥ρ0∂
2
t v ′ η′′

η′4

∥∥∥∥
L2

. (6.17)

We next estimate each term on the right-hand side of (6.17). For the first term, we will use our
estimate (6.13) from which we infer for each t ∈ [0, Tκ ]:

∫
ρ2

0

[∣∣∂4
t v

∣∣2 + ∣∣∂4
t v ′∣∣2]

(t) � M0 + Ct P
(

sup
[0,t]

E
)
. (6.18)
I
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Note that the first term of the left-hand side of (6.18) comes from the first term of (6.13), together
with the fact that ∂4

t v(t, x) = ∂4
t v(x,0) + ∫ t

0 ∂5
t v(., x). Therefore, the Sobolev weighted embedding

estimate (3.2) provides us with the following estimate:

∫
I

∣∣∂4
t v

∣∣2
(t) � M0 + Ct P

(
sup
[0,t]

E
)
. (6.19)

The remaining terms will be estimated by using the definition of the energy function E .
For the second term, we have that:

∥∥∥∥ 1

ρ0

[
ρ2

0∂t v ′v ′

η′4

]′∥∥∥∥
L2

�
∥∥(

ρ0∂t v ′)′∥∥
L2

∥∥∥∥ v ′

η′4

∥∥∥∥
L∞

+
∥∥∥∥∂t v ′

[
ρ0 v ′

η′4

]′∥∥∥∥
L2

� C
∥∥(

ρ0 v ′
t

)′∥∥
L2

∥∥v ′∥∥
L∞ +

∥∥∥∥v ′
t

[
ρ ′

0 v ′

η′4

]∥∥∥∥
L2

+
∥∥∥∥v ′

t

[
ρ0 v ′′

η′4

]∥∥∥∥
L2

+ 4

∥∥∥∥v ′
t

[
ρ0 v ′η′′

η′5

]∥∥∥∥
L2

� C

∥∥∥∥∥(
ρ0u′

1

)′ +
.∫

0

(
ρ0 v ′

tt

)′
∥∥∥∥∥

L2

∥∥v ′∥∥ 1
2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

+ C

∥∥∥∥∥u′
1 +

.∫
0

v ′
tt

∥∥∥∥∥
L2

∥∥v ′∥∥ 1
2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

+ C

∥∥∥∥∥u′
1 +

.∫
0

v ′
tt

∥∥∥∥∥
L2

∥∥ρ0 v ′′∥∥ 3
4
H1

∥∥∥∥∥√
ρ0u′′

0 +
.∫

0

√
ρ0 v ′′

t

∥∥∥∥∥
1
4

L2

+ C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

∥∥∥∥∥
.∫

0

v ′′
∥∥∥∥∥

L2

∥∥∥∥∥ρ0u′
1 +

.∫
0

ρ0 v ′
tt

∥∥∥∥∥
H1

� C sup
[0,t]

E
3
8

(
M0 + t P

(
sup
[0,t]

E
))

. (6.20)

Use the definition of E , then for any t ∈ [0, Tκ ], we have

sup
[0,t]

∥∥∥∥ 1

ρ0

[
ρ2

0∂t v ′v ′

η′4

]′∥∥∥∥
L2

� C sup
[0,t]

E
3
8

(
M0 + t P

(
sup
[0,t]

E
))

. (6.21)

For the third term, we see that

∥∥∥∥ 1

ρ0

[
ρ2

0 v ′3

η′5

]′∥∥∥∥
L2

� 2

∥∥∥∥ρ ′
0 v ′3

η′5

∥∥∥∥
L2

+ 3

∥∥∥∥v ′
[
ρ0 v ′′v ′

η′5

]∥∥∥∥
L2

+ 5

∥∥∥∥v ′
[
ρ0 v ′2η′′

η′6

]∥∥∥∥
L2

� C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
v ′

t

∥∥∥∥∥
1
2

H
1
2

∥∥∥∥∥u′
0 +

.∫
v ′

t

∥∥∥∥∥
2

H
1
2
0 0
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+ C
∥∥ρ0 v ′′∥∥ 3

4
H1

∥∥∥∥∥√
ρ0u′′

0 +
.∫

0

√
ρ0 v ′′

t

∥∥∥∥∥
1
4

L2

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
2

H
1
2

+ C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
2

H
1
2

∥∥∥∥∥
.∫

0

ρ0 v ′′
∥∥∥∥∥

H1

, (6.22)

where we used the fact that ‖·‖L4 � C p‖·‖
H

1
2

. Again, using the definition of E , the previous inequality

provides us for any t ∈ [0, Tκ ] with

sup
[0,t]

∥∥∥∥ 1

ρ0

[
ρ2

0 v ′3

η′5

]′∥∥∥∥
L2

� C sup
[0,t]

E
3
8

(
M0 + t P

(
sup
[0,t]

E
))

. (6.23)

For the fourth term, we see that

∥∥∥∥ 2

ρ0

[
ρ2

0∂2
t v ′]′∥∥∥∥

L2

∥∥∥∥∥3

.∫
0

v ′

η′4

∥∥∥∥∥
L∞

(t) � C
[∥∥ρ0∂

2
t v ′′∥∥

L2 + ∥∥∂t v ′∥∥
L2

]
t sup

[0,t]
‖v‖H2

� Ct P
(

sup
[0,t]

E
)
. (6.24)

Similarly, the fifth term yields the following estimate:

∥∥∥∥ρ0∂
2
t v ′ η′′

η′4

∥∥∥∥
L2

(t) � C
∥∥ρ0∂

2
t v ′∥∥

L∞
∥∥η′′∥∥

L2

� C
∥∥ρ0∂

2
t v ′∥∥

H1

∥∥∥∥∥
.∫

0

v ′′
∥∥∥∥∥

L2

� Ct P
(

sup
[0,t]

E
)
. (6.25)

Combining the estimates (6.19)–(6.25), we obtain the inequality

sup
[0,t]

∥∥∥∥ 2

ρ0

[
ρ2

0∂2
t v ′]′∥∥∥∥

L2
� M0 + Ct P

(
sup
[0,t]

E
)

+ C sup
[0,t]

E
3
8

(
M0 + t P

(
sup
[0,t]

E
))

. (6.26)

We recall that the solution v to our parabolic κ-problem is in XTκ , so for any t ∈ [0, Tκ ], ∂2
t v ∈ H2(I).

Notice that

1

ρ0

[
ρ2

0∂2
t v ′]′ = ρ0∂

2
t v ′′ + 2ρ ′

0∂
2
t v ′ (6.27)

so (6.26) is equivalent to

sup
[0,t]

∥∥ρ0∂
2
t v ′′ + 2ρ ′

0∂
2
t v ′∥∥

L2 � Ct P
(

sup
[0,t]

E
)

+ C sup
[0,t]

E
3
8

(
M0 + t P

(
sup
[0,t]

E
))

. (6.28)
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From this inequality, we would like to conclude that both ‖∂2
t v ′‖L2 and ‖ρ0∂

2
t v ′′‖L2 are bounded by

the right-hand side of (6.28); the regularity provided by solutions of the κ-problem allows us to arrive
at this conclusion.

By expanding the left-hand side of (6.28), we see that

∥∥ρ0∂
2
t v ′′ + 2ρ ′

0∂
2
t v ′∥∥2

L2 = ∥∥ρ0∂
2
t v ′′∥∥2

L2 + 4
∥∥ρ ′

0∂
2
t v ′∥∥2

L2 + 4
∫
I

ρ0∂
2
t v ′′ρ ′

0∂
2
t v ′. (6.29)

We notice that the cross-term (6.29) is an exact derivative with the regularity of ∂2
t v provide by our

κ-problem,

4
∫
I

ρ0∂
2
t v ′′ρ ′

0∂
2
t v ′ = 2

∫
I

ρ0ρ
′
0

∂

∂x

∣∣∂2
t v ′∣∣2

. (6.30)

So that by integrating-by-parts, we find that

4
∫
I

ρ0∂
2
t v ′′ρ ′

0∂
2
t v ′ = −2

∥∥ρ ′
0∂

2
t v ′∥∥2

L2 −
∫
I

ρ0∂
2
t v ′ρ ′′

0 ∂2
t v ′, (6.31)

and hence (6.29) becomes

∥∥ρ0∂
2
t v ′′ + 2ρ ′

0∂
2
t v ′∥∥2

L2 = ∥∥ρ0∂
2
t v ′′∥∥2

L2 + 2
∥∥ρ ′

0∂
2
t v ′∥∥2

L2 −
∫
I

ρ0∂
2
t v ′ρ ′′

0 ∂2
t v ′. (6.32)

Since the energy function E contains ‖√ρ0∂
3
t v(t)′‖L2(I) , the fundamental theorem of calculus show

that

∫
I

ρ0∂
2
t v ′ρ ′′

0 ∂2
t v ′ � C

∥∥∥∥∥√
ρ0u′

2 +
·∫

0

√
ρ0∂

3
t v ′

∥∥∥∥∥
2

L2

� M0 + Ct P
(

sup
[0,t]

E
)
. (6.33)

Combing this inequality with (6.32) and (6.26), yields

sup
[0,t]

[∥∥ρ0∂
2
t v ′′∥∥2

L2 + ∥∥ρ ′
0∂

2
t v ′∥∥2

L2

]
� M0 + Ct P

(
sup
[0,t]

E
)

+ C sup
[0,t]

E
3
4

(
M0 + t P

(
sup
[0,t]

E
))

, (6.34)

and thus

sup
[0,t]

[∥∥ρ0∂
2
t v ′′∥∥2

L2 + ∥∥ρ ′
0∂

2
t v ′∥∥2

L2 + ∥∥ρ0∂
2
t v ′∥∥2

L2

]
� M0 + Ct P

(
sup
[0,t]

E
)

+ C sup
[0,t]

E
3
4

(
M0 + t P

(
sup
[0,t]

E
))

. (6.35)

And hence with the physical vacuum conditions of ρ0 given by (8.2) and (8.3), we have that
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sup
[0,t]

[∥∥ρ0∂
2
t v ′′∥∥2

L2 + ∥∥∂2
t v ′∥∥2

L2

]
� M0 + Ct P

(
sup
[0,t]

E
)

+ C sup
[0,t]

E
3
4

(
M0 + t P

(
sup
[0,t]

E
))

, (6.36)

which, together with (6.19), provides us with the estimate

sup
[0,t]

[∥∥ρ0∂
2
t v ′′∥∥2

L2 + ∥∥∂2
t v

∥∥2
H1

]
� M0 + Ct P

(
sup
[0,t]

E
)

+ C sup
[0,t]

E
3
4

(
M0 + t P

(
sup
[0,t]

E
))

. (6.37)

By studying the ∂x(
1
ρ0

∂t)-problem of (4.5) in the same manner, we find that

sup
[0,t]

[∥∥ρ0 v ′′′∥∥2
L2 + ‖v‖2

H2

]
� M0 + Ct P

(
sup
[0,t]

E
)

+ C sup
[0,t]

E
3
4

(
M0 + t P

(
sup
[0,t]

E
))

. (6.38)

6.3. Elliptic and Hardy-type estimates for ∂3
t v(t) and ∂t v(t)

We consider the 1√
ρ0

∂4
t -problem of (4.5):

1√
ρ0

[
∂4

t
ρ2

0

η′2

]′
− κ√

ρ0

[
ρ2

0∂4
t v ′]′ = −√

ρ0∂
5
t v. (6.39)

By employing the fundamental theorem of calculus, it can be rewritten as

− 2√
ρ0

[
ρ2

0∂3
t v ′]′ − κ√

ρ0

[
ρ2

0∂4
t v ′]′

= −√
ρ0∂

5
t v + c1√

ρ0

[
ρ2

0∂2
t v ′v ′

η′4

]′
+ c2√

ρ0

[
ρ2

0∂t v ′2

η′5

]′

− 2√
ρ0

[
ρ2

0∂3
t v ′]′(1 − 1

η′3

)
− 6ρ

3
2

0 ∂3
t v ′ η′′

η′4
, (6.40)

for some constants c1 and c2.
For any t ∈ [0, Tκ ], Lemma 3.2 provides the κ-independent estimate

sup
[0,t]

∥∥∥∥ 2√
ρ0

[
ρ2

0∂3
t v ′]′∥∥∥∥

L2
� sup

[0,t]
∥∥√

ρ0∂
5
t v

∥∥
L2 + sup

[0,t]

∥∥∥∥ c1√
ρ0

[
ρ2

0∂2
t v ′v ′

η′4

]′∥∥∥∥
L2

+ sup
[0,t]

∥∥∥∥ c2√
ρ0

[
ρ2

0∂t v ′2

η′5

]′∥∥∥∥
L2

+ sup
[0,t]

∥∥∥∥ 2√
ρ0

[
ρ2

0∂3
t v ′]′∥∥∥∥

L2

∥∥∥∥∥3

.∫
0

v ′

η′4

∥∥∥∥∥
L∞

+ 6 sup
[0,t]

∥∥∥∥ρ 3
2

0 ∂3
t v ′ η′′

η′4

∥∥∥∥
L2

. (6.41)

We estimate each term on the right-hand side of (6.41).
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The first term on the right-hand side is bounded by M0 + Ct P (sup[0,t] E) due to (6.13).
For the second term, we have that
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t v ′v ′

η′4

]′∥∥∥∥
L2

�
∥∥∥∥
√

ρ0∂
2
t v ′(ρ0 v ′)′

η′4

∥∥∥∥
L2

+
∥∥∥∥
√

ρ0 v ′(ρ0∂
2
t v ′)′

η′4

∥∥∥∥
L2

+ 4

∥∥∥∥
√

ρ0∂
2
t v ′ρ0 v ′η′′

η′5

∥∥∥∥
L2

� C

∥∥∥∥∥√
ρ0u′

2 +
.∫

0

√
ρ0∂

3
t v ′

∥∥∥∥∥
L2

∥∥(
ρ0 v ′)′∥∥

L∞

+ C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

∥∥√
ρ0

(
ρ0∂

2
t v ′)′∥∥

L2

+ C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

∥∥∥∥∥
.∫

0

v ′′
∥∥∥∥∥

L2

∥∥ρ 3
2

0 ∂2
t v ′∥∥

L∞

� C

∥∥∥∥∥√
ρ0u′

2 +
.∫

0

√
ρ0∂

3
t v ′

∥∥∥∥∥
L2

∥∥v ′∥∥ 1
2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

+ C

∥∥∥∥∥√
ρ0u′

2 +
.∫

0

√
ρ0∂

3
t v ′

∥∥∥∥∥
L2

∥∥ρ0 v ′′∥∥ 3
4
H1

∥∥∥∥∥√
ρ0u′

0 +
.∫

0

√
ρ0 v ′′

t

∥∥∥∥∥
1
4

L2

+ C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

∥∥∥∥∥√
ρ0u′

2 +
.∫

0

√
ρ0∂

3
t v ′

∥∥∥∥∥
L2

+ C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

∥∥∥∥∥ρ0
√

ρ0u′
2 +

.∫
0

ρ0
√

ρ0∂
3
t v ′′

∥∥∥∥∥
L2

+ C
∥∥v ′∥∥ 1

2
H1

∥∥∥∥∥u′
0 +

.∫
0

v ′
t

∥∥∥∥∥
1
2

H
1
2

∥∥∥∥∥
.∫

0

v ′′
∥∥∥∥∥

L2

∥∥ρ0∂
2
t v ′∥∥

H1 , (6.42)

where we have again used fact that ‖ · ‖L∞ � C‖ · ‖
H

3
4

. Using the definition of E , it shows that for any

t ∈ [0, Tκ ],

sup
[0,t]

∥∥∥∥ 1√
ρ0

[
ρ2

0∂2
t v ′v ′

η′4

]′∥∥∥∥
L2

� C sup
[0,t]

E
3
8

(
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(
sup
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E
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. (6.43)

For the third term on the right-hand side of (6.41), we have similarly that

∥∥∥∥ 1√
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+ C
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, (6.44)

where 0 < a < 1
2 is given and 0 < α = 3−3a

4+3a < 1.
The only term on the right-hand side of (6.44) which is not directly contained in the definition

of E is ‖(√ρ0∂t v ′)′‖α
L2−a . Then we notice that

∥∥(√
ρ0∂t v ′)′∥∥

L2−a �
∥∥∥∥ ∂t v ′

2
√

ρ0

∥∥∥∥
L2−a

+ ∥∥√
ρ0 v ′′

t

∥∥
L2

�
∥∥∥∥ 1

2
√

ρ0

∥∥∥∥
L2− a

2

∥∥∂t v ′∥∥
H

1
2

+ ∥∥√
ρ0 v ′′

t

∥∥
L2 (6.45)

where we have used the fact that ‖ · ‖Lp � C‖ · ‖
H

1
2

, for all 1 < p < ∞. So (6.44) and (6.45) provide

us for any t ∈ [0, Tκ ] with
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(
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E
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, (6.46)

where 0 < α = 3−3a
4+3a < 1.

The fourth term on the right-hand side of (6.41) is easily treated as:
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. (6.47)

Similarly, the fifth term is estimated as follows:
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)
. (6.48)

Combining the estimates (6.42)–(6.48), we can show that
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. (6.49)

L
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Now, since for any t ∈ [0, Tκ ], solutions to our parabolic κ-problem have the regularity ∂2
t v ∈ H2(I),

we integrate-by-parts:
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Combining with (6.49), and the fact that ρ0∂
3
t v ′ = ρ0u′

3 + ∫ .

0 ρ0∂
4
t v ′ for the second term on the right-

hand side of (6.50), we find that
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Now, since
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3
t v ′, (6.52)

the estimates (6.49) and (6.51) also imply that
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Therefore,
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E
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(6.54)

so that with (8.2) and (8.3)
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Together with (6.19) and the weighted embedding estimate (3.2), the above inequality shows that
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By studying the
√

ρ0∂x(
1
ρ0

∂2
t )-problem of (4.5) in the same manner, we find that

sup
[0,t]

[∥∥ρ 3
2

0 ∂t v ′′′∥∥2
L2 + ‖∂t v‖2

H
3
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(
sup
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E
)

+ C sup
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Eα
(

M0 + t P
(
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E
))

. (6.57)

7. Proof of the theorem

7.1. Time of existence and bounds independent of κ and existence of solutions to (2.22)

Summing the inequalities (6.13), (6.37), (6.38), (6.56), (6.57), we find that

sup
[0,t]

E(t) � M0 + Ct P
(

sup
[0,t]

E
)

+ C sup
[0,t]

Eα
(

M0 + t P
(

sup
[0,t]

E
))

. (7.1)

As α < 1, by using Young’s inequality and readjusting the constants, we obtain

sup
[0,t]

E(t) � M0 + Ct P
(

sup
[0,t]

E
)
. (7.2)

This provides us with a time of existence T1 independent of κ and an estimate on (0, T1) independent
of κ of the type:

sup
[0,T1]

E(t) � 2M0. (7.3)

In particular, our sequence of solutions (vκ ) satisfy the κ-independent bound (7.3) on the κ-
independent time interval (0, T1).

7.2. The limit as κ → 0

By the κ-independent estimate (7.3), there exists a subsequence of (vκ ) which converges weakly
to v in L2(0, T ; H2(I)). With η(x, t) = x + ∫ t

0 v(x, s)ds, by standard compactness arguments, we see
that a further subsequence of vκ and η′

κ uniformly converges to v and η′ , respectively, which shows
that v is the solution to (2.22)–(2.24) and v(x,0) = u0(x).

8. The general case for 1 < γ < 3

If γ 	= 2, we set ω0 = ρ
γ −1
0 , then physical vacuum condition shows that

ω0 � C dist(x, ∂ I), (8.1)

when x ∈ I near the vacuum boundary Γ , and∣∣∣∣∂ω0

∂x
(x)

∣∣∣∣ � C when d(x, ∂ I) � α, (8.2)

ω0 � Cα > 0 when d(x, ∂ I) � α. (8.3)

Now we can use ω0 v as intermediate variable and construct approximate solution to degen-
erate parabolic regularization just in a similar way to Section 5. Noticing that the force term
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F = ∫ x
0 ρ0 dy + C would not be smooth now, we need to require a certain high space regularity for it

to keep the method described in Section 5 still works. Since we would require that X = ω0 v ∈ H3(I),
then from (5.31) and (5.1), we will need the regularity that ω0

∫ x
0 ρ0 dy ∈ H3(I).

With (8.1) and ρ0 = ω
1

γ −1

0 , we will just require that ω
1

γ −1 −1

0 ∈ L2(I), which means 1 < γ < 3.
So for 1 < γ < 3, we can get the local well-posedness by doing the similar proof as γ = 2 in

Sections 5–7. Details can be seen in [3].
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