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We build type IIB backgrounds that can be interpreted as the dual description of field theories in which
the dynamics shows many non-trivial phenomena, generalizing the baryonic branch of the Klebanov–
Strassler system. We illustrate the steps of the explicit construction with a particularly interesting
example. The dual field theory exhibits the expected behavior of an N = 1 supersymmetry gauge theory
which, over different ranges of the radial direction, is undergoing a cascade of Seiberg dualities, a period
of running, a cascade of Higgsings (tumbling) and finally gaugino condensation.
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1. Introduction

The dynamics of four-dimensional field theories is very rich,
particularly at strong coupling. Quantum effects give rise to very
non-trivial renormalization-group flows (running of the couplings).
At strong coupling many theories confine, and in some conditions
gauge theories can undergo spontaneous symmetry breaking (Hig-
gsing), possibly in multi-scale sequences (tumbling) [1]. Under spe-
cial circumstances (close to approximate fixed points) the running
may be anomalously slow (walking) [2]. Finally, there are examples
in which two different gauge theories (with different microscopic
Lagrangians) admit the same low-energy description (Seiberg dual-
ity) [3]. This feature can be iterated, giving rise to what is called
the duality cascade [4–6].

On very general grounds, it is interesting to have a (weakly cou-
pled) dual gravity description of (strongly coupled) field theories.
The methods of the AdS/CFT correspondence [7] generalize to cases
where the dual field theory is not conformal [8] and exhibits one
or more of the dynamical features described above. This allows
to test quantitatively the properties of models for which the intu-
ition based on perturbation theory fails to provide useful guidance.
Many such non-trivial features are believed to play important roles
in phenomenologically relevant models (for example, in dynamical
electroweak-symmetry breaking [9–11]), and the gravity duals of-
fer an opportunity to make quantitative predictions for measurable
quantities.

The literature on the subject is very rich, see for instance [6,12–
14]. In this Letter we take a further non-trivial step. We present
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an algorithmic procedure that allows to construct a large class of
new backgrounds, dual to N = 1 supersymmetric gauge theories.
Depending on some of the integration constants and parameters
of the string configuration, the four-dimensional gauge theories
exhibit one or more of the features we referred to as running, Hig-
gsing, tumbling, confinement and duality cascade.

We produce and discuss in some detail one special example
of such a construction, by providing the essential technical steps,
highlighting its preeminent physical properties and by comment-
ing on generalizations of the construction itself. For full details, we
refer the reader to the vast literature on the subject and to a more
extensive companion paper [15].

2. The backgrounds

We consider the class of type IIB backgrounds that can be ob-
tained by the KK reduction of the theory on the base of a conifold,
followed by a consistent truncation. Our starting configuration con-
tains Nc units of flux for the RR form F3 (we call this the wrapped-
D5 system), to which we add (fully back-reacted) N f smeared
D5-brane sources. There exists a procedure that, starting from this
comparatively well-understood system, allows to generate a large
class of backgrounds that are much more general, in which also
the H3 and F5 forms are highly non-trivial and the dual field the-
ory has a particularly rich multi-scale dynamics. Let us illustrate in
this section how this is achieved.

2.1. The construction

Consider the ansatz for a background of type IIB string the-
ory, in which the ten-dimensional space-time consists of four
Minkowski directions xμ , a radial direction 0 < ρ < +∞ and five
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internal angles θ, θ̃ ,ϕ, ϕ̃,ψ parameterizing a compact manifold
Σ5 [16–20]. The full background is determined by a set of func-
tions that are assumed to depend only on ρ , and by a set of
non-trivial BPS equations that can be derived from type IIB su-
pergravity [13,17–19].

The whole dynamics controlling the background can be sum-
marized by the following two equations [20–22]:

0 = P ′′ + N f S ′ + (
P ′ + N f S

)
×

(
P ′ − Q ′ + 2N f S

P + Q
+ P ′ + Q ′ + 2N f S

P − Q
− 4 coth(2ρ)

)
= 0, (1)

Q = coth(2ρ)

[ ρ∫
0

dx
2Nc − N f S(x)

coth2(2x)

]
, (2)

where the primed quantities refer to derivatives with respect to
ρ . The system is hence controlled by the functions P (ρ), Q (ρ)

and S(ρ). Once these functions are known, one can reconstruct
in a purely algebraic way the whole type IIB background, which
consists of a non-trivial metric, dilaton and RR form F3.

While the equations for P and Q are a repackaging of the BPS
equations for the original ten-dimensional system, the function
S(ρ) has a very different meaning: it controls the profile of the
N f (flavor) branes in the radial direction. For example, a vanishing
S yields the original (unflavored) wrapped-D5 system, for which
P̂ = 2Ncρ is a special solution [13,17]. On the other extreme, S = 1
corresponds to the flavored solutions extensively discussed in the
literature [18–20,23].

Following [21,22], we will assume that S has a non-trivial ρ-
dependent profile, bounded by 0 � S � 1. In particular, we will
require that S vanishes both in the deep IR (small ρ) and in the far
UV (large ρ), hence ensuring that asymptotically in the UV and in
the IR the system resembles very closely the original wrapped-D5
system. The latter is the main element of novelty of the proposal in
this Letter. There are important, though subtle, differences in the
asymptotic expansions of backgrounds obtained for such choice of
S with respect to the case S = 0, as we will see.

In the case of the wrapped-D5 system (with S = 0), Q is ex-
actly integrable, and the generic solution of Eq. (1) depends on
two integration constants c± , which can be read from the UV ex-
pansion of the equation, see [20]. Their meaning in terms of the
field-theory duals is well understood: they correspond to the in-
sertion of a dimension-eight operator (for c+) and to a VEV for a
dimension-six operator (for c−), see [24].

The choice of c± is not completely free. In particular, there
exists a minimal value for c+ , close to which the background so-
lutions approach the special case P̂ = 2Ncρ , which does not admit
a simple interpretation in terms of a local four-dimensional dual
field theory. We will hence avoid this case and c+ will be kept
explicit. As for the second integration constant c− , the fact that
it is non-vanishing is connected with the appearance in the field
theory of properties that resemble those of a walking field the-
ory [25]. Also, it seems that its presence ultimately produces a very
mild singularity in the deep IR. In this Letter, we will always keep
c− = 0, so that the IR is non-singular.

It is known [24,26–28] that for backgrounds for which c+ is
non-trivial, there exists an algebraic procedure (which we refer to
as rotation) that allows to construct a new one-parameter family
of solutions starting from the wrapped-D5 system. In these new
‘rotated’ backgrounds the warp factor ĥ is given by

ĥ = 1 − κ2e2Φ = 1 − κ2

√
2e4Φ0 sinh(2ρ)2

(P 2 − Q 2)(P ′ + N f S)
� 0, (3)
where Φ is the dilaton,1 and Φ0 and κ are constants. We fo-
cus on cases where P ∼ c+e

4
3 ρ + O(e− 4

3 ρ) for ρ > ρ̄ , where the
scale ρ̄ is determined by c+ itself in a non-trivial way. The dila-
ton approaches a constant Φ(∞) at large ρ (as opposed to being
linear [13]), hence one finds the restriction 0 � κ � e−Φ(∞) .

Summarizing, if we choose a non-zero2 κ and perform the ro-
tation [24,26–28], this yields a new type IIB background in which:

• the dilaton is unchanged,
• the RR form F3 is unchanged,
• the Einstein-frame metric takes the form

ds2 = eΦ/2[ĥ−1/2 dx2
1,3 + ĥ1/2 ds2

6

]
, (4)

where ds2
6 stands for the metric of the cone over the internal

manifold Σ5,
• the NSNS H3 is non-trivial,
• the self-dual RR field F5 is non-trivial.

Before the rotation the background is controlled by Nc D5-
branes that are encoded in the flux of F3, and by N f D5-branes
that act as sources and have a profile in the radial direction de-
scribed by S(ρ). After the rotation, besides these objects there
is also a flux for H3 which, together with the five-form flux F5,
encodes background D3-branes and also a number of D3 sources
induced on the N f D5 sources by the presence of the NSNS B2
field.

The final step of the construction consists of choosing κ . It has
been observed in [24] that the effect of the rotation is very dra-
matic in the far UV, but only sub-leading below the scale ρ̄ (in
particular, H3 and F5 become very small below ρ̄). The most in-
teresting effect of the rotation is that it modifies the warp factor
in front of the Minkowski part of the metric. In particular, by dial-
ing κ = e−Φ(∞) one recovers a warp factor that approximates the
one of the Klebanov–Strassler background, i.e. a background that
differs from being asymptotically AdS only by a logarithmic term.

In summary, we outlined a procedure that, given a function
S(ρ) that vanishes in the IR and in the UV (fast enough with ρ),
allows to construct a background which is free of any singular be-
havior. This background has a metric very similar to the one of (the
baryonic branch of) the Klebanov–Strassler solution [6], but dif-
fers from it by the presence of an intermediate range of ρ where
the background exhibits the presence of a distribution of D5 and
D3 sources. We will provide now a concrete example, before dis-
cussing the field-theory interpretation.

2.2. A class of solutions

We choose the following functional dependence for S

S(ρ) = tanh4(2ρ)e−4ρ/3, (5)

which we plot in Fig. 1. Before discussing the solutions, let us do
some parameter counting. We keep Nc as a parameter, but set
α′ gs = 1. The end of space is fixed at ρ0 = 0, which means that
the function S is positive, bounded and vanishes for ρ → +∞ and
for ρ → 0. We set Φ0 in such a way that Φ → 1 for ρ → 0 in all
the numerical solutions we study.

Finally, the whole solution depends entirely on the value of
c+ , since we choose the solution for P to be linear in the IR
(i.e. P ∼ h1ρ), which necessarily implies c− = 0 [20,24,27]. In

1 Notice that a factor of 4 has been here reabsorbed in e4Φ0 with respect to the
notation in [24,27], where also κ is called k2.

2 For κ = 0 one recovers the original unrotated solution.
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Fig. 1. The function S used in this Letter (black), compared to a particular one
in [22] (dashed blue), which has S = tanh4(2ρ). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
Letter.)

Fig. 2. The function P solving the system defined here (black), compared to one
that solves the system for S as in [22] (dashed blue) and to the original P̂ solution,
obtained for S = 0 (long-dashed red). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this Letter.)

the newly generated (rotated) background, the only new param-
eter is κ , which we fix to its maximal value κ = e−Φ(∞) . We
also set N f = 2Nc , and compare in the plots, where useful, to
S = tanh4(2ρ) [22] (we refer to the latter in the following as the
monotonic S).

We solve numerically for P , imposing that it be linear in the IR,
and plot the result for various possible solutions in Fig. 2. We find
it convenient to compare to the P̂ = 2Ncρ solution (with S = 0)
and to a special solution P̄ obtained with the monotonic S . The
class of solutions we find consists of the black curves in Fig. 2.
The comparison shows that deep in the IR our P agrees with P̄ .
However, at large ρ one recovers a behavior similar to P̂ , at least
until the scale ρ̄ at which the exponential behavior appears.

Notice that this scale ρ̄ can be indefinitely increased, hence one
might envision the case in which the asymptotics resembles that
of P̂ . For this limiting case, we can approximate in the UV

P � 2Ncρ + 1 − 2S∞, (6)

neglecting terms that vanish at large ρ , where the constant S∞ is
given by

S∞ =
+∞∫
0

dρ tanh2(2ρ)S(ρ) � 0.29. (7)

We see that the non-trivial profile of S shifts P by a constant
amount with respect to P̂ = 2Ncρ in the far UV.
More interesting for our purposes are the cases in which the
UV asymptotic behavior of P is exponential, because in this case
we can perform the rotation procedure. As a result, the asymp-
totic behavior of the solution is better understood by looking at
the warp factor ĥ, which for large ρ is

ĥ = 3N2
c e− 8

3 ρ

8c2+

(
8ρ − 1 + 4c+

Nc
− 8S∞

)
+O

(
e−4ρ

)
. (8)

This expression shows two very interesting facts: first of all, as
anticipated, one obtains the familiar result that the warp factor is
almost AdS, except for the term linear in ρ in parenthesis. Also,
there is a remnant of the choice N f = 2Nc which shifts slightly
the numerical factors.

Concluding, let us summarize what are the properties of the
generic P belonging to this one-parameter family. Deep in the IR,
it looks somewhat similar to P̂ = 2Ncρ [13], but with a slightly
larger slope.3 Over the range in which S is non-trivial, P keeps
growing, but with a smaller derivative. This range gives way at
intermediate values of ρ to a P which has a slope very close to
P̂ = 2Ncρ , but which is shifted upwards by a finite amount, as
reflected in Eq. (6). Finally, in the far UV, P gives rise (after the
rotation is performed) to a warp factor that is very close to the
one of the KS case, but again with a shift in the logarithmic term.
We will now go on to suggest an interpretation for these findings
in field theory terms.

3. Field theory interpretation

The first thing we want to study in order to provide a sensible
field-theory interpretation is the central charge c(ρ) of the rotated
system, which turns out to be

c = ĥ2e2Φ(P 2 − Q 2)(P ′ + 2Nc S)2

128
[
∂ρ ln

(√
ĥe2Φ(P 2 − Q 2)

√
P ′ + 2Nc S

)]3
. (9)

The results are illustrated in Fig. 3. The central charge is positive-
definite and monotonically increasing towards the UV, as expected
from consistency with the c-theorem. It vanishes near the end of
space, as expected because the dynamics ultimately yields confine-
ment. Its behavior is regular, with sharp changes at the scale ρ̄
and in the region where S 	= 0 (see in particular the detail of this
region in Fig. 3). Notice that while qualitatively similar, the plots
obtained for various choices of P (ρ) are different, and agree only
when ρ → 0.

The second important quantity we want to use is the Maxwell
charge of the theory, which (after rotation) counts the total D3
charge in the background; this is made out of (flux) D3 charge
plus the source D3 charge induced as an effect of the NSNS B2
field on the world-volume of the D5 sources.

We define the number n of bulk D3-branes and n f of source
D3-branes as given by

n + n f ≡
∫
Σ5

F5 =
∫
Σ5

B2 ∧ F3

= 4π3eΦ(∞)Nc

[
N f

Nc
P S + 2Q (1 − S) tanh(2ρ)

− 4

Nc

Q 2

sinh(4ρ)

]
, (10)

3 This different slope is just due to the specific functional dependence of S:

one recovers the same slope as in P̂ = 2Ncρ by replacing the tanh4(2ρ) factor by
tanh2N (2ρ) with N very large [22].
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Fig. 3. The central charge c obtained with the functions P solving the system de-
fined in the Letter, and shown as black curves in Fig. 2.

The result of this is plotted in Fig. 4, for the same numerical
solutions as in Fig. 2 and in Fig. 3. The resulting functions are
positive-definite, monotonically increasing, and vanish at the end
of space, as required by consistency. The most visible property of
n + n f is that it drops towards zero below the scale ρ̄ , which was
already noticed in [24] for N f = 0, and interpreted in terms of the
Higgsing of the quiver into a single-site model. For ρ > ρ̄ , one sees
that n + n f is linear with ρ:

n + n f

8π3N2
c

� eΦ(∞)

[
2ρ − 1 + c+

Nc
− 2S∞

]
. (11)

We are now going to propose a possible interpretation for the
dual backgrounds.

• At large scales (ρ > ρ̄), the dual theory is a quiver with gauge
group SU(n + n f + Nc) × SU(n + n f ), where n = kNc is related
to the D3 charge of the background, and n f to the D3 sources
induced by the field B2 on the D5 sources. The theory is un-
dergoing a cascade of Seiberg dualities of the form

SU
(
n f + (k + 1)Nc

) × SU(n f + kNc)

→ SU
(
n f + (k − 1)Nc

) × SU(n f + kNc)

→ SU
(
n f + (k − 1)Nc

) × SU
(
n f + (k − 2)Nc

) → ·· · . (12)

• At the scale ρ̄ the cascade stops abruptly, and the quiver the-
ory is Higgsed down to a single-site theory because of the
formation of a dimension-two condensate, which is related to
the operator U defined in [5]. As discussed in [5,24,26,29], the
arbitrariness of ρ̄ is loosely related to the modulus that con-
trols the dimensionality of the coset. The gauge group reduces
Fig. 4. The function log(n + n f ) obtained with the functions P solving the system
defined in the Letter, and shown as black curves in Fig. 2. Notice that the lower
curve in this plot corresponds to the one that looked linear in that figure. The lower
plot shows n + n f for the numerical solution with largest ρ̄ , which clearly exhibits
the sudden drop at scale ρ̄ , together with the linear dependence when ρ > ρ̄ .

to SU(n f + Nc). For energies below the scale ρ̄ , the original
wrapped-D5 system yields a good effective-field-theory de-
scription.

• In the intermediate range where ρ < ρ̄ , but where S � 0, the
theory is an N = 1 SUSY theory with gauge group SU(n f +
Nc) and massless matter fields. Besides these, as a result of
the Higgsing, the spectrum of massive states deconstructs two
extra-dimensions, so that the theory apparently looks like a
higher-dimensional field theory [29].

• In the energy range where S is non-vanishing, a cascade of
Higgsings is taking place. The idea [30] is that for every source
brane that is crossed when flowing down in the radial direc-
tion we Higgs the groups. This sequentially reduces further the
gauge group to SU(Nc), while at the same time giving mass to
the matter-field content. The smooth behavior of S at large ρ
yields small threshold effects, that are the reason why the P̂
solution is not exactly reproduced, as we commented earlier.

• Very deep in the IR, close to the end of space, the theory fi-
nally resembles N = 1 SYM with SU(Nc) group in four dimen-
sions, confines and produces a non-trivial gaugino condensate.

The dual field theory is showing, at different scales, the behav-
ior of a field theory that undergoes a cascade of Seiberg dualities,
the Higgsing of the quiver theory due to the U condensate, a tum-
bling sequence which reduces the rank of the one-site field theory,
and finally confinement and gaugino condensation.

4. Outlook

There are a number of possible future research directions that
can be developed starting from the results we summarized here
and in a companion paper [15].
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In this Letter we presented one very special class of type IIB
backgrounds that exhibit some of the properties expected in field
theories that have a very interesting and rich dynamics. Some of
the statements we made about the interpretation in field-theory
terms are mostly based on circumstantial evidence, and it would
be useful to find other ways to check whether our interpretation
is correct. In particular, this means that one would like to explore
in a more systematic way the space of acceptable profiles for the
function S , verify that the resulting backgrounds are consistent,
and test whether a generalization of the arguments we summa-
rized here still provides a satisfactory explanation of the results. In
particular, it would be interesting to see what happens when the
support of S is very large, and far from the end of space of the
geometry.

On the more phenomenological side, this is an interesting step
in the direction of studying tumbling dynamics, which is believed
to have an important role in the context of dynamical electroweak-
symmetry breaking. It would be interesting to find models of this
type that resemble as much as possible phenomenologically viable
scenarios, and use them to compute quantities that are relevant to
modern high-energy Physics.
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