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Abstract-In this paper, the state feedback regulator problem of nonlinear singularly perturbed 
systems is discussed. It is shown that, under standard assumptions, this problem is solvable if and 
only if a certain nonlinear partial differential equation is solvable. Once this equation is solvable, 
a feedback law which solves the problem can easily be constructed. The developed control law is 
applied to a nonlinear chemical process. @ 2003 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

One of the most important problems in control theory is that of controlling a fixed plant in 
order to have its output tracking (or rejecting) reference (or disturbance) signals produced by 
some external generator (the exosystem). For linear cases, this problem has been treated by 
several authors (for instance, [l-4]). In particular, in [l] Francis has shown that the solvability 
of a multivariable linear regulator problem corresponds to the solvability of a system of two 
linear matrix equations. Recently, several authors have developed the corresponding problem for 
nonlinear cases (see [S-9]). Especially, in [8] an extension of the results established by Francis 
to nonlinear systems has shown that the nonlinear regulator problem is solvable if and only if a 
certain nonlinear partial differential equation is solvable. 

In this paper, we show how the results established by Isidori and Byrnes can be extended to a 
class of singularly perturbed systems. 

Nonlinear singularly perturbed systems arise naturally in a wide variety of engineering applica- 
tions, representative examples include catalytic continuous stirred-tank reactors [lo], biochemical 
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reactors [ll], fluidized catalytic crackers [12], flexible mechanical systems [13], electromechanical 
networks [14], etc. For such systems, the problem of having the output tracking (or rejecting) 
reference (or disturbance) signals produced by some external generator is also of importance. 

Based on the method provided by singular perturbation theory, see [15] or [16], the original 
model can be decomposed into two lower-order models representing the slow and fast dynamics. 
Then, the asymptotic properties of the original model can be inferred from the knowledge of the 
behavior of the lower-order models. 

This paper is organized as follows: the problem statement is presented‘in Section 2. In Sec- 
tion 3, we construct, under some assumption, a reference control law. Section 4 shows that 
this reference control law can solve the problem if only if a certain nonlinear partial differential 
equation is solvable. The developed method is applied to a chemical process in Section 5. 

2. PROBLEM STATEMENT 

Throughout this paper, the following system is considered: 

i = fib) + Ql(x)z + gl(x)u +P(x)w, 

~2 = h(x) + Q2(x)~ + g&)u, 

ti = s(w), 

e = h(x) + q(w). 

(1) 

The first two equations of this system describe a plant, with states x, defined in a neighborhood X 
of the origin of Rn, and Z, defined in a neighborhood Z of the origin of RP, input u E R, subject to 
the effect of a disturbance represented by the vector field p(x)w, and a small positive parameter E. 
The fourth equation defines the error e E R between the plant output h(x) and the reference 
signal q(w). The third equation describes an autonomous system, the so-called exosystem, defined 
in a neighborhood W of the origin of R’, which models the class of disturbance and reference 
signals taken into consideration. It is assumed that fr(O) = 0, fs(0) = 0, s(O) = 0, h(0) = 0, 
q(0) = 0, and that the vector fields and functions involved are smooth. 

The state feedback regulator problem seeks a state feedback controller of the form 

u = a(x, 2, w), cx(O,O, 0) = 0. (2) 

The corresponding closed-loop system becomes 

k = fib) + Ql(x)z + a(x)+, z, w> + P(X>W 

ef = f2b) + Q2(x)t + g&44x, z, w>, 

til = s(w). 
(3) 

The state feedback regulator problem may be formally described as the following. 

STATE FEEDBACK REGULATOR PROBLEM. Find, if possible, (Y(x,z,w) such that 

(1) the equilibrium (z, z)=(O,O) of 

k = fl (x) + &I (X)Z + 91 (x)4x, z, O), 

~2 = fi(x) + Q2(x)~ + gdxb(x, z, O), 

is exponentially stable; 
(2) there exists a neighborhood U c X x 2 x W of (O,O, 0) such that, for each initial condi- 

tion (z(O), z(O), W(O)) E U, the solution of (3) satisfies 
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3. CONTROL LAW DESIGN 
In this section, a reference state feedback regulator is constructed. Two basic assumptions are 

needed. The first one is as required in [8], and the second one states a stability requirement on 
the fast subsystem as in [ll]. 

ASSUMPTION Hl. w=O is a stable equilibrium of the exosystem, and there exists a neighborhood 
r/ii c W of the origin with the property that each initial condition w(0) E I@ is Poisson stable. 

ASSUMPTION H2. The pair [Q2(z),g2(z)] is stabilizable uniformly in x E X. 

Then, just as in [ll], we will initially consider control laws of the form 

u = u. -t kT(x)z, (4) 

where G is an auxiliary input and kT (x) is a vector field on Rn such that the matrix &2(x) + 
g2(x)kT (z) is Hurwitz uniformly in z E X. 

Under a control law of the form of (4) system (1) takes the form 

j: = fl(x) + [&l(x) + gl(x)kT(x)] z + gl(xc)c + P(X)‘+ 
~2 = fi(x) + [&z(x) + g2(x)kT(x)] z + gdx)fiL, 
lil = s(w)+ 

(5) 

Performing a standard two-time-scale decomposition, one can easily show that the fast subsystem 
is given by 

$ = f2@) + [Q2(5) + dx)kT(x)] .z + gz(xF-4 (6) 

where the fast time-scale 
t 

r= -, 
& 

while the corresponding reduced system or slow subsystem takes the form 

i = F(x) + qx)a + p(x)w, 
72 = s(w), 

e = h(x) + s(w), 

(7) 

where 

&4 = h(z) - [Q&-4 + slWkT(4] [&2(z) + szWT(x)]-’ fib), 

%I = a(x) - [&I(X) + gdx)kT(x)] [Q2(2) + g2(4kTb)]-’ dx). 
(8) 

Motivated by the satisfaction of a large number of practical applications, including the chemical 
reactor example shown later, we have the following assumption. 

ASSUMPTION H3. There exists an integer T and a set of coordinates 
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such that the reduced system (7) takes the form 

i l = G, 

6 = L;h (a-‘(t, v)) + LeL;--‘h ((a-‘(&$) 4 + L,L;-‘h (@-1([,77)) UI, 

61 = cc5 $7 (10) 

k-r = *?I-T(E, rl), 
ti = s(w), 

e = G + q(w), 

where LGLF’h(z) # 0 for all x E X. 

The following assumption poses our stability requirement on the reduced system of (7). 

ASSUMPTION H4. The zero dynamic of the reduced system (7) 

$1 = %(0,77) 

* (11) 

h-r = Qn-T(O, 77) 

is locally exponentially stable. 

With these assumptions, the reference control law can be easily constructed as follows 

u = Q(X, z,‘w) = - [PJ&;?h(x)] -’ k&LZ;h(ti) + P,L,L;-‘h(z)w 
I 

+ kT(x)z, (12) 
k=O 

where the feedback gain kT(x) is such that the matrix &z(z) + gz(z)kT(x) is Hurwitz uniformly 
in x E X, and ,& are parameters chosen so that the polynomial &?‘+&i~“-~+~~ .+pis+&, = 0 
is Hurwitz. 

It is clear that the auxiliary input takes the form 

Q(x,O,‘W) = - [P,Lg.L;--‘h(x)] -’ &$L$h(x) + P,.L,L;--lh(z)w 1 (13) 
k=O 

and under which, the x-subsystem of the closed-loop system of the reduced system (7) is expo- 
nentially sable in spite of w. 

In the following section, it will be shown that the reference control law can solve the state 
feedback regulator problem if a nonlinear partial differential equation is solvable. 

4. THE MAIN RESULT 

In this section, the main result of this paper is given in the form of a theorem. 

THEOREM 1. Under Assumptions Hl-H4, the state feedback regulator problem of the singularly 
perturbed system (1) can be solved by the control law u = o(x, z, w), in the form of (12), if and 
only if there exists a C” (k > 2) mapping x = n(w) with ~(0) = 0, defined in a neighborhood W” c 
W of 0, satisfying the conditions 

g s(w) = F(A(W)) + q7T(w))c(w) + p(?r(w))w, 
h(4w)) + q(w) = 0, 

(14) 



Singularly Perturbed Systems 1.57; 

where 

c(w) = - [aLGL~-lh(n(w))]-l [i’ PkLpL(T(W)) + B,.LpLp(T(w))w 
k=O I 

PROOF. When w = 0, system (1) takes the form 

j: = fl (x) + &1(5)2 + 91 (xb. 

fi = b(x) + &2(x)2 + i?z(x)u. 

e = h(x), 

and the control law (12) becomes 

(15) 

u 1 a(z, z,O) = - [B,L~L;--‘h(x)] -I 2 p Lo kL, x 1 k h( ) -t kT (x)x. 

Then, as a direct result of [ll], the equilibrium (0,O) of the closed-loop system 

5 = f~(x) + Ql(x)z + gl(xb(x, z>O), 

ci = h(x) + Q&)z + gz(x)a(x! z,(J), 
(16) 

is exponentially stable, i.e., the first objective of the state feedback regulator problem is achieved. 

In the third section, we have noted that, under the control law (12), the x-subsystem of the 
closed-loop system of the reduced system (7) is exponentially stable in spit,e of ZLI. Combining (61 
and (13), the closed-loop fast system takes the form 

2 = [Q2(x) + d4kT(x)] F/, (17) 

where ij = z - i, and 

f = - [Q&) + g2(~)~~(4]-~ f2(5) - a(x) [h-L&;-'44] -' 

Since the matrix Qs(x) + gz(z)kT(x) is H urwitz, the fast dynamics of the closed-loop system 
possess an exponentially stable equilibrium manifold ,$. Utilizing these two stability properties. 
it can be shown [16, Theorem 8.41 

x(t) = z(t) + O(E), 

where z(t) and 5(t) the solutions of the x-subsystems of the closed-loop systems of (1) and (7) 
under the control law (12), respectively. 

Then, the analyticity of the scalar field h(x) and the boundedness of the trajectories ~(1) 
and 2(t) directly imply that 

~~MW + q(w(t))) = h (5(t)) + n(w(t)) t 

i.e., 

lim t--tDO,E-+O V+(t)) f 444)) = )A& h (Z(t)) + dw(t)) 

Now, it can be seen clearly that the sate feedback regulator problem of the singularly perturbed 
system (1) can be solved by the control law (12) if and only if the state feedback regulator problem 
of the reduced system (7) can be solved by the control law (13), and the result follows directly 
from Lemma 1 of [8]. 
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5. APPLICATION 

Consider the cascade of the two CSTR shown in Figure 1, where the following autocatalytic 
reaction [ll] takes place: 

A+B+2B, 

where A is a reactant, B is the autocatalytic species, followed by the zero-order side reaction 

B + C, 

where C is the undesired product. The species A is assumed to be in excess in the two reactors, 
while the inlet streams consist of autocatalytic species B of concentration CBa. Some kind of 
inactive gas produced by the exosystem is filled in the reactor to make the liquid in the reactor 
mixed perfectly. Under the assumptions 

(a) uniform temperature in the reactor, 
(b) constant volume of the liquid in the reactor, and 
(c) constant density and heat capacity of the reacting liquid 

the material and energy balances that describe the dynamical behavior of the system take the 
following form: 

dCB, 
K - dt 

= FICBO - FICBI + km exp 

dCB, 
v, - dt 

= FlCm + F~CBO - F~CBO + klo exp V, + kw, (“) 

dT2 Q2 
dt = v, F?T~o+;Tl-$T2+ + (-AHT1) klo exp 

PmqwnV2 pmcpm 
+ (-AH~o) koexp 

PmCpm 
L2 = s(w), 

where CB~, Tl and CB2, T2 denote the temperatures and the concentrations of the autocatalytic. 
species in the first and second reactor, CBO and TBO denote the inlet temperature and concen- 
tration of the species B, F3 is the outlet flowrate in the second reactor, Qr, Q2 denote the heat 
inputs to the reactors, and klo, ko, El, Eo, AHr, and AHa denote the preexponential constants, 
the activation energies and the enthalpies of the two reactors, respectively. w denotes some kind 
of inactive gas. 

The control objective is tracking the concentration the autocatalytic species B in the second 
reactor by manipulating the inlet inactive gas w. In order to decrease the effect of the side 
reaction, that is minimize the production of the species C, the liquid hold-up of the first reactor 
is smaller than the liquid hold-up of the second reactor. Defining the parameter e as 

v, c=- 
v2 

and setting 

U=CBO-CBO,, XI = TI, 22 = cB2, x3 =T2, 21 = CB1, y=x2, 
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the original set of equations can be put in form (1) with 

$ (TBo - x1) + ‘l + ‘,Ac~~’ k0 exp 
PmCpnK m (2) ‘I 

1 
K F~~Bo, - F3X2 + ho exp 

@,,+~X413+ 

157' 

Q2(5) = (-2 + 
klo exp(-El/Rxl)Vl 

v2 ) 1 

h(x) = (X2) 

The values of the system parameters are given in [ll]. one can easily see that for these operating 
conditions the matrix &2(x) is invertible, and the fast dynamics of the system are unstable. 
Therefore, the controller of Theorem 1 was employed. Moreover, it was verified that the zero 
dynamics of the reduced system are exponentially stable. 

Setting c = 0, the representation of the open-loop reduced system of form (7) can be easily 
obtained with 

P(x) = 

G(x) = 

$ (TBO - xl) + p ,Q1 vl + ‘,Ac~~’ k0 exp (2) 
m Pm 

+(-*&I) 
2p,cp, hew (g) x (Fly hoexp (2) K>' 

~;;CBO, -hew (2) K) 

Q2 

PmCpmV2 

+ (-*Z-d kloexp 

PmCpm 

+ (-*S-o) k. exp 
Pm CPTn 

i 

(-*f&l) 2p,cp, hoexp (2) x (Fl -how (g) .>-lFl 

$ + $ ' FI - klo exp 
2 2 

(s) VI)-' Fl 

0 I 
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It can be easily verified that the relative order is T = 1 and the controller of Theorem 1 takes the 
form 

; u = cY(x, 2, to) = - [/31L&(z)]-’ -&L$h(x) + p&JL(x)w 
k=O 

The nonlinear gain kT(z) was chosen as 

kT(x) = --g 
( 

-Fl + kloexp 
(2) K) 

to place the eigenvalue of the matrix Q~(z) + g2(z)kT( x in the open left-half of the complex ) 
plane. 

Fl , TBO , CBO 

FI,TI,CBI ‘;;- F2, TBO, cB2 

I 
A+B+2B 

W B+C 

Figure 1. A cascade of two CSTRs 

6. CONCLUSION 

This article addresses the state feedback regulator problem of nonlinear singularly perturbed 
systems. It has been shown that, using the standard two-time-scale decomposition, a state feed- 
back regulator can be easily constructed under some reasonable assumptions, and the regulator 
can solve the problem if and only if a certain nonlinear partial differential equation is solvable. 
The proposed control methodology is illustrated with a nonlineai chemical process with time 
time-scale multiplicity. 
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