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Abstract

The incremental compliances, normal and tangential, of an interface between rough surfaces are considered. Contacts
are assumed to be elliptic – the shape of Hertzian contacts between any two locally smooth asperities. The ellipses may
have diverse eccentricities and random or non-random orientation distribution; in the latter case, the tangential compli-
ance is anisotropic. It is found that the Hertzian contacts and ‘‘welded” zones of the same geometry produce the same
incremental compliances. Microstructural characteristics n of the interface that controls its incremental compliances is
identified. For the circular contacts, n is the sum

P ffiffiffiffiffi
Ak
p

where Ak is kth contact area; in the more general case of elliptic
contacts, each Ak enters in product with its shape factor dependent on the ellipse aspect ratio. The mentioned in-plane
tangential anisotropy is relatively mild, even for parallel strongly elongated elliptic contacts. This is due to weakness of
the anisotropy for a single elliptic contact (or external elliptic crack). Comparison of the latter to the internal crack of
the same elliptic geometry shows that whereas the anisotropy is mild for both crack types, it is weaker for the external
crack, in which case it is also less sensitive to Poisson’s ratio.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

We discuss an interface between two plates formed by multiple isolated contacts. The compliance of
such an interface has been analyzed in a number of works, both theoretical and experimental, that
emphasized different aspects of the problem. It appears that the main focus has been on non-linearities
of the stress–displacement curve under increasing compression. Relating this curve to relevant features of
microgeometry is a difficult problem (particularly in the shear mode), and we refer to Baltazar et al.
(2002) for an overview of related literature and to Walsh and Zhu (2004) and Sevostianov and Kacha-
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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nov (2008) for recent contributions. We also mention that elliptic contacts between two nominally flat
surfaces were discussed in the context of fluid permeability of fractured rocks by Zimmerman et al.
(1992).

The present work focuses on the incremental compliances of the interface (normal and tangential) and
on the microstructural parameters that control them. The incremental compliances are relevant, in partic-
ular, for various wave propagation problems where the stress levels are, typically, too low to cause non-
linearities. If the wavelength is much larger than sizes of microstructural features, these data reflect,
among other factors, the effective incremental compliances of the interface. Applications range from large
scale fractures encountered in rock mechanics (where information on fractures has to be extracted from
wavespeeds, with the account of contacts between crack faces), to ultrasonic examination of imperfect
interfaces.

One of the relevant problems is comparative analysis of the effects produced by contacts of the Hertzian
type, with cusp-like geometry along the edge (called sometimes ‘‘kissing” bonds in the ultrasonics literature)
and ‘‘welded” areas. Refraining from a comprehensive review, we mention the work of Nagy (1992) where
these issues are discussed in the context of ultrasonics. Comparative analysis of the Hertzian vs ‘‘welded” con-
tact geometries is one of the focal points of the present work.

Some of the problems discussed here have been examined in the work of Sevostianov and Kachanov (2008)
where non-linearities under increasing compression were also discussed. The work assumed circular contact
zones; for such geometries, the incremental compliances (the normal and the tangential ones) are controlled
by the sum of the square roots of contacting areas

P ffiffiffiffiffi
Ak
p

– independently of whether the contacts are Hertz-
ian or represent ‘‘welded” areas. The assumption of circular shapes may, however, be too restrictive for appli-
cations. The present work considers the elliptic contact zones that correspond to the general case of Hertzian
contacts of locally smooth asperities. In this case, the shape factors – the distribution of ellipses’ eccentricities
and orientations – play an important role, and the controlling microstructural parameter

P ffiffiffiffiffi
Ak
p

has to be
modified to reflect them.

We first consider an individual contact, and examine two contact types – the Hertzian ones and ‘‘welded”

areas. These two cases may be viewed as extreme cases of contact edge microgeometries. Then, we consider
multiple elliptic contacts of diverse eccentricities, and examine two cases – random orientations of the eccen-
tricities and non-random, preferential orientations of the contact zones resulting in anisotropic tangential
compliance. The latter case corresponds, in particular, to technological processes that have some directional-
ity, such as polishing procedures involving non-circular, preferential polishing directions; another example is
given by rock faults that have undergone sliding displacement.

2. Elliptic contact zone: Hertzian contact vs ‘‘welded area

According to the Hertz theory (see, for example, Johnson, 1985), the contact between any two locally
smooth asperities pressed against one another has the elliptic shape. We denote by a, b the major and
the minor axes of the ellipse, by c = b/a 6 1 its aspect ratio and by A = pab its area; E0, m0 denote
Young’s modulus and Poisson’s ratio of the material. We examine the incremental compliances of the
contact, normal and tangential, and compare them to the ones of the ‘‘welded” area of the same elliptic
shape.

2.1. Normal and tangential compliances of the elliptic Hertzian contact

The normal incremental compliance of the Hertzian contact is defined as
zn ¼
dw
dP

ð2:1Þ
where w is the relative displacement of the far points in the normal to the contact plane direction and P

is the force transmitted through the contact. Utilizing Mindlin’s (1949) results, it can be written in the
form:
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Shape factor Sn

ð2:2Þ
where K is the complete elliptic integral of the first kind, of argument
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
. The compliance is reduced, as

compared to a circle of the same area, by the shape factor Sn that is plotted in Fig. 1. It decreases from 1 for a
circle to zero in the limit c ? 0, indicating that contacts of long narrow shapes are very stiff. Importantly, at
c > 0.4, the shape factor differs from 1 by less than 5%, indicating that such contact shapes can be replaced by
circles of the same area with good accuracy, as far as the incremental normal compliance is concerned.

We now consider the tangential incremental compliance of the contact assuming that the elliptic contact
area A has been established (for example, by normal loading). It relates the relative shear displacement u
of far points to the shear force F transmitted through the contact. The tangential compliance is anisotropic:
it depends on the in-plane direction. Therefore, the direction of vector u does not, generally, coincide with the
direction of force F.

We assume that no frictional slips occur and utilize Mindlin’s (1949) results for the tangential compliance in
the directions of semiaxes a and b:
zðaÞ

zðbÞ

( )
¼

ffiffiffi
p
p
ð2� m0Þð1þ m0Þ

2E0

1ffiffiffi
A
p 2

ffiffiffi
c
p

p
1� m0

2� m0

1þ c2

1� c2

� �
K� 2m0

2� m0

1

1� c2
E

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Shape factor Ss

ð2:3Þ
where the shape factor for shear, Ss, dependent on aspect ratio c is identified, and E is the complete elliptic

integral of the second kind, of argument
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
. At c = 1 (circular contact),

zðaÞ ¼ zðbÞ ¼
ffiffiffi
p
p
ð2� m0Þð1þ m0Þ=ð2E0

ffiffiffi
A
p
Þ. Figs. 2 and 3 show Ss as a function of c and its ratio to the shape

factor Sn for the normal compliance.
At Poisson’s ratio m0 = 0, the orientation dependence of the tangential compliance vanishes,

zðaÞ ¼ zðbÞ ¼ 2
ffiffiffi
c
p

K=ð
ffiffiffi
p
p

E0

ffiffiffi
A
p
Þ. This dependence becomes stronger with increasing m0 and with smaller aspect

ratio c = b/a, but the anisotropy of the tangential compliance is generally moderate: at m0 = 0.25, the ratio of the
maximal incremental compliance (in the direction of the larger semiaxis a) to the minimal one (in the direction
of b) is about 1.07 at c = 0.3 and 1.13 at c = 0.1; at m0 = 0.5, these ratios are about 1.25 and 1.37. In the limit
c ? 0, the ratio z(a)/z(b) ? 1/(1 � m0).

We now incorporate both the tangential compliance (2.3) and the normal compliance (2.2) into the compli-

ance tensor of the elliptic Hertzian contact:
z ¼ zðaÞeaea þ zðbÞebeb þ znnn ð2:4Þ
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Shape factor Sn entering Eq. (2.2) for the normal compliance of elliptic contact, as a function of aspect ratio b/a. At aspect ratios
.4, ellipses can be replaced by circles of the same area with accuracy better than 5%.
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Fig. 2. Shape factors entering Eq. (2.3) for the shear compliances of elliptic contact in the directions of the major, a, and minor, b, ellipse’s
semiaxes. The difference between the two, that characterizes anisotropy with respect to in-plane directions, is mild, and it vanishes at
m0 = 0.
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Fig. 3. Ratios of the shear compliances of elliptic contact, in the directions of a and b, to its normal compliance, as functions of the aspect
ratio.
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(ea, eb are unit vectors along the semiaxes) that gives vector u of relative displacement of far points produced
by force F of arbitrary direction transmitted through the contact:
u ¼ z � F ð2:5Þ
In the text to follow, we compare incremental compliances of the Hertzian contact with the ones of the
‘‘welded” area of the same elliptic cross-section. In order to compare the two, we have to place the two contact
types into similar setting. For this reason, we rephrase results for the Hertzian contact in terms of the extra
compliance due to the contact, by assuming that the contacting parts have the configuration of two cylinders
H

R

x3

x2

x1

11
2σπRP =

Fig. 4. Elliptic Hertzian contact of two cylinders of radius R and combined length H compressed by stress r11.
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of radius R and combined length H, with contacting asperities; the Hertzian contact is elliptic, with semiaxes a

and b (Fig. 4). The cylinders are compressed by stress r11 that is sufficiently small as not to significantly change
a (for calculation of the incremental compliance). Taking into account that the force transmitted through the
contact is pR2r11, the representative volume V = pR2H and strain e11 = d/H, the incremental normal compli-
ance of the Hertzian contact takes the form
de11

dr11

¼ DS1111 ¼
pR4

V

ffiffiffi
p
p
ð1� m2

0Þ
E0

1ffiffiffi
A
p 2

ffiffiffi
c
p

p
K ¼ pR4

V
zn ð2:6Þ
Similarly,
de12

dr12

¼ DS1212 ¼
pR4

V
zðaÞ;

de13

dr13

¼ DS1313 ¼
pR4

V
zðbÞ ð2:7Þ
2.2. Compliances of the elliptic ‘‘welded” area

We treat the ‘‘welded” area as an external elliptic crack, and derive its compliance using Rice’s (1975) the-
orem that relates the crack compliance to stress intensity factors (SIFs), as follows. For a reference volume V
containing a crack, the change DSijkl of the overall compliance due to propagation of crack front over addi-
tional area DA is given by
DSijkl ¼
1

V
1

4

Z
DA

cqr
oKq

orij

oKr

orkl
dA ð2:8Þ
where Ki (i=1, 2,3) are modes I, II and III SIFs and coefficients cqr relate the near-tip displacement disconti-
nuity to the SIFs at this point:
½ui� ¼ cijKj

ffiffiffiffiffiffiffiffiffiffi
r=2p

p
ð2:9Þ
For the isotropic matrix, there is no coupling between mode I and modes (II, III) and
cij ¼
8ð1� m2

0Þ
E0

1 0 0

0 1 0

0 0 1
1�m0

2
64

3
75 ð2:10Þ
Hence, KI is the only SIF relevant for the normal displacement discontinuity [u1] so that c11 is the only relevant
coefficient and the integrand in (2.8) reduces to c11(oKI/or11)2.

The SIF along the edge of the external elliptic crack, with force P transmitted through the crack, was given
by Kassir and Sih (1975):
KI ¼
P

2
ffiffiffiffiffiffiffiffi
pab
p

½a2 sin2 bþ b2 cos2 b�1=4
ð2:11Þ
where angle b characterizes the radial line drawn to the point on the circumscribed circle shown in Fig. 4. For
our calculation, however, it is more convenient to use the polar angle /. In its terms, the SIF takes the form
(Fabrikant, 1987):
KI ¼
P

2
ffiffiffiffiffiffiffiffi
pab
p a2 sin2 /þ b2 cos2 /

a4 sin2 /þ b4 cos2 /

� �1=4

ð2:12Þ
Rice’s (1975) theorem (2.8) requires the SIF to be expressed in terms of stress and not force. Hence, we modify
the problem, by replacing half spaces by a circular cylinder of radius R that contains the elliptic cut with semi-
axes a, b and assume that R� a,b (deep cut). Then P = r11pR2 in the formula above and we apply the the-
orem to propagation of the external elliptic crack from the initial ellipse with semiaxes A,B to the final one,
with semiaxes a, b, in such a way that a,b� A,B� R and the shrinking ellipses remain concentric (constant c).
Calculating integral

R
DAðoKI=or11Þ2 dA in the polar coordinate system yields:
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Z
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q Z acðsin2 /þc2 cos2 /Þ�1=2

Acðsin2 /þc2 cos2 /Þ�1=2
q�2 dq

¼ pR4c
4a

Z p

�p

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 /þ c2 cos2 /

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 /þ c4 cos2 /

q ¼ pR4

a
K ð2:13Þ
where q ¼ qð/Þ ¼ �acðsin2 /þ c2 cos2 /Þ�1=2 is the radial distance from the origin of coordinates to a point of a
‘‘current” ellipse, with the major semiaxis �a (contribution from the lower limit of the inner integral vanishes).
In the last equality in (2.13) we used the following rule of transformation of the elliptic integrals (see, for exam-
ple, Korn and Korn, 1968):
KðkÞ ¼ 2

1þ k0
K

1� k0

1þ k0

� �
ð2:14Þ
where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

is complementary elliptic modulus. Then substitution of (2.13) and (2.10) into (2.8) yields
DS1111 ¼
1

V
2pR4

a
1� m2

0

E0

K ¼ 1

V
2pR4 ffiffiffi

p
pffiffiffi
A
p 1� m2

0

E0

ffiffiffi
c
p

K ð2:15Þ
Remark. The compliance of the external elliptic crack is found in the framework of linear elastic model that
does not differentiate between tension and compression. Its applicability to the compressive conditions de-
pends on the magnitude of stress, in relation to the stress that is needed to close the crack and that depends
on the initial opening of the crack. We assume that the initial opening is finite, albeit small, and that the ap-
plied compressive stress is sufficiently low.

We now examine the tangential compliance of the ‘‘welded” area of the same elliptic shape, utilizing results
for modes II and III SIFs along the edge of the external elliptic crack generated by shear force. It is sufficient
to consider tractions parallel to ellipse’s axes (compliance in any other tangential direction is obtained from
the tensor relation (2.5)). The SIFs (see Murakami, 1987) written in terms of angle b (Fig. 5) are as follows.

Loading in the direction of semiaxis a produces the following SIFs:
KII ¼
Qab cos b

2
ffiffiffiffiffiffiffiffi
pab
p

½a2 sin2 bþ b2 cos2 b�3=4

KIII ¼ �
Qaa sin b

2
ffiffiffiffiffiffiffiffi
pab
p

½a2 sin2 bþ b2 cos2 b�3=4

9>>>=
>>>; ð2:16Þ
where, consistently with the configuration of two cylinders, Qa = r12pR2. Results for loading in the direction
of semiaxis b are given by
C

φ
β

a

b

1x

2x

Fig. 5. Angles b and / that are used to identify a current point on the ellipse in Eqs. (2.16), (2.17) and (2.18), (2.19).
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KII ¼
Qaa sin b
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with Qb = r13pR2.
For the integration in Rice’s (1975) theorem (2.8), it is more convenient to use the polar angle / (similarly

to the case of normal loading). Then the SIFs for the loadings parallel to the semiaxes a and b take the form,
correspondingly:
KII ¼
Qab½a2 sin2 /þ b2 cos2 /�7=4

2
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and
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Calculation of the compliance contribution of the crack yields
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ð2:21Þ
where transformation rules for elliptic integrals (see, for example, Korn and Korn, 1968) are utilized.
These results coincide, again, with the ones for the shear compliance of the Hertzian contact, formula (2.3).

Thus, the compliance tensor (2.4) of the Hertzian contact fully applies to the ‘‘welded” area of the same geom-
etry. This means that the exact morphology of a contact does not need to be known, as far as its incremental
compliance is concerned.

Remark. The fact that the two contact types – the Hertzian and the ‘‘welded” ones – have the same com-
pliance becomes clear, if Hill’s (1963) auxiliary, or comparison, theorem is recalled. It bounds the compliance
of the configuration – in our case, two contacting bodies – by the ones of inscribed and circumscribed geom-
etries. The cusp-like geometry of the Hertzian contact and the elliptical near-tip geometry of the external crack
can be bounded by one another as tightly as desired. We note that a somewhat similar conclusion was reached
by Mavko and Nur (1978) in a different context of a two dimensional crack of non-elliptical shape.

3. Comparison of the external- and internal crack compliances

It is instructive to compare compliances of the external crack to the ones of the internal crack of the same
elliptic shape.
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For the internal crack, the crack compliance tensor B is defined as tensor that relates the average displace-
ment discontinuity vector across the crack b 	 hu+ � u�i to the traction vector r � n induced at the crack site
by far-field stress r (Kachanov, 1992):
Fig. 6.
crack,
b ¼ B � r � n ð3:1Þ
The normal compliance of the internal crack and its tangential compliances in the directions a and b (to within
a normalizing multiplier related to the representative volume) are given by the following formulas (that follow
from calculations of Budiansky and O’Connell, 1976):
Bn ¼
8ð1� m2

0Þ
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ð3:2Þ
where
Q ¼ k2

ðk2 þ m0c2ÞE � m0c2K
; R ¼ k2

ðk2 � m0ÞE þ m0c2K
ð3:3Þ
and k2 = 1 � c2; here, E and K are the same elliptic integrals that enter (2.2) and (2.3). Note that, in the limits
c ? 1 and c ? 0,
lim
c!1

Q ¼ lim
c!1

R ¼ 4

pð2� m0Þ
; lim

c!0
Q ¼ 1; lim

c!0
R ¼ 1

1� m0
Normalized compliances (3.2) are plotted in Fig. 6. They can be compared with the ones for the external crack
plotted in Figs. 1–3. An additional comparison of the two cracks, in the context of their tangential anisotro-
pies, is given in Fig. 7.

For both cracks, the tangential anisotropy is relatively mild. The main difference between the two cracks are
that the compliances of the external crack are less sensitive to various factors; more specifically,


 Compliances of the external crack are less sensitive to deviations of the elliptic shape from the circular one.

 The tangential anisotropy is less pronounced for the external crack.

 The sensitivity to Poisson’s ratio m0 is weaker for the external crack.
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4. Incremental compliances of an interface with multiple elliptic contacts

We consider an interface formed by multiple elliptic contacts and examine its incremental compliances,
normal and tangential. The ellipses may have diverse sizes and eccentricities. Their orientation distribution
affects the shear compliance but is irrelevant for the normal compliance. As shown above, the nature of
the contacts – whether they are Hertzian or represent ‘‘welded” areas – is unimportant for the incremental
compliances.

The following assumptions are made:

1. The contacting plates are sufficiently thick, so that bending displacements can be ignored. This implies that
all the contacts share the same displacement and can be modeled as parallel springs.

2. The contacts can be considered as non-interacting ones. This is justified by the fact that the overall
contact area rarely exceeds 1–2% (see, for example, review of Yovanovich and Marotta, 2003) so that
typical spacing between contacts is an order of magnitude larger than sizes of the contact areas. In
some cases related to rock mechanics this proportion may be much higher – up to 25% (Pyrak-Nolte
et al., 1987). In such extreme cases the results to follow can be viewed as a lower bound for the overall
compliance.

We treat the interface as a mathematically thin plane, and represent the contacts-generated displacements
as displacement discontinuities [u] = u+ � u� across the plane. Then the interface compliance is characterized
by second-rank interface compliance tensor Z defined by
½u� ¼ Z � n � r ð4:1Þ

where n is the unit tensor to the interface and r is the remotely applied stress. Its normal component, Znn char-
acterizes the normal compliance of the interface. If the interface is isotropic with respect to the tangential
directions, then,
Z ¼ Znnnnþ ZT ðI � nnÞ ð4:2Þ
where ZT is the shear compliance of the interface. In the general case of anisotropic shear compliance, since
tensor Z is symmetric, it has three principal directions of the interface compliance; if the bulk material is iso-
tropic, one of them is n and the other two – the principal directions of the interface compliance (s,t) – lie in the
interface plane:
Z ¼ Znnnnþ Zssssþ Ztttt ð4:3Þ
where (Zss,Ztt) are the principal shear compliances of the interface.
In the text to follow, we express the normal and shear interface compliances in terms of relevant microstruc-

tural parameters.
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4.1. Normal compliance

Each of the contacts has the (incremental) compliance given by (2.2) and, since the springs share the same
displacement, their stiffnesses are added up, and the incremental Young’s modulus E of the interface is given
by
E
E0

¼ 1

1þ
ffiffiffi
p
p
ð1� m2

0Þn
ð4:4Þ
It is controlled by the dimensionless microstructural parameter
n ¼
�K
l

ffiffiffi
A
pffiffiffi
c
p

K

* +�1

ð4:5Þ
where symbol h. . .i denotes averaging over contacts. It reflects the distribution of contact areas Am, each taken
with its aspect ratio – dependent shape factor

ffiffiffiffiffi
cm
p

Km


 ��1
. Here, �K=l is the normalizing factor: l is the overall

thickness of the two plates and �K ¼ K=N is the interface area per one contact, therefore the contribution of the
contact zone to the overall compliance depends on the plate thickness l. Expression (4.5) generalizes parameter
n ¼ �K

l
ffiffi
A
ph i for the circular contacts introduced by Sevostianov and Kachanov (2002). Fig. 1 shows that the

parameter for the circular contacts can actually be used, with good accuracy, for the elliptic contacts with as-
pect ratio c > 0.4, i.e. for significantly non-circular shapes.

Remark. The above definition of n contains overall thickness l of the two plates as length scale parameter.
In rock mechanics, the stiffness is usually defined as the change in sample thickness due to an incremental
change in normal stress (see, for example, Jaeger et al., 2007) so that parameter l does not enter the discussion.

Parameter n constitutes the proper quantitative characterization of the interface for the normal compliance.
It is ‘‘proper” in the sense that contributions of individual contacts to n correspond to their actual contribu-
tions to the overall stiffness.

It is seen that, at the same total contact area (and the same distribution of aspect ratios c’s), large number of

small contacts is stiffer than a small number of large ones. As far as ellipse eccentricities are concerned, smaller
c’s correspond to a stiffer interface (see the plot of the shape factor Sn in Fig. 1). Importantly, these observa-
tions apply to both Hertzian and ‘‘welded” contacts, as well as their mixtures.

In cases when the distributions over contact areas A’s and aspect ratios c’s are statistically independent
(thus excluding the situations when larger areas tend to have different shapes than the smaller ones),
n ¼
�K
l

ffiffiffi
A
pD E�1 1ffiffiffi

c
p

K

� �1

ð4:6Þ
i.e. parameter n contains one average shape factor that decouples from contact areas.

4.2. Shear compliance and its anisotropy: effect of the orientation scatter

The shear compliance depends on the orientation distribution of the ellipses. We first consider the case of
random orientations when the shear compliance is isotropic.

We note that, for an individual elliptic contact, its average, over tangential orientations, shear compliance is
equal to the average of the two principal values z(a), z(b) given by (2.3), and it differs only by a constant mul-
tiplier from the normal compliance of the contact zn:
hzsi ¼
zðaÞ þ zðbÞ

2
¼ ð2� m0Þð1þ m0Þffiffiffi

p
p

E0

1ffiffiffi
A
p K

ffiffiffi
c
p ¼ 2� m0

2� 2m0

zn ð4:7Þ
i.e. it is proportional to shape factor Sn plotted in Fig. 1. As discussed above, if the ellipse aspect ratios c > 0.4,
zn can be replaced by its value for a circle,

ffiffiffi
p
p
ð1� m2

0Þ=ðE0

ffiffiffi
A
p
Þ. Moreover, even at small c, the average

hzsi ¼ ðzðaÞ þ zðbÞÞ=2 – for example, the average between z(a), z(b) corresponding to c2 equal to 0.1 and 10, or
to 0.01 and 100 – is close to its value at c = 1 (circle). Therefore, formula (4.7) can be used, with good accu-
racy, even for strongly elongated contact shapes.
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In the isotropic case (random ellipse orientations), the average over orientations can be replaced by the
average over the in-plane directions of the tangential compliance of a representative ellipse that has average
area A and average aspect ratio c (ergodicity). Then formula (4.7), with A and c representing the average, over
contacts, values, can be applied to the entire interface. Thus, the compliance tensor of the interface is given, in
the case of random ellipse orientations, by the expression
Fig
Z ¼ 1þ
ffiffiffi
p
p
ð1� m2

0Þn
E0

nnþ 2� m0

2� 2m0

ðI � nnÞ
� �

ð4:8Þ
where the first and the second terms in the brackets correspond to the normal and shear compliances. Note
that a single microstructural parameter n controls both the normal and the shear compliances.

We now consider the case of preferential, non-random orientation distribution of elliptic contact areas. This
corresponds, for example, to technological processes that have some directionality (such as polishing of a surface
by non-circular motions); in geomechanics, this corresponds to anisotropic textures of faults that have undergone
sliding. In this case, the shear compliance term in (4.8) has to be replaced by Zssss + Ztttt. The principal in-plane
compliances Zss, Ztt and the principal axes (s, t) of the tangential compliance reflect the orientation distribution of
the ellipses and their distribution over aspect ratios and sizes (the latter two distributions decouple from the ori-
entation distribution in case of their statistical independence). As noted in Section 2, the anisotropy of the tan-
gential compliance of a single elliptic contact is mild, and the same, therefore, applies to the overall shear
compliance of the interface, even in the case of ideally parallel ellipses. The anisotropy is further weakened if a
preferential orientation of the ellipses is accompanied by noticeable orientation scatter.

We examine these issues for a non-random orientation distribution containing a scatter parameter. The
Gaussian distribution would be a natural choice; however, it would lead to results in the numerical form.
Therefore, we choose qualitatively similar but somewhat different function that yields explicit results. We
assume that the major axes of the ellipses tend to be parallel to x1 axis (see Fig. 8) and describe the orientation
distribution by the following function
P kðuÞ ¼
k
2

e�kjuj þ 1

p
e�kp=2 � p

2
< u <

p
2

� �
;

Z p=2

�p=2

P kðuÞdu ¼ 1 ð4:9Þ
where k is the scatter parameter; at k = 0 and at k ?1, we have the fully random and the ideally parallel
orientations. Fig. 8 shows this distribution for several values of k.

We represent the vector of force transmitted through the contact as
F ¼ F ðaÞea þ F ðaÞea ð4:10Þ
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where ea, eb are unit vectors along the ellipse’s axes. Taking into account that F(a) = u(a)/z(a), F(b) = u(b)/z(b),
that u(a) = u1 cosu + u2 sinu, u(b) = �u1 sinu + u2 cosu and that ea = cosue1 + sinue2,
eb = �sinue1 + cosue2, and expressing components F1,F2 in terms of u1,u2 we have the following expression
for the tensor w 	 z�1 defined by F = w � u that can be called the contact stiffness tensor:
w ¼ 1

zðaÞ
cos2 uþ 1

zðbÞ
sin2 u

� �
e1e1 þ

1

zðaÞ
sin2 uþ 1

zðbÞ
cos2 u

� �
e2e2

þ 1

zðaÞ
� 1

zðbÞ

� �
sin u cos uðe1e2 þ e2e1Þ ð4:11Þ
Integration
R p=2

�p=2
wðuÞP kðuÞdu yields components of the compliance tensor W = Z�1 of the interface:
W 11 ¼
4� k2 e�kp=2

2ð4þ k2Þ
1

zðaÞ
þ 4þ 2k2 þ k2 e�kp=2

2ð4þ k2Þ
1

zðbÞ

W 22 ¼
4þ 2k2 þ k2 e�kp=2

2ð4þ k2Þ
1

zðaÞ
þ 4� k2 e�kp=2

2ð4þ k2Þ
1

zðbÞ

W 12 ¼ 0

ð4:12Þ
In the limiting cases of fully random and ideally parallel orientations, 2W11 = 2W22 = (1/Z(a) + 1/Z(b)) and
W11 = 1/Z(a), W22 = 1/Z(b), respectively.

Since W is symmetric second-rank tensor, the principal values of Z (plotted in Fig. 9) are obtained by inversion
of the principal values of W: Z11 ¼ W �1

11 and Z22 ¼ W �1
22 . It is seen that Z11 is generally close to Z22: the tangential

anisotropy is mild even for ideally parallel ellipses, and even a moderate orientation scatter makes it weak.

5. Discussion and conclusions

We examined the incremental compliances, normal and tangential, of an interface of two rough surfaces
with multiple contacts of the elliptic shape – the shape that takes place for any two locally smooth asperities
pressed against one another. The incremental compliances are relevant for the stress levels that are sufficiently
low, as not to cause significant changes or to produce new contacts. This is the case, for example, for typical
applications involving stress waves, such as ultrasonics. The elliptic contacts may have diverse sizes and aspect
ratios and their orientation distribution may be either random or non-random.

We found that effects of the Hertzian contacts and of ‘‘welded” areas of the same geometry on the incre-
mental compliances of the interface are identical. This means that the exact morphology of contacts is irrel-
evant, as far as the incremental compliances are concerned. This statement, obviously, does not apply to non-
linearities under increasing loads (in which case the two contact types behave differently).
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Other findings can be summarized as follows.

1. The normal compliance of an individual elliptic contact – whether it is Hertzian or represents a welded area
– is proportional to the ratio Sn=

ffiffiffi
A
p

where Sn is the shape factor for the normal mode, that changes from 1
for a circle to zero for a very elongated ellipse. A non-circular contact is stiffer that the circular one of the
same area A, although at aspect ratios c > 0.4 the difference between them is small.

2. The shear compliance of an elliptic contact depends on the in-plane direction, and is controlled by the shape
factor for shear, Ss that is different from Sn. However, this orientation dependence is only moderate and
vanishes altogether at Poisson’s ratio m0 = 0. The average over the in-plane directions tangential compliance
coincides, to within a multiplier, with the normal compliance and is controlled by the same factor Sn=

ffiffiffi
A
p

.
3. For the entire interface, the normal compliance is controlled by the microstructural parameter n that is the

average of the ratio
ffiffiffi
A
p

=Sn for individual contacts. It reflects the distribution of contact areas A, each taken
with its shape factor. In cases when the distributions over areas and over aspect ratios are statistically inde-
pendent, n decouples into the product of two averages,

ffiffiffi
A
p� �

1=Snh i. For the circular shapes, the microstruc-
tural characterization simplifies to

ffiffiffi
A
p� �

, i.e. the interface compliance is controlled by the sum of square roots

of contact areas (and not by the total contact area!). This simplified parameter can actually be used, with
good accuracy, for the elliptic contacts with aspect ratio c > 0.4, i.e. for significantly non-circular shapes.

4. The shear compliance of the interface is isotropic in the case of random orientation distribution of the ellip-
ses, and it is controlled by the same microstructural parameter n as the normal compliance.

5. In the case of non-random (preferential) orientations of the ellipses, the shear compliance of the interface is
anisotropic. However, the anisotropy is mild, even for ideally parallel ellipses, and is further weakened if
orientation scatter is present.

We emphasize that our results hinge on identification of the microstructural parameters that control the
incremental compliances (for example, the finding on identical effects produced by the Hertzian contacts
and by ‘‘welded” areas is rooted in identical microstructural parameters that control them). These parameters
are ‘‘proper” in the sense that they represent individual contacts in accordance with their actual contributions
to the overall stiffness. In this connection, we mention a more general discussion of the proper microstructural
parameters given by Kachanov and Sevostianov (2005) in the context of materials with inhomogeneities.

Results for compliances of the external elliptic crack – that appear to be new – are compared with the ones
for the internal crack of the same elliptic geometry. Both cracks have mild tangential anisotropy; it is some-
what weaker for the external crack. The latter is also less sensitive to factors such as deviations of the elliptic
shape from the circular one Poisson’s ratio m0.
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