NOTE

FUNDAMENTAL CIRCUITS AND A CHARACTERIZATION OF BINARY MATROIDS

Michel LAS VERGNAS

Centre National de la Recherche Scientifique, Universitié Pierre et Marie Curie (U.E.R, 48), 4 place Jussieu 75005 Paris, France

Received 20 July 1979

Let M be a matroid on a finite set E. Consider a basis B of M. For $e \in E \backslash B$ we denote by $C(B ; e)$ the unique circuit contained in $B \cup\{e\}$, called the fundamental circuit of e with respect to B.

If M is binary given any circuit C of M we have clearly

$$
C=\underset{e \in C \backslash B}{\Delta} C(B ; e)
$$

(where Δ denotes the symmetric difference). Conversely if this property holds for all bases B and circuits $C M$ is binary ([1, Th. 20], [2, Chap. 10.1, Th. 3]). Our purpose in the present note is to give a simple proof of the following stronger statement:

Proposition. Let M be a matroid on a finite set E. Suppose that for some base B of M, we have $C=\Delta_{e \in C \backslash B} C(B ; e)$ for every circuit C of M. Then M is binary.

Proof. Let V be the subspace of $C G(2)^{E}$ generated by the fundamental circuits $C(B ; e) e \in C \backslash B$ and M^{\prime} be the matroid having for circuits the non-zero vectors of V minimal with respect to inclusion (as usual for subspaces of $C G(2)^{E}$ we identify a vector and its support).

By hypothesis every circuit C of M is a vector of V, hence is a (disjoint) union of circuits of M^{\prime} ([1, Th. 19], [2, Chap. 10.1, Th. 3]). Thus the identity function on E is a strong map from M onto M^{\prime}. Now $\operatorname{Dim} V=|E \backslash B|$ hence $\operatorname{rk}\left(M^{\prime}\right)=|B|=$ $\mathrm{rk}(M)$. Since M and M^{\prime} are related by a strong map, it follows that $M=M^{\prime}$ (cf. [2, Chap. 17.4]).

References

[^0]
[^0]: [1] R. Von Randow, Introduction to the Theory of Matroids, Lecture Notes in Economics and Mathematical Systems, No. 109 (Springer, Berlin-New York, 1975).
 [2] D.J.A. Welsh, Matroid Theory (Academic Press, London-New York, 1976).

