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The split of a generalised Chaplygin gas with an equation of state p = −A/ρα into an interacting mixture
of pressureless matter and a dark-energy component with equation of state pΛ = −ρΛ implies the
existence of non-adiabatic pressure perturbations. We demonstrate that the square of the effective (non-
adiabatic) sound speed cs of the medium is proportional to the ratio of the perturbations of the dark
energy to those of the dark matter. Since, as demonstrated explicitly for the particular case α = −1/2,
dark-energy perturbations are negligible compared with dark-matter perturbations on scales that are
relevant for structure formation, we find |c2

s | � 1. Consequently, there are no oscillations or instabilities
which have plagued previous adiabatic Chaplygin-gas models.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The fact that apparently about 95% of the matter-energy con-
tent of the Universe manifest themselves only through their gravi-
tational effects [1], with no direct interaction with light, has led to
many models trying to explain the physical nature of the cosmic
substratum. This non-baryonic sector is commonly divided into
two parts: dark matter (DM) with zero effective pressure, which
is mainly concentrated in local structures of the Universe, and
dark energy (DE) with negative pressure that drives the accelerated
expansion and influences the anisotropy spectrum of the cosmic
microwave background radiation (CMB). The standard cosmologi-
cal model incorporating these components is the �CDM model,
which includes a zero-pressure fluid to represent DM and a cos-
mological constant Λ, whose origin can be theoretically connected
to the quantum vacuum energy. In general, this model is very suc-
cessful but faces, at the same time, some important difficulties,
either from observational (excess of small structures, for example)
or theoretical (the difficulty in deriving the quantum vacuum den-
sity) points of view.

Many alternatives to the �CDM model have been proposed.
Among them there are the interacting models, where the dark
components interact directly (see, e.g., [2–6] and references
therein). These interacting models intend to alleviate the so-called
coincidence problem, related to the fact that both dark compo-
nents have similar densities today, even if they scale very differ-
ently with the expansion of the universe. Examples of interacting
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models are obtained by admitting a dynamical behavior of DE.
In particular, decaying vacuum models have received interest since
these models are in some cases competitive with the �CDM model
[7,8].

Another alternative is to incorporate both DE and DM into a
single fluid, leading to unified models for the dark sector. The
paradigm of unified models is the Chaplygin-gas model together
with its generalisations [9–12]. The Chaplygin gas, defined by the
equation of state (EoS) p = −A/ρ , where A is a constant and ρ is
the energy density, has a negative pressure and a positive sound
speed. One of its extensions is the generalised Chaplygin gas with
an EoS p = −A/ρα , where α is a free parameter. In some cases it
is possible to map interacting models into the unified framework.
For example, a model in which a vacuum term decays linearly
with the Hubble rate [7,8] corresponds, at the background level,
to α = −1/2.

Unified models of the dark sector are successful in describ-
ing the homogeneous and isotropic background dynamics of the
Universe [13,14]. However, at the perturbative level some dan-
gerous problems appear. In Ref. [15] it has been remarked that
the matter power spectrum for the generalised Chaplygin gas ex-
hibits strong oscillations or instabilities, unless the model is in
a configuration that essentially reduces it to the �CDM model.
Even if the observed matter power spectrum refers to the bary-
onic component, which may be well behaved, such oscillations in
the spectrum of the dark sector have undesirable consequences for
the CMB spectrum [16]. In Ref. [17] a solution to this problem has
been proposed, making use of entropic perturbations. Entropic per-
turbations modify the effective sound velocity of the fluctuations,
damping or even suppressing completely the oscillations and in-
stabilities in the spectrum of the dark sector. However, no effective
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mechanism was proposed to justify the presence of non-adiabatic
perturbations.

On the other hand, progress was made on the basis of bulk-
viscous models of the cosmic substratum. Bulk-viscous models
share the same homogeneous and isotropic background dynamics
as generalised Chaplygin gases but, different from the latter, are
characterised by non-adiabatic pressure perturbation. In a sense,
these models, which avoid the mentioned shortcomings, can be
seen as “non-adiabatic Chaplygin-gas models” [18].

Another possible mechanism to suppress the oscillations relies
on a split of the Chaplygin fluid into two interacting components,
one representing DM and the other one the cosmological term
[19]. An alternative split to generate entropic perturbations was
proposed in Ref. [20]. In a recent paper [21], entropic perturba-
tions in a two-component formalism have been explored again to
solve the oscillation problem. There, the absence of pressure per-
turbations was postulated by assuming that dark matter follows
geodesics, equivalent to restrict the interaction to an energy trans-
fer in the matter rest frame.

In this work we come back to the issue of entropic pertur-
bations in the generalised Chaplygin gas. We perform a decom-
position of this gas by separating pressureless DM from a cos-
mological term, both necessarily interacting with each other not
only in the background but on the perturbative level as well. Cos-
mological perturbations in the resulting two-component system
are intrinsically non-adiabatic. The appearance of relevant entropic
perturbations is a late-time effect, the perturbations being almost
entirely adiabatic at early times. This fact allows us to fix the initial
conditions for the perturbations according to the standard model.
Our aim is to provide a physical reason for the expectation that
non-adiabatic pressure perturbations may largely compensate the
adiabatic contribution which is responsible for oscillations and/or
instabilities. On this basis the effective sound speed may then be-
come negligible. The crucial point is that our model implies a re-
lationship between the effective sound speed and the ratio of the
energy-density perturbations of DE and DM. In particular, we shall
show that the smallness of the effective sound velocity is directly
related to the smallness of the DE perturbations compared with
the matter perturbations. For a model equivalent to the generalised
Chaplygin gas with α = −1/2, it can be shown explicitly that DE
perturbations are indeed negligible on scales that are relevant for
structure formation [22]. As a consequence, the scale dependence
in the perturbation equations becomes negligible and neither os-
cillation nor instabilities occur.

This Letter is organized as follows. In Section 2 we decompose
the background dynamics of the generalised Chaplygin gas into an
interacting mixture of pressureless matter and a time-varying cos-
mological term. In Section 3 a gauge invariant perturbative analysis
is performed and a relation between DE perturbations and the ef-
fective sound speed is derived. In Sections 4 and 5 observational
parameter estimations are obtained at background and perturba-
tive levels. In Section 6 we present our conclusions.

2. Background dynamics

The Friedmann equation in a spatially flat universe is

3H2 ≡ 3

(
ȧ

a

)2

= ρ, (1)

where units were fixed by imposing 8πG = c = 1 and a is the scale
factor of the Robertson–Walker metric. The dot means derivative
with respect to the cosmological time. Additionally, we have local
energy conservation

ρ̇ + 3
ȧ
(ρ + p) = 0. (2)
a

The pressure is given by

p = − A

ρα
, (3)

where A is a positive constant, and α is a free parameter. Using
(3) in the continuity equation (2), one obtains the solution

ρ =
[

A + B

a3(1+α)

]1/(1+α)

, (4)

with an integration constant B . The present value of the scale fac-
tor was put to a0 = 1. The constant B can be eliminated by defin-
ing Ā = A/ρα+1

0 . Throughout, the sub-index 0 denotes the present
value of the corresponding quantity. Hence, the gas energy density
is given by

ρ = ρ0

[
Ā + 1 − Ā

a3(1+α)

]1/(1+α)

. (5)

Note that for α = 0 the gas reduces to a mixture of a cosmological
constant and pressureless matter, with ρ/ρ0 = Ā + (1 − Ā)/a3.

The EoS parameter and the adiabatic sound velocity are

ω = p

ρ
= − Ā

(
ρ0

ρ

)α+1

and c2
a = ṗ

ρ̇
= −αω, (6)

respectively. For α > −1, the energy density (5) scales as pressure-
less matter for early times (a � 1) and it behaves as a cosmological
constant for a → ∞. Notice that c2

a is negative for negative values
of α. The problems of (generalised) Chaplygin-gas models can be
traced back to the circumstance that |c2

a | becomes of the order
of unity unless α is extremely small, in which case its dynam-
ics reduces to that of the �CDM model. For finite values of α
the perturbation dynamics suffers from (unobserved) oscillations
and/or instabilities [15]. This is a consequence of the fact that the
EoS (3) of the cosmic medium is of the type of an adiabatic EoS
p = p(ρ). It has been suggested that a non-adiabatic perturbation
dynamics may cure this shortcoming [17]. Apart from adding non-
adiabatic pressure perturbations ad hoc with the aim to cancel
the unwanted adiabatic contributions, bulk viscous models were
shown to give rise to a non-adiabatic perturbation dynamics in
a natural way [18]. Here we present another way to avoid oscilla-
tions and/or instabilities for values of α not necessarily very close
to zero. To this purpose, let us split this single fluid into two com-
ponents, one of them with zero pressure. Hence, we have

ρ = ρm + ρΛ, p = pm + pΛ (7)

with

pm = 0, pΛ = − A

ρα
. (8)

Furthermore, for the DE component we will generally (not only in
the background) assume an EoS

pΛ = −ρΛ, (9)

corresponding to an energy–momentum tensor

T μ
ν = ρΛgμ

ν . (10)

With the decompositions (7), (8) and (9) the conservation equa-
tion (2) takes the form

ρ̇m + 3
ȧ

a
ρm = −ρ̇Λ, (11)

and the DE component behaves as
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ρΛ = A

ρα
= ρ0 Ā

[
Ā + (1 − Ā)a−3(1+α)

]− α
1+α . (12)

The quantity Ā is identified as the present value of the DE density
parameter,

ΩΛ0 = ρΛ0

ρ0
= Ā. (13)

Due to the decomposition (7)–(9) the pressureless matter compo-
nent is obtained via

ρm = ρ − A

ρα
. (14)

With the help of Eqs. (1) and (12), it is easy to show that

ρΛ = ρΛ0

(
H

H0

)−2α

. (15)

The conservation equation (11) can be written in the form

ρ̇m + 3Hρm = Γ ρm, (16)

where

Γ = −3αΩΛ0 H0

(
H0

H

)(1+2α)

(17)

is the rate by which the matter energy changes as a result of the
interaction. For α < 0 the DE density decays along the expansion
while DM is created. In the particularly interesting case α = −1/2
the DE density decays linearly with H and matter is produced at
a constant rate Γ ∼ H0 [23]. On the other hand, for α = 0 we
re-obtain the standard model with a cosmological constant and
conserved matter.

3. Gauge-invariant perturbations

Using a spatially-flat background, the perturbed metric reads

ds2 = a(η)2[−(1 + 2φ)dη2 + 2B,i dηdxi + (1 − 2ψ)δi j dxi dx j

+ 2E,i j dxi dx j], (18)

where just the scalar perturbations were retained. In terms of the
quantities φ, ψ , B and E one defines the gauge-invariant Bardeen
potentials

ΦB = φ +H
(

B − E ′) + (
B − E ′)′

, (19)

ΨB = ψ −H
(

B − E ′), (20)

where the prime means derivative with respect to the conformal
time η and H = a′/a. Defining a velocity potential v by δui =
a−1∂ i v (uμ = dxμ/ds), where δui denotes the perturbed 4-velocity,
suitable gauge-invariant perturbations of the matter quantities are

δρc = δρ + ρ ′(B + v), δpc = δp + p′(B + v), (21)

which are the pressure and density perturbations in the comoving
frame. Neglecting anisotropic stresses is equivalent to ΦB = ΨB .
Under this condition the Bardeen potential satisfies the equation

Φ ′′
B + 3H

(
1 + c2

a

)
Φ ′

B + [
2H′ + (

1 + 3c2
a

)
H2 + c2

s k2]ΦB = 0, (22)

where k is the comoving wave-number and cs is the sound velocity
of the cosmic medium as a whole, defined by

δpc = c2
s δρ

c . (23)
The Bardeen potential and the comoving density perturbation are
related by the Poisson equation

k2ΦB = −a2

2
δρc . (24)

Introducing δρc = ρmδc , where ρm is the matter density (14), the
Poisson equation (24) takes the form

−2k2ΦB = a2ρmδc. (25)

Substituting (25) and its derivatives in (22), we obtain a second
order differential equation for δc . If there where only adiabatic per-
turbations we would have c2

s = c2
a with c2

a given by (6).
So far, the perturbation equations are valid for the total energy

density and the total pressure, irrespective of the decomposition
into two components. Now, by using the split given in (7)–(9),
we have, from (23),

δpc = δpc
Λ = −δρc

Λ = c2
s δρ

c . (26)

There is no intrinsic non-adiabatic perturbation in the DE compo-
nent. Using δρc = δρc

Λ + δρc
m , relation (26) is equivalent to

δpc = −δρc
Λ = c2

s

1 + c2
s
δρc

m. (27)

Eq. (27) relates the perturbations of DE to those of DM via the
sound speed of the cosmic medium. For |δρc

Λ| � |δρc
m| we have

|c2
s | � 1 and vice versa. Negligible DE perturbations imply a very

small sound speed.
We mention that the expression (27) is consistent with the gen-

eral relation [22]

δpc − δpc
ad = ρ ′

Λρ ′
m

ρ ′

(
δρc

m

ρ ′
m

− δρc
Λ

ρ ′
Λ

)
, (28)

which is obtained by combining (6) and (26). The right-hand side
of Eq. (28) represents the non-adiabatic part of the pressure per-
turbations which is due to the two-component nature of the sys-
tem. In general, it does not vanish even if each of the compo-
nents is adiabatic on its own. It is this part which is supposed to
largely cancel the adiabatic contribution δpc

ad with the result (27)
with |c2

s | � 1. Now, in any dynamic DE model inhomogeneities
of the DE naturally appear. From the outset it is not clear that
these perturbations are small compared with the matter perturba-
tions. Simply neglecting them may lead to wrong interpretations
of the observations [24]. Whether or not DE perturbations are
negligible compared with DM perturbations has to be studied on
a case-by-case basis. But, in fact, the decomposition (7)–(9) was in-
troduced with the intention to separate the clustering matter from
the overall energy content of the Universe. Here we focus on the
choice α = −1/2 that was previously studied in [22]. Under the
assumption that (15) is the background version of the general so-
lution ρΛ = ρΛ0Θ/Θ0, where Θ = uμ

;μ is the fluid expansion, this
case allows us to obtain the DE perturbations explicitly in terms of
the DM perturbations and their first derivative with respect to the
scale factor,

δρc
Λ

ρΛ

= − 1

3K

(
a
∂δc

m

∂a
+ B̃δc

m

)
. (29)

Here,

K = 1 + 1

3
Ã − 1

6
Ã B̃ − 1

9
Ã2 k2

a2 H2
, (30)

with
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Ã = 1 − Ωm0

Ωm0a−3/2
, B̃ = 1 − Ωm0

1 − Ωm0 + Ωm0a−3/2
, (31)

and δc
m = δρc

m/ρm . The crucial point is the scale dependence of
the factor K . While Ã and B̃ are of the order of unity around
the present time, one has k2/(a2 H2) 	 1 on sub-horizon scales
and, consequently, |K | 	 1. It follows that for the present model
we have indeed |δρc

Λ| � |δρc
m| and |c2

s | � 1. Under this condition
the scale dependence in Eq. (22) is negligible and there appear
neither oscillations nor instabilities in the power spectrum. The
initial spectrum given at the end of the radiation era is just ampli-
fied during the Chaplygin-gas phase, almost entirely maintaining
its shape.

4. The power spectrum

The power spectrum is characterised by the position of its
turnover, which depends on zeq , the redshift of matter-radiation
equality. Let us show that the dependence of zeq on the present
matter-density parameter Ωm0 depends on the Chaplygin-gas pa-
rameter α in a way that allows us to predict the best-fit value of
Ωm0 for any α without having to construct the spectrum. As a par-
ticular example, we will show the spectrum for the case α = −1/2,
for which we also have a good concordance with the background
observational tests.

Using Eqs. (5) and (14) and taking the limit a � 1, i.e. high
redshifts, the matter density scales as

ρm = 3H2
0Ω

1
1+α

m0 z3 (z 	 1). (32)

For α = 0 we recover the standard result ρm = 3H2
0Ωm0z3. On the

other hand, for α < 0 we have, for the same present matter den-
sity, a lower amount of matter in the past. Equivalently, for the
same amount of matter in the past, we will have more matter to-
day. This results from the energy flux from DE to DM, encoded
in (16)–(17). Now, in order to locate the spectrum turnover at the
correct position, we need the same amount of matter at zeq as in
the standard model. Therefore, we expect a larger Ωm0 as com-
pared to the standard case for α < 0. Analogously, Ωm0 will be
smaller than the standard value when α > 0.

When only the power spectrum of large-scale structures (LSS)
is taken into account, the best-fit value for the matter density pa-
rameter in the spatially-flat standard model (α = 0) is given by
Ωm0 ≈ 0.2, for both 2dFGRS and SDSS data [25,26]. By the way,
this is in tension with the values 0.3 < Ωm0 < 0.4 obtained with
supernovae analysis. As we shall see, this tension does not appear
when we take α = −1/2. From (32) the redshift of radiation-
matter equality is given by

zeq = Ω
1

1+α

m0

ΩR0
, (33)

where ΩR0 is the radiation density parameter today. Assuming the
same amount of radiation as in the standard model, this redshift
will also be the same, provided that

Ωm0 ≈ 0.21+α. (34)

In Fig. 1 we show this dependence of Ωm0 on α. Models with
α > 0, i.e. with conversion of DM into DE, are clearly ruled out
since they lead to matter densities below 0.2, i.e., to a still higher
tension with supernova observations. For α < 0 we obtain larger
values for the matter density, as discussed above.

In the particular case α = −1/2 we have Ωm0 ≈ 0.45, and we
will see that this is in agreement with the corresponding back-
ground tests. In Fig. 2 we show the power spectrum obtained with
Fig. 1. The present relative matter density Ωm0 as a function of the Chaplygin pa-
rameter α.

Fig. 2. The power spectrum for α = −1/2 and Ωm0 = 0.45 (continuous blue line),
and for the BBKS best-fit (red line), with the 2dFGRS data points [25]. The dashed
lines delimit a 2σ confidence interval [7]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of the article.)

this value. The continuous blue line corresponds to Ωm0 = 0.45,
the dashed lines delimit the 2σ confidence interval, and the red
line represents the standard model best fit [27]. This spectrum was
originally obtained in Ref. [28], by integrating the complete set of
perturbed equations for matter and radiation from the deep radi-
ation epoch to the present. We have imposed δρΛ ≈ 0, and used
as initial conditions the Harrison–Zeldovich primordial spectrum.
Since ρΛ � ρ for early times, perturbations are almost adiabatic
in this limit and we can use adiabatic initial conditions. In the
integration we have assumed that baryons and dark matter fol-
low the same trajectories, an approximation that, in the standard
model case, leads to an error of about 10%. The spectrum was nor-
malised by using small scale data, equivalent to use the observed
value of σ8. In other words, we have assumed that the ratio of the
matter power spectrum to the galaxy power spectrum is equal to
1. Other normalizations are possible, for example by using grav-
itational lensing data. This involves the study of quasi-linear and
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Fig. 3. Left panel: The matter density contrast δc as a function of the scale factor for α = −1/2 (blue line) and α = 0 (red line) with the same initial conditions δc(zls) ≈ 10−5

at the redshift zls of last scattering. Right panel: The corresponding gravitational potentials as functions of the redshift. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of the article.)
non-linear perturbations of the model, an issue currently under in-
vestigation [29]. Fig. 2 shows that at large scales the shape of the
spectrum differs from the standard model prediction. This leaves a
potential way to discriminate this model from �CDM.

An interesting point to be shown is the evolution of the mat-
ter contrast along the universe expansion, given by the solution of
(22) and (25) with negligible c2

s . For α = −1/2 and Ωm0 = 0.45
it is depicted in the left panel of Fig. 3 (blue line), together with
the solution for α = 0 and Ωm0 = 0.2 (red line). We have used the
same initial condition δc(zls) ≈ 10−5 for both, where zls is the red-
shift of last scattering. In the first case, the contrast approaches
a maximum around the present time, i.e., when DM and DE have
similar densities, and then decreases to zero as a → ∞. The corre-
sponding gravitational potential, given by (25), has essentially the
same time evolution as in the standard model, as can be seen in
the right panel of Fig. 3. For z = 0 the potentials differ only by
about 10%. Any signature of this difference in the integrated Sachs–
Wolf effect, for instance, would be masked by the cosmic variance.

5. Joint observational tests

When performing background tests, we must take into account
that matter is not conserved for α �= 0. For example, when test-
ing the position of the first acoustic peak in the CMB anisotropy
spectrum, the relation between the observed position l1 and the
acoustic scale lA is not the same as in the standard model. The
general relation between these quantities is [30]

l1 = lA(1 − δ1), (35)

where

δ1 = 0.267

(
r

0.3

)0.1

, r = ρR(zls)

ρm(zls)
. (36)

In the last equation, the energy densities of radiation and matter
are taken at the redshift of last scattering. With our result (32) for
the matter density at high z, we obtain

r = ΩR0zlsΩ
− 1

1+α

m0 . (37)

For α = 0 we have r = ΩR0zls/Ωm0, and only in this case the shift
parameter of the flat standard model can be used. On the other
hand, when testing the distance to baryon acoustic oscillations,
the parameter A introduced in [31] can not be used either. It can
only be used when the sound horizon radius scales with Ω

−1/2.
m0
In the general case it scales with Ω
−1/2(1+α)

m0 , and we must ex-
plicitly use the scaling distance D V [31] in the test. Finally, when
testing the Hubble diagram with type-Ia supernovas, some care is
needed with the calibration procedure. One of the biggest current
supernova compilations is the Union2 sample [32], the calibra-
tion of which is model-dependent since it uses a fiducial �CDM
model with the Salt2 fitter. A Chaplygin model with fixed α has
the same free parameters as the �CDM model, namely H0 and
Ωm0 and is not reducible to the latter. On the other hand, if we
leave α free, the fitting of the Union2 sample will naturally lead to
the �CDM best-fit with α ≈ 0. Therefore, the complementary use
of model-independent compilations is mandatory, as for example
the Constitution and SDSS samples, calibrated with the MLCS2k2
fitter [33].

With these remarks in mind, we have performed a joint anal-
ysis of the case ρΛ ∝ H (that is, α = −1/2), including the mat-
ter power spectrum, the position of the first peak in the CMB
anisotropy spectrum, baryon acoustic oscillations and the three
supernova samples referred to above [7,8]. The results are sum-
marised in Table 1, together with the corresponding results for the
�CDM model (α = 0), after marginalisation of H0. The values in
each line correspond to the best-fit of the joint analysis of the cor-
responding SNe Ia compilation, CMB, BAO and the power spectrum.
The resulting values of the reduced χ2 show that we have a good
concordance for both models with the Union2 sample calibrated
with Salt2. On the other hand, with the samples calibrated with
the MLCS2k2 fitter we have a better concordance for α = −1/2.
The high values of the reduced χ2 obtained for �CDM indicate
the tension present in that model between SNe Ia and LSS obser-
vations, as discussed above. For α = −1/2, the resulting Universe
age for H0 ≈ 70 km/s · Mpc is t0 ≈ 13.5 Gy.

6. Final remarks

As far as the homogeneous and isotropic background dynamics
is concerned, the generalised Chaplygin gas serves as a prototype
for unified models of the cosmological dark sector. However, a suc-
cessful description of structure formation requires a separation
of the observable pressureless matter component. A correspond-
ing split of the total energy density of the cosmic substratum
into DM and DE is accompanied by an interaction between these
components which in the case of the present Letter amounts to
a production of DM out of a decaying vacuum term. Entropic per-
turbations do naturally appear in such a system and, different from
previous approaches in the literature, do not have to be introduced
ad hoc. We have established a relation between the effective sound
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Table 1
Limits to Ωm0 (SNe Ia + CMB + BAO + LSS), for α = −1/2 [7].

SNe Ia sample Chaplygin gas �CDM

Ωm0
a χ2

min/ν Ωm0
a χ2

min/ν

Union2 (SALT2) 0.420+0.009
−0.010 1.063 0.235 ± 0.011 1.027

SDSS (MLCS2k2) 0.450+0.014
−0.010 0.842 0.260+0.013

−0.016 1.231

Constitution (MLCS2k2-17) 0.450+0.008
−0.014 1.057 0.270 ± 0.013 1.384

a Error bars stand for 2σ .
speed of the cosmic medium and the (scale-dependent) ratio of
the energy-density perturbations of DE and DM. According to this
relation, the smallness of DE perturbations compared with matter
perturbations implies the smallness of the effective sound speed.
For the special case α = −1/2 we obtain a value |c2

s | < 10−5 on
typical scales [22]. As a result, the scale-dependence of the per-
turbation equations is negligible. There are no oscillations or in-
stabilities in the matter distribution. Different from the traditional
adiabatic one-component description, the non-adiabatic Chaplygin
gas may be a viable model of the cosmic substratum. We ob-
tain a good concordance when testing the model with α = −1/2
against SNe Ia, BAO, CMB and LSS observations. This set currently
constitutes the most precise and reliable observations we have.
This concordance has also been confirmed by other complemen-
tary tests [34]. This model has no �CDM limit. In the background
the energy density ratio ρm/ρΛ scales as a−3/2, different from the
a−3 behavior of the corresponding quantity of the �CDM model,
which amounts to an alleviation of the coincidence problem. In
the late-time limit the matter density contrast is suppressed for
the Chaplygin gas, while it approaches a constant in the �CDM
model. Nevertheless, all the present results apply to the linear
regime, and a study of the non-linear collapse is needed in the fu-
ture. Such study is also necessary to verify the consequences of
the contrast suppression on the formation of small-scale struc-
tures. Another problem to be addressed is the full spectrum of
CMB anisotropies. In the present work we have just considered the
position of the first acoustic peak. Since we have the same matter
density at high redshifts, the same content of baryons and radia-
tion and the same time evolution of the gravitational potential as
for the �CDM model, one may suggest that the same location of
the first peak should be sufficient to show the equivalence of the
spectra in both cases. But this has to be confirmed after adapt-
ing the current numerical codes to the case of two interacting and
non-adiabatic fluids, which is not trivial. In particular, the creation
of dark matter alters the relation between the present and past
values of the matter density, a relation always implicit in the nu-
merical codes. Another possible observation to be included in the
parameter estimation in the future is weak lensing. It is expected
to become a very powerful tool to discriminate dynamical models
of dark energy [35].

As a final comment we recall that in the particular case α =
−1/2 the DE density is linearly proportional to the Hubble param-
eter, ρΛ = 2Γ H . Since such behavior is also expected for the QCD
vacuum condensate in the expanding space–time with the correct
order of magnitude for Γ (see [7] and references therein), this
indicates a potential microphysical foundation of our phenomeno-
logical model. On this basis it would be natural to associate the
produced DM particles with the condensate fluctuations.
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