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Accurate spectral solutions for the parabolic and elliptic partial
differential equations by the ultraspherical tau method
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Abstract

Wepresent a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic
partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions.
The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential
equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor
matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these
methodsaredescribed.Numerical results obtainedcompare favorablywith thoseof theanalytical solutions.Accurate
double ultraspherical spectral approximations for Poisson’s and Helmholtz’s equations are also noted. Numerical
experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better
than others based on ultraspherical polynomials.
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1. Introduction

The problem of approximating solutions of ordinary or partial differential equations by spectral meth-
ods, known as Galerkin approximation, involves the projection onto the span of some appropriate set
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of basis functions, typically arising as the eigenfunctions of a singular Sturm–Liouville problem. The
members of the basis may satisfy automatically the auxiliary conditions imposed on the problem, such as
initial, boundary ormoregeneral conditions.Alternatively, these conditionsmaybe imposedas constraints
on the expansion coefficients, as in Lanczos�-method, Lanczos[21].
It is well-known,Canuto et al.[3], that the eigenfunctions of certain singular-Sturm–Liouville problems

allow the approximation of functions ofC∞[a, b] whose truncation error approaches zero faster than
any negative power of the number of basis functions (retained modes) used in the approximation, as that
number (order of truncationN) tends to∞. This phenomenon is usually referred to as “spectral accuracy”,
Gottlieb and Orszag[15].
It is of fundamental importance to know that the choice of the basis functions is responsible for the

superior approximation properties of spectral methods when compared with finite difference and finite
element methods.
Spectral methods provide a computational approachwhich achieved substantial popularity over the last

three decades. They have gained new popularity in automatic computations for a wide class of physical
problems in the fluid and heat flow. They have also proven highly efficient for time-dependent smooth
flows in simple geometries, see Orszag[26] and Gottlieb and Orszag[15]. The principal advantage
of spectral methods lies in their ability to achieve accurate results with substantially fewer degrees of
freedom.
For spectral and pseudospectral methods, explicit expressions for the expansion coefficients of the

solution are needed. Karageorghis[19], obtained an expression when the basis functions of expansion are
shifted Chebyshev polynomialsT ∗

n (x), x ∈ [0,1]. A corresponding formula for Legendre polynomials
Pn(x), x ∈ [−1,1], is derived in[27]. Doha[7], has obtained a more general formula when the basis
functions are the ultraspherical polynomialsC

(�)
n (x), x ∈ [−1,1], � ∈ (−1

2,∞); formulae for first and
second kinds Chebyshev polynomials and Legendre polynomialsTn(x), Un(x) andPn(x) are given as
special cases ofC(�)

n (x).
Spectral methods based on double Chebyshev polynomials for solving numerically partial differential

equations have been used bymany authors, among them, Dew andScraton[4]; Doha[5,6]; Haidvogel and
Zang[17] and Horner[18]. The existence and use of Fast Fourier Transform for Chebyshev polynomials
to compute efficiently the matrix–vector product has made them more widely used than other sets of
orthogonal polynomials, e.g., Legendre or ultraspherical polynomials. Streett et al.[29], show that in
some cases it is faster to use the usual matrix–vector multiplications than to resort to other transform
techniques.
For parabolic and hyperbolic partial differential equations employing an explicit finite-difference

scheme in time and a spectral representation in space, Gottlieb and Orszag[15] have observed that
the restriction on the time step for stability in Chebyshev methods is of O(1/N2), whereN is the number
of retained modes in the representation. Tal-Ezer[31], shows that an improved stability condition of
O(1/N) is obtained when Legendre polynomials are used.
In some other applications like the resolution of thin boundary layers, an expansion in Legendre

polynomials may be appropriate, because such expansion gives an exceedingly good representation for
functions that undergo rapid changes in narrow boundary layers, cf. Gottlieb and Orszag[15]. It also
worthy to mention that Chebyshev- and Legendre-spectral methods are extremely sensitive to the proper
formulation of boundary conditions. When proper boundary conditions are imposed so that the problem
is well-posed, the methods yield very accurate results, when improper boundary conditions are applied,
the methods are likely to be explosively unstable. An example is given by Gottlieb and Orszag[15],
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from which they conclude that while the Chebyshev-spectral method is unbounded and algebraically
unstable, the Legendre-spectral is semi-bounded and stable. This motivated our interest in ultraspherical
polynomials, because it includes Chebyshev and Legendre polynomials and some other polynomials as
subclasses of it.
For solving high-order partial differential equations the ultraspherical coefficients of high-order partial

derivatives of infinitely differentiable functions are required. Explicit expressions relating the ultraspher-
ical coefficients of a general order partial derivatives of infinitely differentiable function in two and three
variables in terms of the ultraspherical coefficient of the function itself are given in[10]. Similar expres-
sions for the cases of double and triple Chebyshev and Legendre polynomials are considered in[8,9]
respectively.
It is worthy to mention here that an accurate double Chebyshev and double Legendre spectral ap-

proximations for parabolic and elliptic partial differential equations have been developed in[11,12],
respectively, but for the reasons previously discussed,wehave to consider the ultra-spherical polynomials.
Our main aim in present paper is to reduce a parabolic partial differential equation in two space vari-

ables with its most general inhomogeneousmixed boundary and initial conditions to a system of ordinary
differential equations in the spectral ultraspherical expansion coefficients, by using two alternative meth-
ods of solution; and to explain how tensor matrix algebra can be used to solve such system of differential
equations.
We concentrate here on the spectral solutions of parabolic partial differential equationsmodels, because

we know that some problems in fluid dynamics governed by the Navier–Stokes equations, can be reduced
in many cases and under certain physical conditions to such models, see for instance, Schlichting[28].
The paper is organized as follows. In Section 2, we state without proof a theorem from Doha[10];

this relates the expansion coefficients of the partial derivatives of a function of two variables in terms of
its original ultraspherical expansion coefficients. In Section 3, we develop a spectral method based on
expansion in doubly ultraspherical polynomials for solving parabolic partial differential equation in two
space variables in a square subject to the most general inhomogeneous mixed boundary conditions. An
alternative method of solution, based on the explicit formulae given in Section 2, is described in Section
4. In Section 5, two accurate double ultraspherical spectral approximation for solving Poisson’s equation
in a square are obtained directly from those given in Sections 3 and 4, without doing extra more analysis.
Numerical results and comparisons are discussed in Section 6.

2. Explicit expressions for the ultraspherical coefficients of the derivatives

The ultraspherical polynomials associated with the real parameter (�> − 1
2) are a sequence of poly-

nomials{C(�)
n (x), n = 0,1,2, . . .}, each respectively of ordern, satisfying the orthogonality relation∫ 1

−1
(1− x2)�−

1
2C(�)

m (x)C(�)
n (x)dx = 0, (m 
= n).

It is worthy to mention that many properties of ultraspherical polynomials may be found in[1,30], but
for our present purposes it is convenient to standardize them so thatC

(�)
n (1)=1, n=0,1,2, . . .. This is not

the usual standardization, but has the desirable properties thatC
(0)
n (x) are identical with the Chebyshev

polynomials of the first kindTn(x),C
(1/2)
n (x) are the Legendre polynomialsPn(x), andC

(1)
n (x) are equal
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to (1/(n + 1))Un(x), whereUn(x) are the Chebyshev polynomials of the second kind. In this form the
ultraspherical polynomials may be generated by using the recurrence relation

(n + 2�)C(�)
n+1(x) = 2(n + �)xC(�)

n (x) − nC
(�)
n−1(x), n = 1,2,3, . . . , (1)

starting fromC
(�)
0 (x) = 1 andC(�)

1 (x) = x, or obtained from the Rodrigue’s formula

C(�)
n (x) =

(
−1

2

)n �(� + 1
2)

�(n + � + 1
2)

(1− x2)(1/2)−� dn

dxn
[(1− x2)n+�−(1/2)].

Let u(x, y) be a continuous function defined on the squareS[−1�x, y�1], and let it has continuous
and bounded partial derivatives of any order with respect to its variablesx andy. Then it is possible to
express

u(x, y) =
∞∑
n=0

∞∑
m=0

amnC
(�)
m (x)C(�)

n (y), (2)

u(p,q)(x, y) = �p+q
u(x, y)

�xp�yq
=

∞∑
n=0

∞∑
m=0

a
(p,q)
mn C(�)

m (x)C(�)
n (y), (3)

wherea(p,q)mn denote the ultraspherical expansion coefficients ofu(p,q)(x, y) anda(0,0)mn = amn.

Theorem.
(m + 2� − 1)

2m(m + � − 1)
a
(p,q)
m−1,n − (m + 1)

2(m + � + 1)(m + 2�)
a
(p,q)
m+1,n = a

(p−1,q)
mn , m, p�1, (4)

(n + 2� − 1)

2n(n + � − 1)
a
(p,q)
m,n−1 − (n + 1)

2(n + � + 1)(n + 2�)
a
(p,q)
m,n+1 = a

(p,q−1)
mn , n, q�1, (5)

a
(p,q)
mn = 2p(m + �)�(m + 2�)

(p − 1)!m!
∞∑
i=1

(i + p − 2)!�(m + i + p + � − 1)(m + 2i + p − 2)!
(i − 1)!�(m + i + �)�(m + 2i + p + 2� − 2)

× a
(0,q)
m+2i+p−2,n, p�1, (6)

a
(p,q)
mn = 2q(n + �)�(n + 2�)

(q − 1)!n!
∞∑
j=1

(j + q − 2)!�(n + j + q + � − 1)(n + 2j + q − 2)!
(j − 1)!�(n + j + �)�(n + 2j + q + 2� − 2)

× a
(p,0)
m,n+2j+q−2, q�1, (7)

a
(p,q)
mn = 2p+q(m + �)(n + �)�(m + 2�)�(n + 2�)

(p − 1)!(q − 1)!m!n!
∞∑
j=1

∞∑
i=1

(i + p − 2)!(j + q − 2)!
(i − 1)!(j − 1)!

× �(m + i + p + � − 1)�(n + j + q + � − 1)(m + 2i + p − 2)!(n + 2j + q − 2)!
�(m + i + �)�(n + j + �)�(m + 2i + p + 2� − 2)�(n + 2j + q + 2� − 2)

× am+2i+p−2,n+2j+q−2, p, q�1. (8)

For proof of this theorem, see, Doha[10].
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3. Statement of the problem and derivation of method of solution

In this section,wedevelop twoalternative approximatemethods basedonanexpansion in ultraspherical
polynomials for solving numerically parabolic partial differential equations in two space variables, in
addition to time variable, namely

�u
�t

= �2u
�x2

+ �2u
�y2

, (−1�x, y�1), t ∈ [0,∞), (9)

subject to the most general inhomogeneous mixed boundary conditions

�1u + �1
�u
�x

= �1(y, t), x = −1

�2u + �2
�u
�x

= �2(y, t), x = 1


 − 1�y�1, (10)

�3u + �3
�u
�y

= �3(x, t), y = −1

�4u + �4
�u
�y

= �4(x, t), y = 1


 − 1�x�1 (11)

and the initial condition

u(x, y,0) = f (x, y), x, y ∈ [−1,1]. (12)

It is assumed that the solution of the above problem can be expressed in a uniformly convergent double
ultraspherical series expansion

u(x, y, t) =
∞∑

m=0

∞∑
n=0

amn(t)C
(�)
m (x)C(�)

n (y). (13)

Throughout this paper we assume that the functionf (x, y) satisfies the boundary conditions (10) and
(11) to make sure that the solution of (9) is free of discontinuities. We also assume thatf (x, y) has a
series expansion of the form

f (x, y) =
∞∑

m=0

∞∑
n=0

fmnC
(�)
m (x)C(�)

n (y), (14)

which is uniformly convergent in−1�x, y�1. It then follows that the solution of (9) has a double series
expansion of form (13), and the solution is free of discontinuities. The case in which discontinuities are
present at the vertices (±1,±1), can often be treated by a method similar to that described in[20].

3.1. The first method of solution

If we satisfy the differential equation (9), we get

a(2,0)mn (t) + a(0,2)mn (t) = a′
mn(t), (15)
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wherea′
mn(t) denote the derivatives ofamn(t) with respect tot. Now application of relation (4) on (15)

twice, gives

amn(t) +
∞∑
i=0

Amia
(0,2)
in (t) =

∞∑
i=0

Amia
′
in(t), m�2, n�0, (16)

where

Ami =




(m + 2� − 1)(m + 2� − 2)

4m(m − 1)(m + � − 1)(m + � − 2)
, i = m − 2,

−1

2(m + � − 1)(m + � − 2)
, i = m,

(m + 1)(m + 2)

4(m + � + 1)(m + � + 2)(m + 2�)(m + 2� + 1)
, i = m + 2,

0 otherwise.

(17)

Again application of relation (5) on (16), yields the following result:

∞∑
i=0

Amiain(t) +
∞∑
j=0

amj (t)Bjn =
∞∑
i=0

∞∑
j=0

Amia
′
ij (t)Bjn, m, n�2, (18)

whereBij = Aji .
If weassume that�i(y, t), (i=1,2)and�i(x, t), (i=3,4), have the followingultraspherical expansions:

�i(y, t) =
∞∑
n=0

�(i)n (t)C(�)
n (y), i = 1,2, (19)

�i(x, t) =
∞∑

m=0

�(i)m (t)C(�)
m (x), i = 3,4, (20)

then the boundary conditions (10) and (11) give
∞∑

m=0
(−1)m

[
�1 − m(m + 2�)

2� + 1
�1

]
amn(t) = �(1)n (t)

∞∑
m=0

[
�2 + m(m + 2�)

2� + 1
�2

]
amn(t) = �(2)n (t)


 , n = 0,1,2, . . . , (21)

∞∑
n=0

(−1)n
[
�3 − n(n + 2�)

2� + 1
�3

]
amn(t) = �(3)m (t)

∞∑
n=0

[
�4 + n(n + 2�)

2� + 1
�4

]
amn(t) = �(4)m (t)


 , m = 0,1,2, . . . . (22)

It is not difficult to show that Eqs. (21) and (22), may be put in the form

a0n(t) +
∞∑

m=2
�mamn(t) = gn(t)

a1n(t) +
∞∑

m=2
�mamn(t) = hn(t)


 , n = 0,1,2, . . . , (23)
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am0(t) +
∞∑
n=2

Unamn(t) = km(t)

am1(t) +
∞∑
n=2

Vnamn(t) =  m(t)


 , m = 0,1,2, . . . , (24)

where

�m =
{
(�1 − �1)

[
�2 + m(m + 2�)

2� + 1
�2

]
+ (−1)m (�2 + �2)

[
�1 − m(m + 2�)

2� + 1
�1

]}/
�1,

�m =
{
�1�2(1− (−1)m) + m(m + 2�)

2� + 1
(�1�2 + (−1)m�2�1)

}/
�1,

Un =
{
(�3 − �3)

[
�4 + n(n + 2�)

2� + 1
�4

]
+ (−1)n (�4 + �4)

[
�3 − n(n + 2�)

2� + 1
�3

]}/
�2,

Vn =
{
�3�4(1− (−1)n) + n(n + 2�)

2� + 1
(�3�4 + (−1)n�4�3)

}/
�2,

gn(t) = [(�2 + �2)�
(1)
n (t) + (�1 − �1)�

(2)
n (t)]/�1,

hn(t) = [�1�(2)n (t) − �2�
(1)
n (t)]/�1,

km(t) = [(�4 + �4)�
(3)
m (t) + (�3 − �3)�

(4)
m (t)]/�2,

 m(t) = [�3�(4)m (t) − �4�
(3)
m (t)]/�2,

�1 = 2�1�2 + �1�2 − �2�1 
= 0, �2 = 2�3�4 + �3�4 − �4�3 
= 0.

It is worthy to note here that the boundary conditions (23) and (24) are not all linearly independent.
Clearly, four linear relations exist among them.
Eqs. (23) and (24), after some more manipulation, will have the forms

a00(t) = g0(t) −
∞∑

m=2

�mkm(t) +
∞∑

m=2

∞∑
n=2

�mUnamn(t), (25)

a01(t) = g1(t) −
∞∑

m=2

�m m(t) +
∞∑

m=2

∞∑
n=2

�mVnamn(t), (26)

a10(t) = h0(t) −
∞∑

m=2

�mkm(t) +
∞∑

m=2

∞∑
n=2

�mUnamn(t), (27)

a11(t) = h1(t) −
∞∑

m=2

�m m(t) +
∞∑

m=2

∞∑
n=2

�mVnamn(t). (28)
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Elimination ofa0n(t), a1n(t), am0(t), am1(t) from the L.H.S of Eq. (18)—by making use of (23) and
(24)—gives

Am0gn(t) + Am1hn(t) + B0nkm(t) + B1n m(t) +
∞∑
i=2

(Ami − �iAm0 − �iAm1)ain(t)

+
∞∑
j=2

(Bjn − UjB0n − VjB1n)amj (t) =
∞∑
i=0

∞∑
j=0

Amia
′
ij (t)Bjn, m, n�2,

which may be written in the form

∞∑
i=2

Cmiain(t) +
∞∑
j=2

amj (t)Djn + bmn(t) =
∞∑
i=0

∞∑
j=0

Amia
′
ij (t)Bjn, m, n�2, (29)

where

Cmi = Ami − �iAm0 − �iAm1; Djn = Bjn − UjB0n − VjB1n,

bmn(t) = Am0gn(t) + Am1hn(t) + B0nkm(t) + B1n m(t). (30)

Eqs. (21)–(28) are all true for all values oft, hence we can differentiate with respect tot. The resulting
equations can be used to eliminatea′

00(t), a
′
01(t), a

′
10(t), a

′
11(t), a

′
m0(t), a

′
m1(t), a

′
0n(t), anda

′
1n(t) from

the R.H.S. of (29) to give

∞∑
i=0

∞∑
j=0

Amia
′
ij (t)Bjn = dmn(t) +

∞∑
i=2

∞∑
j=2

Cmia
′
ij (t)Djn, (31)

where

dmn(t) = Am0[B0ng
′
0(t) + B1ng

′
1(t)] + Am1[B0nh

′
0(t) + B1nh

′
1(t)]

+
∞∑
i=2

{Cmi[B0nk
′
i(t) + B1n 

′
i(t)] + Bin[Am0g

′
i(t) + Am1h

′
i(t)]}. (32)

Substitution from (31) into (29) yields

∞∑
i=2

Cmiain(t) +
∞∑
j=2

amj (t)Djn = emn(t) +
∞∑
i=2

∞∑
j=2

Cmia
′
ij (t)Djn, m, n�2, (33)

where

emn(t) = dmn(t) − bmn(t). (34)

It is now necessary to assume thatamn(t) anda′
mn(t) are negligible form>M andn>N respectively,

and as a result, Eq. (33) may be written in the finite matrix form as

CA(t) + A(t)D= E(t) + CA′(t)D, (35)
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where

A(t) = [aij (t), i = 2,3, . . . ,M; j = 2,3, . . . , N], C= [Cij , i, j = 2,3, . . . ,M],
D= [Dij , i, j = 2,3, . . . , N], E(t) = [eij (t), i = 2,3 . . . ,M; j = 2,3, . . . , N].

3.2. Solution of the system of differential equations (35)

Let C ⊗ D = [Cij D], i, j = 2,3, . . . ,M, be the tensor product of the two matricesC andD; C ⊕
D=C⊗ IN−1 + IM−1 ⊗D be their tensor sum, whereIM−1 andIN−1 are the identity matrices of order
M − 1 andN − 1, respectively. Introducing the so-called block vectors:

a(t) ≡ [a2(t), a3(t), . . . , aN(t)]T and E(t) ≡ [E2(t), E3(t), . . . , EN(t)]T,
where

A(t) ≡ [a2(t) a3(t) · · · aN(t)]T; E(t) ≡ [E2(t)E3(t) · · · EN(t)]T
and

vecA(t) =




a2(t)

a3(t)
...

aN(t)


 .

Utilizing the above definitions, one can reduce the system of Eqs. (35) to the followingmatrix differential
form:

Ga(t) = E(t) + Ha′(t), (36)

where

G= [C⊕ DT] and H = [DT ⊕ C].
An interested reader is referred toGraham[16] and Loan[23], for more details about the kroneckermatrix
algebra.
Eq. (36) represents a system of nonhomogeneous linear ordinary differential equations with constant

coefficients which must be solved under the initial condition:

amn(0) = fmn, m = 0,1, . . . ,M; n = 0,1, . . . , N,

wherefmn are the constants given by (14).
An analytical solution of Eq. (36) is given, explicitly, in[2]

a(t) = exp(H−1Gt)

[
a(0) − H−1

∫ t

0
exp(H−1Gs)E(s)ds

]
. (37)

If E(t) is composed of exponential or oscillatory functions, a particular integral of (36) can be obtained
by elementary means, and the complementary function by

a(t) = exp(H−1Gt) a(0) = exp(Qt)a(0), (38)
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but owing to the impracticability of evaluating the exponential of a largematrix this does not give feasible
method for numerical solution. Let the eigenvalues of thematrixQ be(−	i , i=1,2, . . . , k=(M−1)(N−
1)), and thecorrespondingeigenvectors(xi, i=1,2, . . . , k). It will beassumed that	i are real andpositive,
a condition which normally guaranteed by physical considerations (the	i being approximations to the
eigenvalues of the partial differential equation). If�1, �2, . . . , �k are chosen so that

a(0) =
k∑

i=1

�ixi,

solution (38) can be written in the form

a(t) =
k∑

i=1

�ie
−	i t xi . (39)

Fox and Parker[14] suggest obtaining numerical solution in this form, and this is probably the best
approach whenk is small. For large values ofk the determination of the eigenvalues and eigenvectors can
make this an uneconomical method of solution.
Suppose
(z) is a rational functionwhich approximates e−z, for real positivez.Anapproximate solution

to the matrix differential equation can then be obtained in a step-by-step manner using the formula

a(t + �t) = 
(−�tQ)a(t). (40)

This produces the approximate solution

a(r�t) =
k∑

i=1

�i[
(	i�t)]rxi (41)

and one hopes that with a suitable choice of
 and�t this will provide an adequate approximation to the
correct solution given by Eq. (39).
The simple rational approximation


(z) = 1− 1
2z

1+ 1
2z

(42)

has been used, but oscillations in the sign of some coefficients have been noticed. The reason for this
oscillatory behaviour is not hard to find. Some of the	i are very large, so the	i�t is also large, and the
value of
(	i�t) given by (42) is approximately−1. The corresponding terms in Eq. (41) produce the
oscillations.
We can avoid altogether the oscillatory trouble by choosing a more satisfactory form for
(z) so that


(z) is small whenz is large. It is merely necessary to ensure that the denominator of
(z) is of higher
degree than the numerator. Stability considerations also demand that|
(z)|<1 for all positivez. There
is a range of Pad́e approximations to e−z satisfying these criteria, see for instance[13,32]. One may use
Pad́e approximations of higher or lower order according to the degree of accuracy required, but for the
sake of illustration we propose to use the expression


(z) = 1− 2
5z + 1

20z
2

1+ 3
5z + 3

20z
2 + 1

60z
3
. (43)
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The error in this approximation, for small values ofz, is given by


(z) − e−z = 1
7200z

6 + O(z7). (44)

Now the error of the approximate solution (41) is given by

k∑
i=1

�rEr(	i�t)xi,

where

Er(z) = [
(z)]r − e−rz

and in order to investigate this error it is necessary to consider the behaviour ofEr(z). For small values
of z, it follows from Eq. (44) that

Er(z) = 1
7200rz

6e−rz + O(z7)

and the maximum value ofEr(z) asr increases occurs whenr ≈ 1/z and this approximately equals to
(1/7200e)z5. For large values ofz, the maximum value ofEr(z) occurs whenr =1, andEr(z) decreases
rapidly asr increases.
The first step in a tabulation by the method suggested above involves the formation of the matrix


(−�tQ). If Eq. (43) is used for
(z), this requires the determination of the matrix

(Q3 − 3
5�tQ2 + 3

20(�t)
2Q− 1

60(�t)
3I )−1(Q3 + 2

5�tQ2 + 1
20(�t)

2Q). (45)

If �t is small, the matrix to be inverted approximatesQ3, and in general this is less well conditioned
than the matrixQ. It is preferable therefore to write Eq. (45) in the alternative

I + �t


Q− �t

2
I + (�t)2

12

[
Q+ (�t)2

60

(
Q− �t

10
I
)−1

]−1



−1

, (46)

which requires no more arithmetic, but in which the matrices to be inverted approximate toQ.
To summarize the method, we first find the matrixQ; then form thematrix
(−Q−1h) bymeans of Eq.

(46); then tabulatea(t) for the required values oft, using the step-by-step process (Eq. (40)), and finally
find a00(t), a01(t), a10(t) anda11(t) for eacht from Eqs. (25)–(28).

4. Alternative method of solution

An alternative method of solution based basically on the explicit expressions given by (6) and (7) is
presented in this section. This method leads to a system similar to (36), but with some computational
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advantages. Direct substitution from (6) and (7) into (15) yields

a′
mn(t) = (m + �)�(m + 2�)

m!
∞∑

i=m+2
(i−m)even

(i − m)(i + m + 2�)
i!

�(i + 2�)
ain(t)

+ (n + �)�(n + 2�)

n!
∞∑

j=n+2
(j−n)even

(j − n)(j + n + 2�)
j !

�(j + 2�)
amj (t),

which may be written in the equivalent form

a′
mn(t) =

∞∑
i=0

Kmiain(t) +
∞∑
j=0

amj (t)Ljn, m, n�0, (47)

where

Kmi =
{ (m + �)�(m + 2�)i!(i − m)(i + m + 2�)

m!�(i + 2�)
, i�m + 2, (i − m)even,

0 otherwise

andLjn = Knj .
It is necessary here to assume that the coefficientsain(t) andamj (t) are negligible form�M + 1,

n�N+1. The boundary conditions (21) and (22) are used to eliminate the coefficientsai,N−1(t), aiN(t),

aM−1,j (t), aMj (t). After straightforward but lengthy manipulation, we get

aM−1,n(t) +
M−2∑
m=0

�′
mamn(t) = g′

n(t),

aMn(t) +
M−2∑
m=0

�′
mamn(t) = h′

n(t),


 , n = 0,1, . . . , N, (48)

am,N−1(t) +
N−2∑
n=0

U ′
namn(t) = k′

m(t),

amN(t) +
N−2∑
n=0

V ′
namn(t) =  ′

m(t),


 , m = 0,1, . . . ,M, (49)

where

�′
m =

{
(−1)M

[
�1 − M(M + 2�)

2� + 1
�1

] [
�2 + m(m + 2�)

2� + 1
�2

]

−(−1)m
[
�1 − m(m + 2�)

2� + 1
�1

] [
�2 + M(M + 2�)

2� + 1
�2

]}/
�′
1,

�′
m =

{
(−1)M

[
�1 − (M − 1)(M + 2� − 1)

2� + 1
�1

] [
�2 + m(m + 2�)

2� + 1
�2

]

+ (−1)m
[
�1 − m(m + 2�)

2� + 1
�1

] [
�2 + (M − 1)(M + 2� − 1)

2� + 1
�2

]}/
�′
1,
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U ′
n =

{
(−1)N

[
�3 − N(N + 2�)

2� + 1
�3

] [
�4 + n(n + 2�)

2� + 1
�4

]

− (−1)n
[
�3 − n(n + 2�)

2� + 1
�3

] [
�4 + N(N + 2�)

2� + 1
�4

]}/
�′
2,

V ′
n =

{
(−1)N

[
�3 − (N − 1)(N + 2� − 1)

2� + 1
�3

] [
�4 + n(n + 2�)

2� + 1
�4

]

+ (−1)n
[
�3 − n(n + 2�)

2� + 1
�3

] [
�4 + (N − 1)(N + 2� − 1)

2� + 1
�4

]}/
�′
2,

g′
n(t) =

{
(−1)M

[
�1 − M(M + 2�)

2� + 1
�1

]
�(2)n (t) −

[
�2 + M(M + 2�)

2� + 1
�2

]
�(1)n (t)

}/
�′
1,

h′
n(t) =

{[
�2 + (M − 1)(M + 2� − 1)

2� + 1
�2

]
�(1)n (t)

+(−1)M
[
�1 − (M − 1)(M + 2� − 1)

2� + 1
�1

]
�(2)n (t)

}/
�′
1,

k′
m(t) =

{
(−1)N

[
�3 − N(N + 2�)

2� + 1
�3

]
�(4)m (t) −

[
�4 + N(N + 2�)

2� + 1
�4

]
�(3)m (t)

}/
�′
2,

 ′
m(t) =

{[
�4 + (N − 1)(N + 2� − 1)

2� + 1
�4

]
�(3)m (t)

+(−1)N
[
�3 − (N − 1)(N + 2� − 1)

2� + 1
�3

]
�(4)m (t)

}/
�′
2,

�′
1 = (−1)M

[(
�1 − (M − 1)(M + 2� − 1)

2� + 1
�1

) (
�2 + M(M + 2�)

2� + 1
�2

)

+
(

�1 − M(M + 2�)

2� + 1
�1

) (
�2 + (M − 1)(M + 2� − 1)

2� + 1
�2

)]

= 0,

�′
2 = (−1)N

[(
�3 − (N − 1)(N + 2� − 1)

2� + 1
�3

) (
�4 + N(N + 2�)

2� + 1
�4

)

+
(

�3 − N(N + 2�)

2� + 1
�3

) (
�4 + (N − 1)(N + 2� − 1)

2� + 1
�4

)]

= 0.

Making use of Eqs. (48) and (49) to eliminateaM−1,n(t), aMn(t), am,N−1(t) andamN(t) from the finite
system of (47), give

M−2∑
i=0

Hmiain(t) +
N−2∑
j=0

amj (t)Tjn + b′
mn(t) = a′

mn(t) (0�m�M − 2;0�n�N − 2), (50)
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where

Hmi = Kmi − �′
iKm,M−1 − �′

iKmM; Tjn = Ljn − U ′
jLN−1,n − V ′

jLNn,

b′
mn(t) = Km,M−1g

′
n(t) + Km,Mh′

n(t) + LN−1,nk
′
m(t) + LNn 

′
m(t).

System (50) can be casted in the matrix form

HA(t) + A(t)T + B(t) = A′(t), (51)

whereA is the matrix of the unknown coefficients of order(M −1)(N −1);H andT are square matrices
of orders(M − 1) and(N − 1), respectively.
This approach of truncating the exact infinite ultraspherical expansion foru(x, y, t) by dropping the

equations for thehighestmodes fromEq. (47) anddetermining themdirectly from theboundary conditions
is amount to Lanczos�-method.
The main advantages of this method can be seen by looking at the simpler form of matricesH andT.

Note also that, although the method of this section computationally simpler than the first method, it is
mathematically equivalent and will produce identical results.

5. Accurate double ultraspherical approximation for Poisson’s equation

In the present section,we can obtain directly and without doing extra more analysis than that given in
the previous two sections, the equations that give accurate double ultraspherical spectral approximations
for solving numerically Poisson’s equation, namely,

�2u
�x2

+ �2u
�y2

= f (x, y), x, y ∈ [−1,1], (52)

subject to the most general inhomogeneous mixed boundary conditions (10) and (11); noting here that�1
and�2 are functions ofy, while �3 and�4 are functions ofx, and all of them do not depend ont.
If the usual notation of Sections 3 and 4 kept unchanged, and returning to Eq. (29), replacing the

coefficientsa′
ij (t) by the corresponding expansion coefficientsfij of f (x, y) that appear in (52), we get

∞∑
i=2

Cmiain +
∞∑
j=2

amjDjn =
∞∑
i=0

∞∑
j=0

AmifijBjn − bmn, m, n�2,

or in the finite matrix form

CA + AD = S, 2�m�M;2�n�N, (53)

whereS is a matrix of order(M − 1)(N − 1) whose elementsSmn are given by

Smn =
M∑
i=0

N∑
j=0

AmifijBjn − bmn. (54)

Note here thatCmi,Djn andbmn are as given by (30), and take into consideration thatamn, gn, hn, km,

and m are all real constants which do not depend on the variablet .
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It is not difficult to show that the system of linear algebraic equations (53) is equivalent to

Ga = s, (55)

whereG anda are as defined before.
Now returning to (50), we get

M−2∑
i=0

Hniain +
N−2∑
j=0

amjTjn + b′
mn = fmn (0�m�M − 2;0�n�N − 2),

or in the finite matrix form

HA + AT =W. (56)

This system of linear algebraic equations has the samemethods of solution like that of thematrix equation
(53).
It is worthy to mention here that the double ultraspherical expansion method can be extended to handle

Helmholtz equation

�2u
�x2

+ �2u
�y2

+ 	u = f (x, y)

for constant	 subject to the most general boundary conditions as in the case of Poisson’s equation.

6. Numerical results and comparisons

Consider the problem

�u
�t

= �2u
�x2

+ �2u
�y2

, (x, y, t) ∈ [−1,1] × [0,∞), (57)

subject to the boundary conditions

�u
�x

− 2u = �

2
e

−�2t
2 cos

(�y

2

)
, x = −1,

�u
�x

+ 2u = −�

2
e

−�2t
2 cos

(�y

2

)
, x = 1,


 , −1�y�1, t >0, (58)

�u
�y

− 2u = �

2
e

−�2t
2 cos

(�x

2

)
, y = −1,

�u
�y

+ 2u = −�

2
e

−�2t
2 cos

(� x

2

)
, y = 1,


 , −1�x�1, t >0 (59)

and the initial condition

u(x, y,0) = cos
(�x

2

)
cos

(�y

2

)
, −1�x, y�1. (60)

It is not difficult to show that the analytical solution of (57) subject to (58)–(60), is given by

u(x, y, t) = e(−�2t/2) cos
(�x

2

)
cos

(�y

2

)
(61)
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=4�1−2� e(−�2t/2)

�2(� + 1
2)

∞∑
n=0

∞∑
m=0

(−1)m+n(2n + �)(2m + �)�(2n + 2�)�(2m + 2�)

(2n)!(2m)!
× J2m+�

(�

2

)
J2n+�

(�

2

)
C

(�)
2m(x)C

(�)
2n (y), (62)

whereJi(z) denotes the Bessel function of the first kind, see[24].
It is obvious that the solution of (57) is symmetric about the axes of coordinates and therefore can be

approximated by the series expansion

uMN(x, y, t) =
M∑

m=0

N∑
n=0

a2m,2n(t)C
(�)
2m(x)C

(�)
2n (y).

If the first method of Section 3 is applied, then the boundary conditions (23) and (24) give

a0n(t) + �2a2n(t) + �4a4n(t) + · · · = gn(t), n = 0,2,4, . . . ,

am0(t) + U2am2(t) + U4am4(t) + · · · = km(t), m = 0,2,4, . . . ,

where

�2m = U2m = 1+ 2m(m + �)

2� + 1
,

g2n(t) = k2n(t) = e−�2t
2

(−1)n+1(2n + �)�(2n + 2�)

2(�)�−
3
2�(� + 1

2)(2n)!
J2n+�

(�

2

)
.

ThematricesC,DandE(t)are calculated.After calculating,E(t)=vecE(t), a(0)=vecA(0),G=C⊕DT

andH = DT ⊗ C, thena(t) may be calculated from the step-by-step formula

a(t + �t) = eH
−1G�t a(t) + (e−(�2�t/2)I − eH

−1G�t )

(
G+ �2

2
H

)−1

E(t), (63)

where eH
−1G�t is approximated by formula (46).

If the alternative method of Section 4 is applied, then the boundary conditions (48) and (49) yield

a2N,n + �′
0a0n(t) + �′

2a2n(t) + · · · + �′
2N−2,na2N−2,n = h′

n(t), n = 0,2,4, . . . ,2N,

am,2N + V ′
0am0(t) + V ′

2am2(t) + · · · + V ′
m,2N−2am,2N−2 =  ′

m(t), m = 0,2,4, . . . ,2M,

where

�′
2m = V ′

2m = 1+ 2m2 + 2�(m + 1)

1+ 2N2 + 2�(N + 1)
,

h′
2m(t) =  ′

2m(t) = (−1)m+1(2� + 1)(2m + �)�(2m + 2�)

4�(� + 1
2)�

�− 3
2 (1+ 2N2 + 2�(N + 1))(2m)!

J2m+�

(�

2

)
.
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Table 1
Maximum pointwise error ofu − uMN for N = M = 4,8,12

� t N E N E N E

1 3.795× 10−5 4.142× 10−9 1.423× 10−14

1
2 8.120× 10−5 4.461× 10−9 4.407× 10−14

0 0.25 4 1.882× 10−4 8 1.475× 10−8 12 1.332× 10−13

−0.2 3.430× 10−4 2.503× 10−8 4.027× 10−13

−0.45 9.052× 10−4 6.597× 10−8 1.546× 10−12

1 1.087× 10−5 1.206× 10−9 5.100× 10−15

1
2 2.365× 10−5 1.299× 10−9 1.489× 10−14

0 0.5 4 5.491× 10−4 8 3.347× 10−9 12 4.179× 10−14

−0.2 1.051× 10−4 7.289× 10−9 1.753× 10−13

−0.45 2.636× 10−4 1.994× 10−8 1.309× 10−12

1 3.080× 10−6 3.512× 10−10 2.151× 10−15

1
2 6.892× 10−6 3.783× 10−10 5.699× 10−15

0 0.75 4 1.606× 10−5 8 9.773× 10−10 12 1.771× 10−14

−0.2 3.148× 10−5 2.122× 10−9 4.625× 10−14

−0.45 7.681× 10−5 5.809× 10−9 7.482× 10−13

The matricesH, T andB(t) are calculated. Thena(t) may be calculated from the step-by-step formula

a(t + �t) = eL
−1G�t a(t) + (e−(�2�t/2)I − eL

−1G�t )

(
G+ �2

2
L

)−1

Ke−(�2t/2), (64)

whereG= H−1⊕
H−1,K = vec(H−1BT−1),L = H−1⊗

H−1.
LetEdenotes the maximum pointwise error obtained by any of the two proposed methods. Then these

values ofE are tabulated for different values of�,M,N(M = N) andt in Table 1.
For the sake of comparisons between the results obtained by using the first method and its alternative;

we add alongside the theoretical values of the solution as calculated from (62). It is of interest to note
here that the abbreviations FM, AM andT denote to the values of the solution calculated by using the
first, alternative and the theoretical methods of solution for the example considered, respectively. The
values of the solution obtained by the two methods at the data points,A ≡ (0.2,0.2), B ≡ (0.2,0.4) and
C ≡ (0.4,0.4), for t = 0.25,0.5,0.75, can be compared with the theoretical solution for various values
of the parameter�. In Table 2, the results are tabulated for the value� = 1. For the sake of comparison
with the results obtained in[12], we present the results for� = 1

2 in Table 3. Numerical results show that
both methods compare favorably with the theoretical solution.
We present also a comparison for the model problem considered between our proposed ultraspherical

expansion technique and a finite difference-scheme. The finite-difference scheme used is the Peaceman–
Rashford method (See[25]), with the parameters�x = �y = 0.05 and�t = h = 0.0025, and the
calculation is continued for 100 time steps. The measure for error for the finite-difference method
(EFDM) is the maximum pointwise error on the grid between the exact and calculated solution. The
error at the grid point (0,0), are shown inTable 4after a number of time steps (p). Note that the
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Table 2
The case� = 1

t Data point AM, FM T

A 0.263404572 0.263404572
0.25 B 0.224065313 0.224065312

C 0.190601338 0.190601339

A 0.076767068 0.076767068
0.5 B 0.065250717 0.065250719

C 0.055505574 0.055505575

A 0.223380174 0.223380175
0.75 B 0.190018526 0.190018526

C 0.016163941 0.016163941

Table 3
The case� = 1

2

t Data point AM, FM Doha & Al-Kholi T

A 0.263404571 0.263404700 0.263404572
0.25 B 0.224065312 0.224065500 0.224065313

C 0.190601331 0.190601500 0.190601339

A 0.076767068 0.076706900 0.076767068
0.5 B 0.065250717 0.065250800 0.065250716

C 0.055505574 0.055505800 0.055505575

A 0.223380173 0.223380000 0.223380175
0.75 B 0.190018526 0.190018000 0.190018526

C 0.016163941 0.016163700 0.016163941

maximum pointwise error obtained by our proposed ultraspherical expansion technique is
denoted by EUET.

Example 2. Consider the problem

�2u
�x2

+ �2u
�y2

= −32�2 sin(4�x) sin(4�y),

subject to the boundary conditions

u ± �u
�x

= ±4� sin(4�y), x = ±1,

u ± �u
�y

= ±4� sin(4�y), x = ±1.



42 E.H. Doha, W.M. Abd-Elhameed / Journal of Computational and Applied Mathematics 181 (2005) 24–45

Table 4
Comparison between the maximum pointwise errors EFDM and EUET

� p t EFDM EUET

1 1.405× 10−8

1
2 2.513× 10−8

0 1 0.0025 9.6× 10−4 3.282× 10−8

−0.2 8.489× 10−8

−0.45 2.237× 10−7

1 1.337× 10−8

1
2 1.440× 10−8

0 5 0.0125 1.0× 10−3 3.124× 10−8

−0.2 8.081× 10−8

−0.45 2.211× 10−7

1 1.257× 10−8

1
2 1.354× 10−8

0 10 0.0250 8.0× 10−4 2.937× 10−8

−0.2 7.597× 10−8

−0.45 2.079× 10−7

1 1.111× 10−8

1
2 1.371× 10−8

0 20 0.0500 4.6× 10−4 2.289× 10−8

−0.2 6.715× 10−8

−0.45 1.838× 10−7

1 8.683× 10−9

1
2 9.353× 10−9

0 40 0.100 2.0× 10−4 1.021× 10−8

−0.2 3.624× 10−8

−0.45 9.551× 10−8

1 5.997× 10−9

1
2 6.460× 10−9

0 70 0.175 1.0× 10−4 1.401× 10−8

−0.2 3.624× 10−8

−0.45 9.551× 10−8

1 4.142× 10−9

1
2 4.461× 10−9

0 100 0.250 4.3× 10−5 1.475× 10−8

−0.2 2.503× 10−8

−0.45 6.597× 10−8
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Table 5
Maximum pointwise error ofu − uMN for N = M = 16,24,32

M = N � Error

1 6.773× 10−2

1
2 7.758× 10−2

16 0 9.616× 10−2

−0.2 1.515× 10−1

−0.45 1.809× 10−1

1 9.590× 10−6

1
2 1.066× 10−5

24 0 1.495× 10−5

−0.2 1.737× 10−5

−0.45 2.195× 10−5

1 2.356× 10−10

1
2 5.187× 10−10

32 0 7.891× 10−10

−0.2 2.561× 10−9

−0.45 9.657× 10−9

This problem has the analytical solution

u(x, y) = sin(4�x) sin(4�y)

=
∞∑
i=0

∞∑
j=0

aijC
(	)
i (x)C

(	)
i (y).

The maximum pointwise error of the ultraspherical approximation for various choices of�,M = N is
illustrated inTable 5.

Example 3. Consider the problem

�2u
�x2

+ �2u
�y2

= 0,

subject to the boundary conditions

u(x,±1) = cos
(�x

2

)
, u(±1, y) = 0.

This problem is symmetric about the axes of coordinates, and its analytical solution is given by

u(x, y) =
cos

(�x

2

)
cosh

(�y

2

)
cosh

(�

2

) .
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Table 6
Maximum pointwise error ofu − uMN for N = M = 4,8,12,16

M = N � Error

1 9.383× 10−4

1
2 1.266× 10−3

4 0 1.406× 10−3

−0.2 3.112× 10−3

−0.45 4.343× 10−3

1 8.911× 10−8

1
2 1.298× 10−7

8 0 1.811× 10−7

−0.2 2.398× 10−7

−0.45 9.165× 10−7

1 1.283× 10−12

1
2 1.985× 10−12

12 0 2.739× 10−12

−0.2 3.432× 10−12

−0.45 7.084× 10−12

1 8.326× 10−16

1
2 6.106× 10−15

16 0 9.015× 10−14

−0.2 2.545× 10−13

−0.45 1.509× 10−12

The maximum pointwise error of the ultraspherical approximation for various choices of�,M = N is
illustrated inTable 6.

From the numerical results presented inTables 1–6, we see that the results corresponding to the value
of the parameter� = 1, are better than any the others. From this we conclude that the expansion based
on Chebyshev polynomials of the first kind (� = 0) is not always better than other ultraspherical series.
This conclusion has been ascertained in[22].
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