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Let a > b > 0 and Ba \ Bb = {x = (x1, x2) ∈ R2: b < |x| < a}, and
assume that f is a conformal map from Ba \ Bb into R

n , with
|∇ f |2 = 2e2u , then (e1, e2) with e1 = e−u ∂ f

∂r , and e2 = r−1e−u ∂ f
∂θ

is a moving frame on f (Ba \ Bb) and it satisfies the following
equation

d � 〈de1, e2〉 = 0,

where � is the Hodge star operator on R2 with respect to the
standard metric.
We will study the Dirichlet energy of this frame and give some
applications.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a smooth bounded domain in R2 and f be a W 2,2 map from Ω to Rn , and (e1, e2) ∈
W 1,2(Ω,Rn ×Rn) be a positively oriented basis of f . We define

K(e1, e2) := ∂e1

∂x1

∂e2

∂x2
− ∂e1

∂x2

∂e2

∂x1
:= ∇e1∇⊥e2.

It is easy to check that K(e1, e2) is invariant under the group action U (2), that is for any

e′
1 = e1 cos θ + e2 sin θ, e′

2 = −e1 sin θ + e2 cos θ,

where θ ∈ W 1,2(Ω, R), we have
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K
(
e′

1, e′
2

) = K(e1, e2), (1.1)

see Appendix A for a proof. Hence we can write K(X f ) := K(e1, e2), where X f is the Gauss map of
the surface f (Ω) defined from f (Ω) to the Grassmannian G(2,n). Moreover, we have

K f e2u = K(X f ) = ∇e1∇⊥e2,

where K f is the Gauss curvature of the immersed surface f (Ω) and |∇ f | = 2e2u (see Appendix A for
a proof).

Since div∇⊥e1 = 0, and rot ∇e2 = 0, K(X f ) has compensation compactness. Furthermore, Wente’s
type inequality can be applied here.

Recall Wente’s type inequality, which states that if a,b ∈ W 1,2(Ω) and u ∈ W 1,2
0 (Ω) solves the

equation

−�u = ∇a∇⊥b in Ω,

then u is continuous and we have

‖u‖L∞(Ω) + ‖∇u‖L2(Ω) � C(Ω)‖∇a‖L2(Ω)‖∇b‖L2(Ω), (1.2)

see [1,2,12].
It is easy to see that C(Ω) is invariant under translations and dilations. F. Bethuel and

J.-M. Ghidaglia in [3,4] showed that there exists a constant C1 which does not depend on Ω such
that (1.2) holds true:

‖u‖L∞(Ω) + ‖∇u‖L2(Ω) � C1‖∇a‖L2(Ω)‖∇b‖L2(Ω).

We denote by C∞(Ω) the best constant involving the L∞ norm and by C2(Ω) the best constant
involving the L2 norm. Then we have

‖u‖L∞(Ω) � C∞(Ω)‖∇a‖L2(Ω)‖∇b‖L2(Ω), (1.3)

‖∇u‖L2(Ω) � C2(Ω)‖∇a‖L2(Ω)‖∇b‖L2(Ω). (1.4)

It is proved in [1] that C∞(Ω) � 1
2π , and when Ω is simply connected, C∞(Ω) = 1

2π . For the

general Ω , it is proved by Topping [11] that C∞(Ω) = 1
2π . It is proved by Ge in [5] that C2(Ω) =√

3
64π .

Let B ⊆ R2 be the unit disk centered at the origin, then Li, Luo and Tang proved the following
theorem by using the inequality (1.3):

Theorem A. (See [9].) Let ϕ ∈ W 1,2(B, G(2,n)) with∫
B

∣∣K(ϕ)
∣∣dσ � γ < 2π

(see Appendix A for information about K(ϕ)), then there exists a map (e1, e2) ∈ W 1,2(B,Rn ×Rn) such that
for almost every z ∈ B, (e1(z), e2(z)) is a positively oriented basis of ϕ(z). Furthermore, we have∥∥d(e1, e2)

∥∥
L2(B)

� C(γ )‖∇ϕ‖L2(B),

where C(γ ) is a constant depending on γ .
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Note that K(ϕ) � 1
2 |∇ϕ|2, see (A.2). We have the following direct corollary:

Theorem B. (See [9].) Let ϕ ∈ W 1,2(B, G(2,n)) with

∫
B

|∇ϕ|2 dσ � γ < 4π,

then there exists a map (e1, e2) ∈ W 1,2(B,Rn × Rn) such that for almost every z ∈ B, (e1(z), e2(z)) is a
positively oriented basis of ϕ(z). Furthermore, we have

∥∥d(e1, e2)
∥∥

L2(B)
� C(γ )‖∇ϕ‖L2(B),

where C(γ ) is a constant depending on γ .

Remark 1.1. (1) The above theorem improves a theorem of Hélein [6, Chapter 5] by changing the
constant from 8π

3 to 4π (the same result also is proved in [8] by using a difficult result of [10]). The
difference between these results is that in Hélein’s original proof he used Wente’s inequality (1.4) of
L2 norm, whereas we use Wente’s inequality (1.3) of L∞ norm.

(2) The constant 4π is sharp for n > 3 (see [8]).

Assume that f : B → Rn is a conformal map and f ∈ C∞(B), and X f : f (B) → G(2,n) is the Gauss
map. Let ϕ = X f ◦ f ∈ W 1,2(B, G(2,n)), then we have (see (A.3), (A.4) in Appendix A):

∫
B

|K f |dμ f =
∫
B

∣∣K(ϕ)
∣∣dσ ,

∫
B

|∇ϕ|2 dx =
∫

f (B)

|∇g f X f |2 dμ f =
∫
B

|A f |2 dμ f ,

where ∇g f is the gradient with respect to g f , μ f is the area measure on f (B), and A f is the second

fundamental form of f (B). Hence for such a conformal immersion f with the L1 norm of the Gauss
curvature bounded by 2π , there exists a moving frame on it whose Dirichlet energy is bounded by
the L2 norm of the second fundamental form. Hélein [6, Chapter 5] used this moving frame to derive
the weak compactness of immersed conformal surfaces from B into Rn . Using his argument, we have

Theorem C. (See [9].) Let fk ∈ C∞(B̄,Rn) be a sequence of conformal immersions with

sup
k

∫
B

|K fk |dμ fk � γ < 2π, sup
k

∫
B

|A fk |2 dμ fk < ∞,

where dμ fk is the volume form deduced from the metric g fk . Assume that fk converges to f0 weakly in W 1,2 ,
then f0 is either a point or a conformal immersion.

In this paper, we are interested in generalizing these above results to immersed conformal surfaces
from Ω into Rn when Ω is not simply connected. We will consider the easiest case, that is when Ω

is an annuli. In the following we will let a > b > 0, and Ba \ Bb = {x ∈ R2: b < |x| < a}. We have
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Theorem 1.2. For every conformal map f : Ba \ Bb → Rn satisfying∥∥K(X f )
∥∥

L1(Ba\Bb)
� γ < 2π,

there exists a map b = (e1, e2) in W 1,2(Ba \ Bb,R
n × Rn), such that for almost every z ∈ Ba \ Bb, (e1(z), e2(z))

is a positively oriented basis of ϕ(z) and ‖d(e1, e2)‖L2(Ba\Bb) is bounded.
Furthermore, if

β

1 −
√

γ
2π

< 1, (1.5)

where ∫
Ba\Bb

∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

dx = β2(‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

)
,

then we have that

‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

� C

(
β,γ ,

a

b

)
‖A f ‖2

L2(Ba\Bb)
,

where C(β,γ , a
b ) is a constant depending on β , γ and a

b .

As a direct corollary, we have

Theorem 1.3. For every conformal map f : Ba \ Bb → Rn satisfying

‖A f ‖2
L2(Ba\Bb)

� γ < 4π,

where A f is the second fundamental form of f , there exists a map b = (e1, e2) in W 1,2(Ba \ Bb,R
n × Rn), such

that for almost every z ∈ Ba \ Bb, (e1(z), e2(z)) is a positively oriented basis of f (z) and ‖d(e1, e2)‖L2(Ba\Bb)

is bounded.
Furthermore, if

β

1 −
√

γ
2π

< 1,

where ∫
Ba\Bb

∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

dx = β2(‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

)
,

then we have that

‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

� C

(
β,γ ,

a

b

)
‖A f ‖2

L2(Ba\Bb)
,

where C(β,γ , a
b ) is a constant depending on β , γ and a

b .
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Remark 1.4. We can see that in the proof of the above two theorems these estimates hold true for
any moving frame (e1, e2) satisfying⎧⎨⎩

d � 〈de1, e2〉 = 0 in Ba \ Bb,

〈de1, e2〉
(

∂

∂ν

)
= 0 on ∂(Ba \ Bb),

where � is the Hodge star operator on R2 and ∂
∂ν is the outward normal vector on the boundaries. In

the following we will define such a moving frame to be a Coulomb frame.

It is nature to ask the following question:

Question. On which kind of conformal parametric surfaces from Ba \ Bb to Rn , there exists a moving
frame (e1, e2) on it and some β ∈ [0,1), such that

∫
Ba\Bb

∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

dx = β2(‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

)
?

Definition 1.5. Let Ω be a domain in R2 and f : Ω → Rn be a conformal immersion, and let (e1, e2) be a
moving frame on f (Ω), then we call (e1, e2) to be a Coulomb frame of f (Ω) if⎧⎨⎩

d � 〈de1, e2〉 = 0 in Ω,

〈de1, e2〉
(

∂

∂ν

)
= 0 on ∂Ω.

If we only have

d � 〈de1, e2〉 = 0 in Ω,

then (e1, e2) is called a semi-Coulomb frame.

We have

Lemma 1.6. Let f : Ba \ Bb → Rn be a conformal immersion, with |∇ f |2 = 2e2u , and let e1 = e−u ∂ f
∂r and

e2 = r−1e−u ∂ f
∂θ

, then (e1, e2) is a semi-Coulomb frame on f (Ba \ Bb), and it is a Coulomb frame if and only if
u are constants on the boundaries. We call (e1, e2) to be the canonical semi-Coulomb frame of f (Ba \ Bb).

The following theorem shows a relation between the canonical semi-Coulomb frame and the con-
formal factor of a conformal minimal immersion:

Theorem 1.7. Let f : Ba \ Bb → Rn be a conformal minimal immersion, that is, f (Ba \ Bb) is a conformal
minimal surface in Rn, then the canonical semi-Coulomb frame of f (Ba \ Bb), (e1, e2) satisfies that

∫
Ba\Bb

∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

dx = 1

2

∫
Ba\Bb

|∇e1|2 + |∇e2|2 dx,

if and only if
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∫
Ba\Bb

(
1

r
+ ∂u

∂r

)2

dx =
∫

Ba\Bb

r−2
(

∂u

∂θ

)2

dx,

where |∇ f |2 = 2e2u .

As a direct corollary we have

Corollary 1.8. Let f be a conformal minimal immersion with |∇ f |2 = 2e2u . Assume that u is radially sym-
metric and (e1, e2) is the canonical semi-Coulomb frame of f with

∫
Ba\Bb

∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

dx = 1

2

∫
Ba\Bb

|∇e1|2 + |∇e2|2 dx,

then we can get

u(x) = − log r + c,

where r = |x| and c is a constant. In addition we can deduce that A = 0 and e1 , e2 are constant vectors.

Remark 1.9. (1) Let f be defined on Ba \ Bb as f (r, θ) = ±ec(log r, θ,0, . . . ,0), where c is a constant,
then f is a conformal immersion into Rn with u(x) = − log r + c. It is easy to see that the canonical
semi-Coulomb frame of f (Ba \ Bb) is ((1,0)(0,1)) and the second fundamental form of f (Ba \ Bb) is
zero.

(2) Assume that f is a conformal immersion from Ba \ Bb to Rn , with |∇ f |2 = 2e2u , and u is
radially symmetric. Let (e1, e2) be the canonical semi-Coulomb frame of f (Ba \ Bb), then if e1 and e2
are constant vectors, we have

∂ f

∂r
= eu(a,b),

∂ f

∂θ
= reu(c,d),

where a, b, c, d are constants with a2 + b2 = c2 + d2 = 1, ac + bd = 0. Thus ∂2 f
∂r∂θ

= ∂2 f
∂θ∂r implies that

ur = − 1
r , and so u(r) = − log r + c for some constant c.

As a corollary of the above results, we have the following theorem, which partially answers the
above question:

Theorem 1.10. Let f : Ba \ Bb → Rn be a conformal minimal immersion, with |∇ f |2 = 2e2u and

∫
Ba\Bb

(
1

r
+ ∂u

∂r

)2

dx =
∫

Ba\Bb

r−2
(

∂u

∂θ

)2

dx, (1.6)

u = ca on ∂ Ba, u = cb on ∂ Bb, (1.7)∫
Ba\Bb

|K f |dμ f � γ < (3 − 2
√

2)π, (1.8)

where ca and cb are constants.
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Assume that (e1, e2) is the canonical semi-Coulomb frame of f (Ba \ Bb), then we have∫
Ba\Bb

|∇e1|2 + |∇e2|2 dx � C

(
γ ,

a

b

) ∫
Ba\Bb

|A f |2 dμ f , (1.9)

where C(γ , a
b ) is a constant depending on γ and a

b .

Remark 1.11. The properties of Coulomb frames on conformal surface f (Ω) have big difference
between the case when Ω is simply connected and the case when Ω is not simply connected.
Recall that if f is a conformal immersion from the unit disk B ⊆ R2 into Rn , then the energy
of a Coulomb frame on it can be controlled by the L2 norm of the second fundamental form of
f (B), if the L2 norm of the second fundamental form of f (B) is below some constant [6,9]. But for
f : Ba \ Bb → Rn with f (x, y) = (x, y,0, . . . ,0), the second fundamental form of f (Ba \ Bb) is zero,
and ((cos θ, sin θ), (− sin θ, cos θ)) is a Coulomb frame on f (Ba \ Bb) with nonzero energy.

Now we will give an application of the above theorem.

Theorem 1.12. Let { fm ∈ C∞(Ba \ Bb)}m�1 be a sequence of minimal conformal immersions from Ba \ Bb
into Rn with |∇ fm|2 = 2e2um , and

∫
Ba\Bb

(
1

r
+ ∂um

∂r

)2

dx =
∫

Ba\Bb

r−2
(

∂um

∂θ

)2

dx, (1.10)

um = cma on ∂ Ba, um = cmb on ∂ Bb, (1.11)

sup
m

∫
Ba\Bb

|K fm |dμm < (3 − 2
√

2)π, sup
m

∫
Ba\Bb

|A fm |2 dμm < ∞, (1.12)

where cma and cmb are constants, with supm{|cma| + |cmb|} < ∞.
Assume that fm converges weakly to f0 in W 1,2 , then f0 is a minimal conformal immersion with bounded

conformal factor. Furthermore the metric induced by f0 is continuous.

Remark 1.13. The minimal property will be kept under the weak convergence by the definition, if
the limit immersion is conformal. Hence the difficult and non-obvious part is to prove that the limit
immersion is conformal, and has bounded conformal factor.

Note that when the domain is a disk, the weak limit map may be a single point, that is there may
be a collapsing in the convergence process. But when the domain is an annulus this cannot happen.

This paper is organized as follows: In Section 2 results are proved. In Appendix A we will give
some basic computations which have been used in this paper and in Appendix B we will give an
alternative proof about that f0 is conformal in Theorem 1.12 by using a strong converge theorem of
p-harmonic maps due to Hardt, Lin and Mou [7].

Notations. ∂r = ∂
∂r , ∂θ = ∂

∂θ
, fr = ∂ f

∂r , fθ = ∂ f
∂θ

, ∂rr = . . . .

2. Proof of the results

Proof of Theorem 1.2. Let (e1, e2) ∈ W 1,2(Ba \ Bb,R
n ×Rn) be a positively oriented basis of f and X f

be the Gauss map of f . Let

�= {
(X f , e1, e2) ∈ G(2,n) ×R

n ×R
n

∣∣ (e1, e2) is a positively oriented orthonormal basis of X f
}
.
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Then � is a fibre bundle over G(2,n) with fibre S1. Since f is conformal, there exists a section (ẽ1, ẽ2)

of X∗
f �.

We consider for each θ ∈ W 1,2(Ba \ Bb,R) the frame (e1, e2) obtained by

(e1, e2) = (ẽ1, ẽ2)

(
cos θ − sin θ

sin θ cos θ

)
.

Actually, we will minimize over θ ∈ W 1,2(Ba \ Bb,R) the functional

F (θ) = 1

2

∫
Ba\Bb

(|∇e1|2 + |∇e2|2
)

dσ (2.1)

=
∫

Ba\Bb

∣∣ω1
2

∣∣2
dσ , (2.2)

where w1
2 = 〈de1, e2〉. By the arguments in [6], the minimum of F is attained, and the minimizer

(e1, e2) satisfies ⎧⎪⎨⎪⎩
d
(
�ω1

2

) = 0 in Ba \ Bb,

ω1
2

(
∂

∂ν

)
= 0 on ∂(Ba \ Bb),

where � is the Hodge star operator and ∂
∂ν is the outward normal vector on the boundary. Then there

exists some v ∈ W 1,2(Ba \ Bb,R) such that

dv = �ω1
2 − α dθ in Ba \ Bb, (2.3)

where α = 1
2π

∫ 2π
0 �ω1

2 is a constant. It is easy to check that ∂v
∂θ

= dv( ∂
∂θ

) = −α on ∂(Ba \ Bb), and
hence we have v|∂ Ba = ca − αθ , and v|∂ Bb = cb − αθ , where ca = v(a,0) and cb = v(b,0). A direct
calculation yields

−�v = K(e1, e2). (2.4)

Decompose v to be v = v1 + v2 where{−�v1 = K(e1, e2) in Ba \ Bb,

v1 = 0 on ∂(Ba \ Bb),

and ⎧⎨⎩
�v2 = 0 in Ba \ Bb,

v2 = ca − αθ on ∂ Ba,

v2 = cb − αθ on ∂ Bb.

To estimate v1, we decompose v1 = Σn
k=1 vk

1 where vk
1 is the solution of{

−�vk
1 = K(ek

1, ek
2) in Ba \ Bb,

vk = 0 on ∂(Ba \ Bb).
1
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Applying Wente’s inequality, we have

∥∥vk
1

∥∥
L∞(Ba\Bb)

� 1

2π

∥∥∇ek
1

∥∥
L2(Ba\Bb)

∥∥∇ek
2

∥∥
L2(Ba\Bb)

,

which obviously implies that

‖v1‖L∞(Ba\Bb) � 1

4π

(‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

)
.

A simple calculation by integral by parts implies that∫
Ba\Bb

|∇v1|2 dσ =
∫

Ba\Bb

v1K(e1, e2)dσ

� ‖v1‖L∞(Ba\Bb)

∫
Ba\Bb

∣∣K(e1, e2)
∣∣dσ

� γ

4π

(‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

)
.

For v2, we have

v2 = ca − cb

log a
b

log |x| + cb log a − ca log b

log a
b

− αθ.

Noting that by calculations in Appendix A (see (A.1)) we have

‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

= 2‖dv + α dθ‖2
L2(Ba\Bb)

+ ‖∇ X f ‖2
L2(Ba\Bb)

.

We have

‖dv + α dθ‖L2(Ba\Bb) = ‖dv1 + dv2 + α dθ‖L2(Ba\Bb)

� ‖dv1‖L2(Ba\Bb) + ‖dv2 + α dθ‖L2(Ba\Bb)

�
(

γ

4π

) 1
2 (‖∇e1‖2

L2(Ba\Bb)
+ ‖∇e2‖2

L2(Ba\Bb)

) 1
2 + (2π)

1
2
|ca − cb|
(log a

b )
1
2

.

Thus we obtain(
1 −

(
γ

2π

) 1
2
)(‖∇e1‖2

L2(Ba\Bb)
+ ‖∇e2‖2

L2(Ba\Bb)

) 1
2 � (4π)

1
2
|ca − cb|
(log a

b )
1
2

+ ‖∇ X f ‖L2(Ba\Bb). (2.5)

Without loss of generality, we assume that

a∫
b

∣∣∣∣∂e2

∂θ

∣∣∣∣2

(r,0) +
∣∣∣∣∂e1

∂θ

∣∣∣∣2

(r,0)dr �
a∫

b

∣∣∣∣∂e2

∂θ

∣∣∣∣2

(r, θ) +
∣∣∣∣∂e1

∂θ

∣∣∣∣2

(r, θ)dr,

for 0 � θ < 2π .
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To estimate the number |ca − cb|, we note that

|ca − cb| =
∣∣∣∣∣

a∫
b

∂v

∂r
(r,0)dr

∣∣∣∣∣ �
a∫

b

∣∣∣∣〈e1
∂e2

∂θ

〉∣∣∣∣(r,0)r−1 dr

�
(

log a
b

2

) 1
2
( a∫

b

(∣∣∣∣〈e1
∂e2

∂θ

〉∣∣∣∣2

+
∣∣∣∣〈e2

∂e1

∂θ

〉∣∣∣∣2)
r−1 dr

) 1
2

�
(

log a
b

2

) 1
2
( a∫

b

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

r dr

) 1
2

�
(

log a
b

4π

) 1
2
( ∫

Ba\Bb

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

dx

) 1
2

� β

(
log a

b

4π

) 1
2 (‖∇e1‖2

L2(Ba\Bb)
+ ‖∇e2‖2

L2(Ba\Bb)

) 1
2

� β

1 − (
γ

2π )
1
2

|ca − cb| + C

(
γ ,

a

b

)
‖∇ X f ‖L2(Ba\Bb),

where we have used the fact that �dθ = r−1 dr and that

∫
Ba\Bb

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

dx = β2(‖∇e1‖2
L2(Ba\Bb)

+ ‖∇e2‖2
L2(Ba\Bb)

)
.

Hence if

β

1 −
√

γ
2π

< 1,

|ca − cb| is controlled by C(β,γ , a
b )‖∇ X f ‖L2(Ba\Bb) , and hence the energy of the Coulomb frame is

controlled by C(β,γ , a
b )‖∇ X f ‖L2(Ba\Bb) . Noting that ‖∇ X f ‖L2(Ba\Bb) = ‖A f ‖L2(Ba\Bb) , we complete the

proof of Theorem 1.2. �
Proof of Lemma 1.6. Note that e1 = e−u fr , and e2 = r−1e−u fθ , then we have

〈de1, e2〉 =
〈

frr − frur

eu
,

fθ
reu

〉
dr +

〈
frθ − fruθ

eu
,

fθ
reu

〉
dθ

=
〈

frr

eu
,

fθ
reu

〉
dr +

〈
frθ

eu
,

fθ
reu

〉
dθ

= −uθ

r
dr + (1 + rur)dθ,

hence



3276 Y. Luo / J. Differential Equations 253 (2012) 3266–3285
�〈de1, e2〉 = �

(−uθ

r
dr + (1 + rur)dθ

)
= −uθ

r
(−r dθ) + (1 + rur)r

−1 dr

= uθ dθ + (
r−1 + ur

)
dr,

finally we obtain

d � 〈de1, e2〉 = uθr dr ∧ dθ + urθ dθ ∧ dr = 0,

which implies that (e1, e2) is a semi-Coulomb frame on f (Ba \ Bb). In addition, 〈de1, e2〉( ∂
∂ν ) = 0 if

and only if �〈de1, e2〉( ∂
∂θ

) = 0. Note that �〈de1, e2〉( ∂
∂θ

) = uθ , so 〈de1, e2〉( ∂
∂ν ) = 0 if and only if u are

constants on the boundaries. �
Proof of Theorem 1.7. Recall that e1 = e−u ∂ f

∂r and e2 = r−1e−u ∂ f
∂θ

, then we have

∂e1

∂θ
= frθ − fruθ

eu
,

∂e2

∂θ
= fθθ − fθ uθ

reu
,

hence we can obtain ∣∣∣∣∂e1

∂θ

∣∣∣∣2

= e−2u[
f 2
rθ − 2〈 frθ , fr〉uθ + f 2

r u2
θ

]
= e−2u[

f 2
rθ − 2e2uu2

θ + e2uu2
θ

]
= e−2u f 2

rθ − u2
θ ,

and ∣∣∣∣∂e2

∂θ

∣∣∣∣2

= r−2e−2u[
f 2
θθ − 2〈 fθθ , fθ 〉uθ + f 2

θ u2
θ

]
= r−2e−2u

[
f 2
θθ − ∂r2e2u

∂θ
uθ + f 2

θ u2
θ

]
= r−2e−2u[

f 2
θθ − 2r2e2uu2

θ + r2e2uu2
θ

]
= r−2e−2u f 2

θθ − u2
θ .

Similarly, we can obtain

∂e1

∂r
= frr − frur

eu
,

∂e2

∂r
= frθ − fθ (

1
r + ur)

reu
,

and
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∣∣∣∣∂e1

∂r

∣∣∣∣2

= e−2u f 2
rr − u2

r ,

∣∣∣∣∂e2

∂r

∣∣∣∣2

= r−2e−2u f 2
rθ −

(
1

r
+ ur

)2

.

Summarizing the above computations and noting that |dθ |2 = r−2, we have

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

= r−2e−2u f 2
rθ + r−4e−2u f 2

θθ − 2r−2u2
θ , (2.6)

∣∣∣∣∂e2

∂r
dr

∣∣∣∣2

+
∣∣∣∣∂e1

∂r
dr

∣∣∣∣2

= e−2u f 2
rr + r−2e−2u f 2

rθ − u2
r −

(
1

r
+ ur

)2

. (2.7)

On the other hand, by the definition of the second fundamental form, we have

Arr = frr − e−2u〈 frr, fr〉 fr − r−2e−2u〈 frr, fθ 〉 fθ ,

Aθθ = fθθ − e−2u〈 fθθ , fr〉 fr − r−2e−2u〈 fθθ , fθ 〉 fθ ,

therefore we have

A2
rr = f 2

rr − 2〈 frr, fr〉2e−2u − 2〈 frr, fθ 〉2r−2e−2u + 〈 frr, fr〉2e−2u + 〈 frr, fθ 〉2r−2e−2u

= f 2
rr − 〈 frr, fr〉2e−2u − 〈 frr, fθ 〉2r−2e−2u

= f 2
rr − u2

r e2u − u2
θ r−2e2u,

and similar computations implies that

A2
θθ = f 2

θθ − r4e2u
(

1

r
+ ur

)2

− r2e2uu2
θ .

Note that f is minimal, so

Trace(A) = grr Arr + 2grθ Arθ + gθθ Aθθ = grr Arr + gθθ Aθθ = 0,

where grr = e−2u , gθθ = r−2e−2u hence

Arr = −r−2 Aθθ ,

which implies that

A2
rr = r−4 A2

θθ .

Thus we obtain

f 2
rr − u2

r e2u = r−4 f 2
θθ − e2u

(
1

r
+ ur

)2

. (2.8)
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Note that ∫
Ba\Bb

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

dx = 1

2

∫
Ba\Bb

|∇e1|2 + |∇e2|2 dx,

if and only if

∫
Ba\Bb

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

dx =
∫

Ba\Bb

∣∣∣∣∂e2

∂r
dr

∣∣∣∣2

+
∣∣∣∣∂e1

∂r
dr

∣∣∣∣2

dx,

thus we can get by combining (2.6)–(2.8) that

∫
Ba\Bb

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

dx = 1

2

∫
Ba\Bb

|∇e1|2 + |∇e2|2 dx,

if and only if

∫
Ba\Bb

(
1

r
+ ∂u

∂r

)2

dx =
∫

Ba\Bb

r−2
(

∂u

∂θ

)2

dx. �

Proof of Corollary 1.8. From Theorem 1.7 we know that

∫
Ba\Bb

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

dx = 1

2

∫
Ba\Bb

|∇e1|2 + |∇e2|2 dx,

implies

∫
Ba\Bb

(
1

r
+ ∂u

∂r

)2

dx =
∫

Ba\Bb

r−2
(

∂u

∂θ

)2

dx,

hence if u is radially symmetric we must have that

∫
Ba\Bb

(
1

r
+ ∂u

∂r

)2

dx = 0,

which implies that

1

r
+ ∂u

∂r
= 0,

and so there is a constant c such that

u(r) = − log r + c.



Y. Luo / J. Differential Equations 253 (2012) 3266–3285 3279
Hence we have �u = 0, which implies that the Gauss curvature K = 0, and so A = 0. By Theorem 1.10
(note that u are constants on boundaries and hence (e1, e2) is a Coulomb frame), we know that
(e1, e2) has zero energy and so e1 and e2 are constant vectors. �
Proof of Theorem 1.10. We know that (e1, e2) is a Coulomb frame and so when (1.6) holds we have
that

∫
Ba\Bb

∣∣∣∣∂e2

∂θ
dθ

∣∣∣∣2

+
∣∣∣∣∂e1

∂θ
dθ

∣∣∣∣2

dx = 1

2

∫
Ba\Bb

|∇e1|2 + |∇e2|2 dx,

by Theorem 1.7. Then the constant β in Theorem 1.2 is
√

2
2 and so when

∫
Ba\Bb

|K f |du f � γ < (3 − 2
√

2 )π,

we have (1.5) holds, and then we get the desired inequality (1.9) from Theorem 1.2. �
Proof of Theorem 1.12. Let (em1, em2) be the canonical semi-Coulomb frame on fm(Ba \ Bb), then by
Theorem 1.10 we have the following inequality∫

Ba\Bb

|∇em1|2 + |∇em2|2 dx � C

∫
Ba\Bb

|Am|2 dμ fm ,

where C is independent of m.
Note that we have

−�um = Kme2um = K(em1, em2) in Ba \ Bb,

where Km is the Gauss curvature.
Let vm solves the following equation

{−�vm = K(em1, em2) in Ba \ Bb,

vm = 0 on ∂(Ba \ Bb).

Let emi = (e1
mi, . . . , en

mi), i = 1,2, and vm = v1
m + · · · + vn

m , such that for each 1 � k � n,

{
−�vk

m = K
(
ek

m1, ek
m2

)
in Ba \ Bb,

vk
m = 0 on ∂(Ba \ Bb),

then by Wente’s inequality we obtain

∥∥vk
m

∥∥
L∞(Ba\Bb)

� 1

2π

∥∥∇ek
m1

∥∥
L2(Ba\Bb)

∥∥∇ek
m2

∥∥
L2(Ba\Bb)

,

hence
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‖vm‖L∞(Ba\Bb) �
∑

k

∥∥vk
m

∥∥
L∞(Ba\Bb)

�
∑

k

1

2π

∥∥∇ek
m1

∥∥
L2(Ba\Bb)

∥∥∇ek
m2

∥∥
L2(Ba\Bb)

� 1

2π
‖∇em1‖L2(Ba\Bb)‖∇em2‖L2(Ba\Bb),

where in the last inequality we have used Holder’s inequality.
By using the equation satisfied by vm and by integral by parts we have∫

Ba\Bb

−vm�vm =
∫

vm∇em1∇⊥em2 dx

� ‖vm‖L∞(Ba\Bb)‖∇em1‖L2(Ba\Bb)‖∇em2‖L2(Ba\Bb)

� 1

2π
‖∇em1‖2

L2(Ba\Bb)
‖∇em2‖2

L2(Ba\Bb)
.

That is

‖∇vm‖2
L2(Ba\Bb)

� 1

2π
‖∇em1‖2

L2(Ba\Bb)
‖∇em2‖2

L2(Ba\Bb)
.

On the other hand, ⎧⎨⎩
�(um − vm) = 0 in Ba \ Bb,

um − vm = cma on ∂ Ba,

um − vm = cmb on ∂ Bb,

thus we have

um − vm = cma − cmb

log a
b

log |x| + cmb log a − cma log b

log a
b

,

which implies that

‖∇um‖L2(Ba\Bb) + ‖um‖L∞(Ba\Bb) � C < ∞, (2.9)

for some constant C independent of m.
Then by using an argument given by [6, Chapter 5], we can get that f0 is a conformal immersion

with bounded conformal factor as the following: Because fm is conformal, there exists 0 � θm ∈ C∞ <

2π such that

dfm = eum
(
(cos θmem1 + sin θmem2)dx1 + (− sin θmem1 + cos θmem2)dx2

)
. (2.10)

In particular, projecting the equation d2 fm = 0 along em1 and em2 we obtain⎧⎪⎪⎨⎪⎪⎩
∂θm

∂x1
+ ∂um

∂x2
= ω1

m2

(
∂

∂x1

)
,

∂θm

∂x2
− ∂um

∂x1
= ω1

m2

(
∂

∂x2

)
,

where ω1
m2 = 〈dem2, em1〉.
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Note that these equations imply θm is bounded in W 1,2, hence we have that (we do not distinguish
a sequence and its subsequences)

(bm, θm, um) ⇀ (b, θ, u) weakly in W 1,2,

and so

(bm, θm, um) → (b, θ, u) in L2,

therefore we have

(bm, θm, um) → (b, θ, u) a.e. in Ba \ Bb,

where bm = (em1, em2), and b = (e1, e2).
By passing to the limit in (2.10) we get

df0 = eu(
(cos θe1 + sin θe2)dx1 + (− sin θe1 + cos θe2)dx2

)
, (2.11)

which implies that f0 is conformal, with bounded conformal factor eu .
Because u satisfies the following Wente’s type equation

−�u = ∇e1∇⊥e2 in Ba \ Bb,

hence u is continuous.
Note that

� fm = 0 in Ba \ Bb,

and

fm → f0 weakly in W 1,2(Ba \ Bb),

therefore we have that

� f0 = 0. (2.12)

On the other hand, because f0 is a conformal immersion with |∇ f0|2 = 2e2u , we have that

� f0 = e2u H f0 , (2.13)

where H f0 is the mean curvature vector of f0.
By comparing (2.12) with (2.13) we get that H f0 = 0, and so f0 is a minimal immersion. �
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Appendix A

In this appendix, we review briefly some basic facts of Grassmannian manifolds. The concept in
this appendix can be found in any textbook on the theory of Grassmannian manifolds.

Let

Λ2 = Λ2(
R

n) = {
aij vi ∧ v j: vi, v j ∈ R

n}.
Λ2 is a linear space of dimension n(n−1)

2 . If ek is a normal basis of Rn , then {ei ∧ e j: i < j} is a basis
of Λ2. The standard inner product of Λ2 is defined by:

〈v1 ∧ v2, w1 ∧ w2〉 := (v1 · w1)(v2 · w2) − (v1 · w2)(v2 · w1).

So, {ei ∧ e j} is a normal basis of Λ2.
Let P (Λ2) be the projective space getting from Λ2. Recall that there is a nature map π from the

unit sphere of Λ2 to P (Λ2) which is a covering map.
Let ψ to be the Plücker embedding from G(2,n) to P (Λ2), which endows G(2,n) a Riemannian

metric. Thus, given a b = (e1, e2) ∈ W 1,2, we think of ϕ(x) = e1 ∧ e2 as a map from Ω to the unit
sphere of Λ2 (also a map to Λ2), then the normal of ∂(e1∧e2)

∂x is just the normal of ∂e1
∂x ∧ e2 + e1 ∧ ∂e2

∂x
in Λ2. By a direct calculation, we get

∣∣∣∣∂(e1 ∧ e2)

∂x

∣∣∣∣2

=
∣∣∣∣∂e1

∂x
∧ e2 + e1 ∧ ∂e2

∂x

∣∣∣∣2

=
∣∣∣∣∂e1

∂x
∧ e2

∣∣∣∣2

+
∣∣∣∣e1 ∧ ∂e2

∂x

∣∣∣∣2

+ 2

〈
∂e1

∂x
∧ e2, e1 ∧ ∂e2

∂x

〉

=
∣∣∣∣∂e1

∂x

∣∣∣∣2

+
∣∣∣∣∂e2

∂x

∣∣∣∣2

− 2

∣∣∣∣e1
∂e2

∂x

∣∣∣∣2

.

So we have

|∇ϕ|2 = |∇b|2 − 2
∣∣〈de1, e2〉

∣∣2
. (A.1)

Now, we prove (1.1). Let (e′
1, e′

2) be another positively oriented norm basis of X . Then we have

e′
1 = λe1 + μe2, e′

2 = −μe1 + λe2,

where λ = (e′
1, e1) and μ = (e′

1, e2). We have

∂e′
1

∂xi
= ∂λ

∂xi
e1 + λ

∂e1

∂xi
+ ∂μ

∂xi
e2 + μ

∂e2

∂xi
,

∂e′
2

∂xi
= −∂μ

∂xi
e1 − μ

∂e1

∂xi
+ ∂λ

∂xi
e2 + λ

∂e2

∂xi
.
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We have

∂e′
1

∂x1

∂e′
2

∂x2
= − ∂λ

∂x1

∂μ

∂x2
+ λ

∂λ

∂x1
e1

∂e2

∂x2
− λμ

∂e1

∂x1

∂e1

∂x2
+ λ

∂λ

∂x2

∂e1

∂x1
e2 + λ2 ∂e1

∂x1

∂e2

∂x2

− μ
∂μ

∂x1
e2

∂e1

∂x2
+ ∂μ

∂x1

∂λ

∂x2
− μ

∂μ

∂x2

∂e2

∂x1
e1 − μ2 ∂e2

∂x1

∂e1

∂x2
+ μλ

∂e2

∂x1

∂e2

∂x2
,

∂e′
1

∂x2

∂e′
2

∂x1
= − ∂λ

∂x2

∂μ

∂x1
+ λ

∂λ

∂x2
e1

∂e2

∂x1
− λμ

∂e1

∂x2

∂e1

∂x1
+ λ

∂λ

∂x1

∂e1

∂x2
e2 + λ2 ∂e1

∂x2

∂e2

∂x1

− μ
∂μ

∂x2
e2

∂e1

∂x1
+ ∂μ

∂x2

∂λ

∂x1
− μ

∂μ

∂x1

∂e2

∂x2
e1 − μ2 ∂e2

∂x2

∂e1

∂x1
+ μλ

∂e2

∂x2

∂e2

∂x1
.

We have

∂e′
1

∂x1

∂e′
2

∂x2
− ∂e′

1

∂x2

∂e′
2

∂x1
= −2

(
∂λ

∂x1

∂μ

∂x2
− ∂λ

∂x2

∂μ

∂x1

)
+ 2

(
λ

∂λ

∂x1
+ μ

∂μ

∂x1

)
e1

∂e2

∂x2

+ 2

(
λ

∂λ

∂x2
+ μ

∂μ

∂x2

)
e1

∂e2

∂x1
+ (

λ2 + μ2)(∂e1

∂x1

∂e2

∂x2
− ∂e1

∂x2

∂e2

∂x1

)
.

Since λ2 + μ2 = 1, we have ∂λ

∂x1
∂μ
∂x2 − ∂λ

∂x2
∂μ
∂x1 = 0, and λ ∂λ

∂xi + μ∂μ
∂xi = 0, then we get (1.1).

We extend e1, e2 to a normal basis e3, . . . , en ∈ W 1,2. Such ei (i � 3) exists because ϕ is also a
W 1,2 map from B to G(2,n).

We set

dei = wk
ij dx j ⊗ ek + Bα

i j dx j ⊗ eα,

where i = 1,2 and α ∈ {3,4, . . . ,n}. Obviously, w1
1i = w2

2i = 0, w1
2i = −w2

1i = 〈 ∂e1
∂xi , e2〉, hence (A.1) is

equivalent to

|∇ϕ|2 =
∑
i j,α

∣∣Bα
i j

∣∣2
.

We have

K(ϕ) = (
wk

11ek + Bα
11nα

)(
wk

22ek + Bα
22nα

) − (
wk

12ek + Bα
12nα

)(
wk

21ek + Bα
21nα

)
=

∑
α

(
Bα

11 · Bα
22 − ∣∣Bα

12

∣∣2)
,

therefore we obtain

K(ϕ) � 1

2
|∇ϕ|2. (A.2)

Now, we consider the Gauss map of a conformal map f : Ω →Rn . Let u = 1
2 log(|∇ f |2/2) and denote

by X f the Gauss map induced by f .
X f can be expressed as

X f =
(

e−u ∂ f

∂x1

)
∧

(
e−u ∂ f

∂x2

)
,



3284 Y. Luo / J. Differential Equations 253 (2012) 3266–3285
where u = 1
2 log | ∂ f

∂x1 |2. We will calculate |∇ X f |2. Since

∂2 f

∂x1∂x1
· ∂ f

∂x1
= 1

2

∂

∂x1

∣∣∣∣ ∂ f

∂x1

∣∣∣∣2

= e2u ∂u

∂x1
,

∂2 f

∂x1∂x1
· ∂ f

∂x2
= − ∂ f

∂x1
· ∂2 f

∂x1∂x2
= −1

2

∂

∂x2

∣∣∣∣ ∂ f

∂x1

∣∣∣∣2

= −e2u ∂u

∂x2
,

and

∂2 f

∂x1∂x1
= A11 + ∂2 f

∂x1∂x1
· ∂ f

∂x1
e−2u ∂ f

∂x1
+ ∂2 f

∂x1
· ∂ f

∂x2
e−2u ∂ f

∂x2
,

we get

∂

∂x1

(
e−u ∂ f

∂x1

)
= e−u ∂2 f

∂x1∂x1
− e−u ∂u

∂x1

∂ f

∂x1
= e−u

(
A11 − ∂ f

∂x2

∂u

∂x2

)
.

In the same way, we get

∂

∂x2

(
e−u ∂ f

∂x1

)
= e−u

(
A12 + ∂ f

∂x1

∂u

∂x2

)
,

∂

∂x1

(
e−u ∂ f

∂x2

)
= e−u

(
A21 + ∂ f

∂x2

∂u

∂x1

)
,

∂

∂x2

(
e−u ∂ f

∂x2

)
= e−u

(
A22 − ∂ f

∂x1

∂u

∂x1

)
.

Then, we get

K(X f ) = e−2u(
A11 A22 − A2

12

) = K e2u (A.3)

and

|∇ X f |2 = e−2u
∑

|Aij|2, i.e. |∇g f X f |2 dμg f = |A|2 dμg f . (A.4)

Appendix B

In this part, we will give an alternative proof about that f0 is conformal in Theorem 1.12. We need
a special case of the following theorem proved by Hardt, Lin and Mou [7].

Theorem B.1. Let Ω be a smooth bounded domain in R2 , and suppose 1 < p < ∞ and for each i = 1,2, . . . ,
ui ∈ W 1,p(Ω) is a weak solution of

div
(|∇u|p−2∇u

) + f i = 0

with supi ‖ui‖W 1,p + supi ‖ f i‖L1 < ∞. If ui → u weakly in W 1,p , then ui → u strongly in W 1,q, whenever
1 < q < p.
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Note that fm is conformal, that is∣∣∣∣∂ fm

∂x1

∣∣∣∣2

=
∣∣∣∣∂ fm

∂x2

∣∣∣∣2

,
∂ fm

∂x1
· ∂ fm

∂x2
= 0,

and fm is minimal, that is

� fm = 0.

Thus by the above theorem we have that

fm → f0 strongly in W 1,p,

whenever 1 < p < 2, which implies that

∂ fm

∂x1
→ ∂ f0

∂x1
a.e., and

∂ fm

∂x2
→ ∂ f0

∂x2
a.e.

Therefore we obtain ∣∣∣∣∂ f0

∂x1

∣∣∣∣2

=
∣∣∣∣∂ f0

∂x2

∣∣∣∣2

,
∂ f0

∂x1
· ∂ f0

∂x2
= 0,

implying that f0 is conformal.
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