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or
is a moving frame on f(B, \ Bp) and it satisfies the following

equation

dx(dej,ez) =0,

where x is the Hodge star operator on R? with respect to the
standard metric.
We will study the Dirichlet energy of this frame and give some
applications.
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1. Introduction

Let £2 be a smooth bounded domain in R and f be a W22 map from £2 to R", and (eq, e2) €
W12(2,R" x R") be a positively oriented basis of f. We define

- — L
K(e1,e2) := ﬁﬁ — Wﬁ :=VeiV—es.

It is easy to check that fC(eq, e3) is invariant under the group action U(2), that is for any
e] =ejcosf + ey sing, e, = —eqsind + e, coso,

where 6 € W12(£2, R), we have
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K(e,e5) =K(eq, e2), (11)

see Appendix A for a proof. Hence we can write KC(Xy) := K(e1, e2), where Xy is the Gauss map of
the surface f(£2) defined from f(£2) to the Grassmannian G(2, n). Moreover, we have

Kpe? = K(Xy) = Ve V'tes,

where K is the Gauss curvature of the immersed surface f(£2) and |V f|= 2e2U (see Appendix A for
a proof).

Since divV-+e; =0, and rot Ve, =0, K(X¢) has compensation compactness. Furthermore, Wente's
type inequality can be applied here.

Recall Wente's type inequality, which states that if a,b € W12(£2) and u € Wg’z(Q) solves the
equation

—Au=Vavth ing,
then u is continuous and we have
lullie 2y + IVl 20y < C(2)[IVall2(o) VDIl 2 (12)
see [1,2,12].
It is easy to see that C(£2) is invariant under translations and dilations. F. Bethuel and

J.-M. Ghidaglia in [3,4] showed that there exists a constant C; which does not depend on £2 such
that (1.2) holds true:

lullze(2) + 1IVull 2y < C1llVall 2oy IVl 12(0)-

We denote by Co(£2) the best constant involving the L° norm and by C,(£2) the best constant
involving the L% norm. Then we have

lulle(2) € Coo($2)IVall2(o) VDl 2() (13)
IVull2o) < C2(82)IVall 2() VD 120y (14)
It is proved in [1] that Coo(£2) > % and when £2 is simply connected, Coo($2) = % For the

general £2, it is proved by Topping [11] that C(£2) = % It is proved by Ge in [5] that C2(£2) =
/3
64m -
Let B C R? be the unit disk centered at the origin, then Li, Luo and Tang proved the following
theorem by using the inequality (1.3):
Theorem A. (See [9].) Let ¢ € W1-2(B, G(2, n)) with
/ |K(p)|do <y <2m

B

(see Appendix A for information about K (¢)), then there exists a map (eq, e3) € W12(B, R" x R") such that
for almost every z € B, (e1(z), e2(2)) is a positively oriented basis of ¢(z). Furthermore, we have

”d(eLeZ)HLz(B) SCMIIVell 2y,

where C(y) is a constant depending on y .
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Note that C(p) < %|V(p|2, see (A.2). We have the following direct corollary:

Theorem B. (See [9].) Let ¢ € W-2(B, G(2,n)) with

/|V<p|2da <y <4m,
B

then there exists a map (eq,e3) € W12(B,R" x R™) such that for almost every z € B, (e1(z), e2(2)) is a
positively oriented basis of ¢(z). Furthermore, we have

”d(el ) ez) H LZ(B) < C(V)”V‘P“LZ(B),
where C(y) is a constant depending on y.

Remark 1.1. (1) The above theorem improves a theorem of Hélein [6, Chapter 5] by changing the
constant from ST” to 47 (the same result also is proved in [8] by using a difficult result of [10]). The
difference between these results is that in Hélein’s original proof he used Wente’s inequality (1.4) of
L? norm, whereas we use Wente's inequality (1.3) of L norm.

(2) The constant 4 is sharp for n > 3 (see [8]).

Assume that f: B — R" is a conformal map and f € C*®°(B), and Xr: f(B) = G(2,n) is the Gauss
map. Let ¢ =Xfo f € W12(B, G(2,n)), then we have (see (A.3), (A.4) in Appendix A):

/|Kf|duf=/}/<<<p>lda,
B

B

/|V<p|2dx= / |vgfxf|2duf=/|Af|2duf,
B f(B) B

where Vg, is the gradient with respect to g, uy is the area measure on f(B), and Ay is the second
fundamental form of f(B). Hence for such a conformal immersion f with the L! norm of the Gauss
curvature bounded by 2, there exists a moving frame on it whose Dirichlet energy is bounded by
the L? norm of the second fundamental form. Hélein [6, Chapter 5] used this moving frame to derive
the weak compactness of immersed conformal surfaces from B into R". Using his argument, we have

Theorem C. (See [9].) Let f, € C*°(B,R") be a sequence of conformal immersions with

Sl’_lp/|ka|d,ufk§)/ < 27, s?p/lAf,(lzdufk < 00,
k K
B B

where du s, is the volume form deduced from the metric g, . Assume that f} converges to fo weakly in wt2,
then fo is either a point or a conformal immersion.

In this paper, we are interested in generalizing these above results to immersed conformal surfaces
from £2 into R" when £2 is not simply connected. We will consider the easiest case, that is when £2
is an annuli. In the following we will let a > b > 0, and B, \ By = {x € R?: b < |x| < a}. We have
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Theorem 1.2. For every conformal map f : B4 \ B, — R" satisfying

”IC(Xf)HLl(Bﬂ\Bb) Sy <2m,

there existsamap b = (eq, e3) in W1-2(B, \ By, R™ x R™), such that for almost every z € By \ B, (e1(2), 2(2))
is a positively oriented basis of ¢ (z) and ||d(e1, e2) l2¢8,\By) is bounded.
Furthermore, if

<1, (1.5)
1—. /XL
2
where
36]
f —d@‘ ‘—de‘ dx:ﬁz(”vel||%2(3a\3b)+”VeZ”%Z(Bﬂ\Bb))v

Ba\Bp

then we have that

||V€] ”LZ(B \Bp) + ”veZHLZ(B \Bp) < (.B Y _> ”Af”LZ(B \Byp)’
where C(8, Y, §) is a constant depending on 8, y and §.
As a direct corollary, we have

Theorem 1.3. For every conformal map f : By \ B, — R" satisfying

2
||Af||L2(Ba\Bb) < V < 477:7

where Ay is the second fundamental form of f, there existsamap b = (eq, e2) in W12(B,\ By, R" x R"), such
that for almost every z € B, \ By, (e1(2), e2(2)) is a positively oriented basis of f(z) and ||d(e1, e2) 128\ By)
is bounded.

Furthermore, if

p <1,
Y
1=z
where
deq dey 2 2 2
/ %de‘ + _de‘ dX:ﬂ (||Vel||L2(Ba\Bb)+”VEZHLZ(BH\Bb))’

Ba\By

then we have that

”Ve]”Lz(B \Bp) + ”veZHLZ(B \Bp) \ (.3 Vv _>”Af||L2(B \Bp)’

where C(8, Y, §) is a constant depending on 8, y and 3.
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Remark 1.4. We can see that in the proof of the above two theorems these estimates hold true for
any moving frame (e, e2) satisfying

dx(de1,e2) =0 in B \ Bp,

(deq, Q)(i) =0 ond(Bg\ Bp),
av

where « is the Hodge star operator on R? and dlu is the outward normal vector on the boundaries. In
the following we will define such a moving frame to be a Coulomb frame.

It is nature to ask the following question:

Question. On which kind of conformal parametric surfaces from B, \ By to R", there exists a moving
frame (eq, e3) on it and some B € [0, 1), such that

/

Ba\Bp

deq
—de)’ ’—de)’ dx=B*(IVerll iz g, 5, T V2l 2(5,15,))?

Definition 1.5. Let 2 be a domain in R? and f : 2 — R™ be a conformal immersion, and let (e1, e2) be a
moving frame on f(§2), then we call (e1, e3) to be a Coulomb frame of f(£2) if

dx(de1,e) =0 in 2,
9

(deq, €2)<—> =0 onds.
av

If we only have

dx(dei,ex) =0 in$2,
then (eq, ey) is called a semi-Coulomb frame.
We have

Lemma 1.6. Let f : By \ B, — R" be a conformal immersion, with |V f|?> = 2e2¥, and let e = e*”% and
ey =r"le % then (e1, e2) is a semi-Coulomb frame on f(Bg \ Bp), and it is a Coulomb frame if and only if
u are constants on the boundaries. We call (e1, e3) to be the canonical semi-Coulomb frame of f (Bg \ Bp).

The following theorem shows a relation between the canonical semi-Coulomb frame and the con-
formal factor of a conformal minimal immersion:

Theorem 1.7. Let f : B, \ B, — R" be a conformal minimal immersion, that is, f (B4 \ Bp) is a conformal
minimal surface in R™, then the canonical semi-Coulomb frame of f(Bq \ Bp), (e1, e2) satisfies that
861

1
/ —d@‘ ‘—d@‘ XZE [ |Ve1|2+|Vez|2dx,
Bq\Bp Bq\Bp

if and only if
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2 2
1  odu au
/ -+ — cix:/r_2 — | dx,
r or a6
Ba\Bp Ba\Bp
where |V f|? = 2e%,
As a direct corollary we have

Corollary 1.8. Let f be a conformal minimal immersion with |V f|? = 2e%!. Assume that u is radially sym-
metric and (eq, e3) is the canonical semi-Coulomb frame of f with
2
1 2 2
—do| +|—db dx=5 |Ve1|” + |Vez |~ dx,

/ 00 00

Ba\Bp Ba\Bp

deq ’2 dey

then we can get

u(x) =—logr+c,
where r = |x| and c is a constant. In addition we can deduce that A = 0 and eq, e, are constant vectors.

Remark 1.9. (1) Let f be defined on B, \ By as f(r,0) = £e“(logr, 6,0, ...,0), where c is a constant,
then f is a conformal immersion into R" with u(x) = —logr + c. It is easy to see that the canonical
semi-Coulomb frame of f (B, \ Bp) is ((1,0)(0, 1)) and the second fundamental form of f (B4 \ Bp) is
zero.

(2) Assume that f is a conformal immersion from Bg \ B, to R", with |V f|?2 = 22!, and u is
radially symmetric. Let (e1, e;) be the canonical semi-Coulomb frame of f (B, \ Bp), then if e; and e;
are constant vectors, we have

% =e'(a, b), % =re'(c,d),

2 2
where a, b, ¢, d are constants with a® + b2 =c? +d* =1, ac + bd = 0. Thus =& = 2L implies that
U, = —%, and so u(r) = —logr + c for some constant c.

As a corollary of the above results, we have the following theorem, which partially answers the
above question:

Theorem 1.10. Let f : By \ B, — R" be a conformal minimal immersion, with |V f|? = 2e%* and

1 ou)? L ou\?
[ (5o [ ~(5)e

Ba\Bp Ba\Bp
u=cg onoBg, u=cp onaBy, (1.7)
/ IKeldur <y < (3 —2v2)m, (1.8)
Ba\Bp

where ¢, and cy are constants.
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Assume that (e1, e2) is the canonical semi-Coulomb frame of f(Bq \ Bp), then we have

a
/IV€1|2+|V€2I2dX<C<)/,E> / |Afl2duy, (1.9)

Ba\Bp Ba\Bp
where C(y, §) is a constant depending on y and .

Remark 1.11. The properties of Coulomb frames on conformal surface f(£2) have big difference
between the case when 2 is simply connected and the case when £ is not simply connected.
Recall that if f is a conformal immersion from the unit disk B € R? into R", then the energy
of a Coulomb frame on it can be controlled by the L? norm of the second fundamental form of
f(B), if the L? norm of the second fundamental form of f(B) is below some constant [6,9]. But for
f:Bg\ By —> R" with f(x,y) =(x,¥,0,...,0), the second fundamental form of f(B, \ Bp) is zero,
and ((cos @, sin#), (—sinf, cosH)) is a Coulomb frame on f (B, \ Bp) with nonzero energy.

Now we will give an application of the above theorem.

Theorem 1.12. Let {f, € C*°(Bq \ Bp)}m>1 be a sequence of minimal conformal immersions from Bg \ By
into R" with |V fi|* = 2e%m, and

2 2
1 Odup _ _of Oum
/ <? + 7) dx = / r ( 99 ) dX, (110)

Ba\Bb Ba\Bb
Up =Cma ON 0By, Un=Cmp ONJIBp, (111)
sup / IKf, ldim < (3 — 2\/5)71, sup / |Afm|2dum < 00, (112)
" Ba\Bb " Ba\Bb

where ¢ and cyp are constants, with supy, {|cmal + [cmp|} < 00.
Assume that f;, converges weakly to fo in W12, then fq is a minimal conformal immersion with bounded
conformal factor. Furthermore the metric induced by fy is continuous.

Remark 1.13. The minimal property will be kept under the weak convergence by the definition, if
the limit immersion is conformal. Hence the difficult and non-obvious part is to prove that the limit
immersion is conformal, and has bounded conformal factor.

Note that when the domain is a disk, the weak limit map may be a single point, that is there may
be a collapsing in the convergence process. But when the domain is an annulus this cannot happen.

This paper is organized as follows: In Section 2 results are proved. In Appendix A we will give
some basic computations which have been used in this paper and in Appendix B we will give an
alternative proof about that fp is conformal in Theorem 1.12 by using a strong converge theorem of
p-harmonic maps due to Hardt, Lin and Mou [7].

Notations. 3, = 39=%,fr=‘?—f fo=2% 8 =....

=3,
2. Proof of the results

Proof of Theorem 1.2. Let (e, e2) € W1-2(B, \ By, R" x R") be a positively oriented basis of f and X
be the Gauss map of f. Let

F = {(Xf, e1,e2) €G(2,n) x R" x R" ‘ (e1, e) is a positively oriented orthonormal basis of Xf}.
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Then £ is a fibre bundle over G(2,n) with fibre S!. Since f is conformal, there exists a section (7, é3)
of X}F .
We consider for each 8 € W'-2(B, \ By, R) the frame (eq, e3) obtained by

cos® —sinf
siné cos6 /-

(e1,ez)=(e”i,e”i)<

Actually, we will minimize over 6 € W12(B, \ By, R) the functional

1

FO) =5 / (IVe1 >+ |Vea|?) do (2.1)
Ba\Bb

- / i do, (2.2)
Ba\Bb

where W} = (deq, e2). By the arguments in [6], the minimum of F is attained, and the minimizer
(eq, ey) satisfies

d(*@}) =0  inBg\ By,

i)
1

— | =0 ond(By\ By,
wz<av) on d(Ba \ By)

where « is the Hodge star operator and % is the outward normal vector on the boundary. Then there
exists some v € W12(By \ By, R) such that

dv:*w; —add inBg\ By, (2.3)

2 : . .
where o = % 0 *a); is a constant. It is easy to check that g—z = dv(%) = —a on 9(Bg \ Bp), and

hence we have v|yp, = cq — @@, and v|yp, = ¢, — af, where ¢ = v(a,0) and ¢, = v(b,0). A direct
calculation yields

—Av =K(eq1,e2). (2.4)
Decompose v to be v =vq + v, where

—Avy=K(e1,e3) inBg\ By,
vi=0 on d(Bg \ Bp),

and

Avy =0 in By \ Bp,
V) =Cq—af ondBg,
vy=cp—af onadBy.

To estimate v, we decompose vi = 2,?:1v’§ where v’{ is the solution of

—Avk =rK(ek, eX) inBq\ Bp,
vk=0 on 3(Bg \ Bp).
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Applying Wente’s inequality, we have

I Vll< ”Lw(sa\ﬂb) < b ”Vel{ [ 12(Bg\Bp) ||Ve’§ I L2(Bg\Bp)"

which obviously implies that

1 2 2
||V] ||L°°(Ba\Bb) < E(”vel “LZ(Ba\Bb) + ||V92 ||L2(Ba\Bb))'
A simple calculation by integral by parts implies that
/ Vvq]2do = / viK(eq, e2)do
Ba\Bp Ba\Bp

< IV1llLeeBo\By) / |’C(€1,€2)|d0
Ba\Bb

v 2 2
< E(Hvel ||L2(Ba\Bb) + ||V62||L2(Ba\3b))«
For v,, we have

— loga — cqlogh
< Sb log |x| + LA L aCa %82 _w.
log ; log §

Vy) =

Noting that by calculations in Appendix A (see (A.1)) we have

IVetlta g, 5, + 1 Ve2lla g\ 5,) = 21dV +do1 7, + V£

(Ba\Bp) (Ba\Bp)*

We have

ldv 4+« df |l 12(g,\p,) = ldV1 +dva + @ dO | 2p,\p,)
<ldvilizgg\y) + ldva + a dbli2(g .\ B,)

1

14 )2 2 2 ! 1 |cq — Cpl

<( =) (IVeill +IVezll: ) +Qmi

<4n L?(Bq\Bp) L%(Ba\Bp) (log%)%
Thus we obtain
1
14 )2> 2 2 1 1]cq —Cp|

1-| = Vel + [IVez|| : (477)2 — +IVXsllp2 (2.5)

< <2n ( L2(Bq\Bp) Lz(Ba\Bb)) (logl‘;)% fUL2(Bq\Bp)-

Without loss of generality, we assume that

a
/ Bez 8
a6
b

for 0 <6 < 2m.

(r 0)dr,

S
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To estimate the number |cq — cp|, we note that

a a
3 de
Ica — Cp| = /—v(r,O)dr < | ller 222\ (r 0yt dr
or 8
b b
2 5
log £ 2 dez deq 1
_ ey deq _
<(50) (Sl 55)] o) )
b

a
ﬁde

a
ﬂdg

1
2
dx)

N
=
/N

NN
S|
—
_—
<
)
—_
=
N
=
—
w
+
<
&)
~
=
N
=
—
w
=
\L/
=

where we have used the fact that xdd = r~!dr and that

2
dey
/ —de‘ —de dx=g2(IVe1lts g, 5,) + IVe2ll 25\ 5,)-
Ba\Bp
Hence if
L <1,
Y
1—\/37

|ca — cp| is controlled by C(8,y, %)HVXf l12(B,\B,)» and hence the energy of the Coulomb frame is
controlled by C(8, v, %)”VXfHLZ(Ba\Bb)' Noting that |[VX¢ll;25,8,) = IAfll12(8,\8,) We complete the
proof of Theorem 1.2. O

Proof of Lemma 1.6. Note that e; =e ™" f;, and e; =r~le~" fy, then we have

(deq, e) = <frr - frur fo > <fr(7‘ eufrué‘ fo >d9

u " ret ret
(I So\ g [ o\ g
e! " ret e! " ret
:_Tuedr—l—(l—i-rur)de,

hence
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—Uy
*(deq, ep) = *<— dr+ 1 +ru;) d9>
r

= _Tue(—rde) + 1+ rur)r_1 dr
=ugdd + (r~' +uy)dr,

finally we obtain

dx(de1,ez) =ugrdr Ad6 + ugdé Adr =0,

which implies that (e1, e2) is a semi-Coulomb frame on f (B, \ Bp). In addition, (del,ez)(g%) =0 if
and only if x(dey, e2)(%) = 0. Note that (deq, e2)(:%) =ug, so (dey, e2)(:%) = 0 if and only if u are
constants on the boundaries. O

Proof of Theorem 1.7. Recall that e; =e™¥ % and e; = r‘%‘“%, then we have

oeq _ fro — frue

a6 et
dex _ foo — foug
90~ retr

hence we can obtain

2
deq _
% =e zu[f,?g_z(fresﬁ’)u(?—}_frzug]
— e [ f2 —2e?"u2 + e?ui?]
2672ufr20_u§’
and
2
dey 9 _
‘% =r"2e [ 2, — 2(fo0. fo)uo + fiuj]

a6

=r%e [ f2, — 2r*e®"ul + r’e®u?]

arze2u
—2_-2u| ¢2 2,2
=r"‘e [fee——ug—f—fgu@

—2,-2u £2 2
Similarly, we can obtain

8ﬁ frr — frur

ar el
32 . fre —fﬂ(% +ur)
ar rett ’

and
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361 2
—2u £2 2
—| =e —ur,
or frr r
2 2
dez —2,-2u 2 1
— | =r"‘e -\ -tu) .
or Iro r '
Summarizing the above computations and noting that |[d6|> =r~2, we have

2
de de
—2 d@‘ + —] de‘ =r2e 2 L e 2 2r2ud,

36‘1

+ —dr

&dr

On the other hand, by the definition of the second fundamental form, we have

Arr = frr — e_2u<frr» o) fr — r_ze_2u<frra fo) fo,
Ago = foo — e 2 (foo, fr) fr — 17272 (fon, fo) fo,

therefore we have

2= fA—2(frr, fr)2e™" = 2(frr, fo)?r 72T + (frr, fr)2e T2 + (fir, fo)

= frzr - (frr’ fr>2672u - (frr, f9)2r72e72”

2 2u 2.—2,2u
frr ure —upr “ev,

and similar computations implies that

2
1
A2, = f2, — e ( +uy ) —rle?iy?.
Note that f is minimal, so

Trace(A) = g" A + 28" Arg + 8% Ago = &' A + 8% Apg = 0,

where g'" =e24, g —=r=2¢=2U hence
)
A =—T""Agg,
which implies that
2 _ 442
A =1""Agy.

Thus we obtain

2
1
2 2u —4 ¢2 2u
frr uem =r fGG_e (?“"ur)'

2
_ 9 1
—e 2Uf2 4 r 2 Z”frzg—uf—(F—i—ur) :

2r—Ze—2u

3277

(2.6)

(2.7)

(2.8)
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Note that
2 2
de; deq 1 2 2
—do —df| dx=— Ve Vey|“ dx,
/89'+ag 2/|1|+|2|
Bq\Bp Bq\Bp
if and only if
2 2 2 2
de de de de
f % 4p| 4|21 ag dx:f %2 el 4| 2 | ax,
a0 a0 ar ar
Bq\Bp Bq\Bp

2

thus we can get by combining (2.6)-(2.8) that
b
%2 46| + | %L dg

1

dx = — Veql? + |Ve 2dx,
fae - 2[|1|+| 2l
Bo\Bp Bo\Bp

2
882 ‘

if and only if

1 du\? du\ >
-4+ — ) dx= “2(— ) dx
/<r+8r> X /r (89) X O

Bq\Bp Bq\Bp

2

Proof of Corollary 1.8. From Theorem 1.7 we know that
de de
752 16 1

1
—df| dx=— Veql? + |Vey|? dx,
/89 +|5 2/|1|+|2|
Ba\Bp Ba\Bp

‘ 2

implies
2 2
1 oJu au
/ —+—) dx= /r‘z — | dx,
r ar a6
Ba\Bp Ba\Bp
hence if u is radially symmetric we must have that
2
1 du
/ (— + —) dx=0,
r o ar
Bq\Bp
which implies that

1 8u_
rooor

and so there is a constant ¢ such that

u(r) = —logr+c.
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Hence we have Au =0, which implies that the Gauss curvature K =0, and so A =0. By Theorem 1.10
(note that u are constants on boundaries and hence (e1,e;) is a Coulomb frame), we know that
(e1, e2) has zero energy and so e; and e, are constant vectors. O

Proof of Theorem 1.10. We know that (eq, e3) is a Coulomb frame and so when (1.6) holds we have
dey '2 deq 2

that
/ —df —df dX:l / |Ve1l® + | Vez|? dx,
a0 a0 2
Ba\Bp Ba\Bp

by Theorem 1.7. Then the constant 8 in Theorem 1.2 is 4 and so when

IK¢ldup <y < (3—2v2)m,
Ba\By
we have (1.5) holds, and then we get the desired inequality (1.9) from Theorem 1.2. O

Proof of Theorem 1.12. Let (ey1, emz) be the canonical semi-Coulomb frame on fi,;(Bg \ Bp), then by
Theorem 1.10 we have the following inequality

/|Vem1|2+|Vemz|2dx<c / |Am|*de s,
Ba\Bp Ba\Bp

where C is independent of m.
Note that we have

— AU = Kpe?'m = KC(em1, em2) in Bg \ Bp,

where K, is the Gauss curvature.
Let v, solves the following equation

—AvVy =K(em1,em2) inBg\ Bp,
vm=0 on d(Bg \ Bp).

Let epi = (e;i,...,e”mi). i=1,2,and v, = V,],1 +---4 vl such that for each 1<k <n,

ml°> “m2

—Av’,‘n:IC(ek ek ) inBg\ By,
vk =0 on 3(Bg \ Bp),

then by Wente’s inequality we obtain

1
” an ||L°C(Ba\Bb) < e ” Velfm ”LZ(Ba\Bb) ” Ve’:%z ||L2(Bﬂ\Bb)’

hence



3280 Y. Luo /]. Differential Equations 253 (2012) 3266-3285

Vinllzoe Ba\By) < Z I Vi HLDO(BG\B,,)

k
1
< ,Z o ” Veﬁﬂ ||L2(Ba\Bb) ||Ve’,§12 ||L2(Ba\Bb)
K

1
< 7 IVem1llr2(g,\ By I Vem21l12(g,\By)-

where in the last inequality we have used Holder’s inequality.
By using the equation satisfied by v, and by integral by parts we have

/ —vavm=/vmVem1VLem2dx
Ba\Bb

S vmlizeoBa\By) IVem1 12 g\, I Vem2ll12(8,\B,)
< 1 Vem I g5, Vemal?
Sor ML (Bq\Bp) MeNL2(Ba\Bp)

That is

1
2 2 2
”va ||L2(Bg\Bb) < E ||Vem1 ”LZ(BH\Bb) ||Vem2 ”LZ(Ba\Bb).

On the other hand,

A(um —vm) =0 in Bg\ Bp,
Um — Vi = Cma on dBg,
Un—Vm=Cmp ONOIBp,

thus we have

Cma — C Cmp loga — cpgloghb
U — Vg = ma gmblog|x|+ mb 108 ma 108

log § log §

which implies that

IVumll2g\By) + 1Umll oo Ba\By) < € < 00,

for some constant C independent of m.

(2.9)

Then by using an argument given by [6, Chapter 5], we can get that fp is a conformal immersion
with bounded conformal factor as the following: Because fp, is conformal, there exists 0 < 6, € C* <

21 such that

dfm = e"™ ((cos Omem1 + sinOmemz) dxq + (— sinbfpemy + cos Omemn) dx).

In particular, projecting the equation d? f;; = 0 along ey and e,y we obtain

06n  Oum 1 0
- — =W — ),
0X1 + 0X2 m2 0X1

00,  Oup 1 0
- =W — ),
0X2 0X1

where o, = (dem2, em1).

(2.10)
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Note that these equations imply 6y, is bounded in W12, hence we have that (we do not distinguish
a sequence and its subsequences)

(b, Om, um) — (b, 6, u) weakly in W12,
and so
(bm, 6m, um) — (b,0,u) inL?,
therefore we have
(bm,6m,um) — (b,0,u) a.e.in By \ By,

where by, = (ém1, em2), and b = (e, e3).
By passing to the limit in (2.10) we get

dfo =e"((cosbeq + sinbey) dx; + (—sinfeq + cosbey) dxy), (2.11)

which implies that fp is conformal, with bounded conformal factor e".
Because u satisfies the following Wente’s type equation

—Au=Ve;V'te, inBg\ By,

hence u is continuous.
Note that

Afm=0 1inBg\ By,
and

fm— fo weaklyin W2(Bg \ Bp),

therefore we have that

Afo=0. (212)

On the other hand, because fy is a conformal immersion with |V fp|2 = 2e%%, we have that

Afo=e*Hy,, (213)

where Hy, is the mean curvature vector of fo.
By comparing (2.12) with (2.13) we get that Hg, =0, and so fp is a minimal immersion. O
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Appendix A

In this appendix, we review briefly some basic facts of Grassmannian manifolds. The concept in
this appendix can be found in any textbook on the theory of Grassmannian manifolds.
Let

A% = A2(R") = {av' Avi: v vi e R

A? is a linear space of dimension "(";1). If ey is a normal basis of R", then {e; Ae;: i < j} is a basis

of A2, The standard inner product of A? is defined by:

(Vi AV, Wi A W) = (V- W) (V2 Wa) — (V1 - W) (V2 - Wr).

So, {e; Aej} is a normal basis of A2,

Let P(A2) be the projective space getting from AZ2. Recall that there is a nature map 7 from the
unit sphere of A2 to P(A2) which is a covering map.

Let v to be the Pliicker embedding from G(2,n) to P(A?2), which endows G(2,n) a Riemannian
metric. Thus, given a b = (e, e3) € W2, we think of ¢(x) = e A ey as a map from £ to the unit
sphere of A2 (also a map to A2), then the normal of W is just the normal of 33%1 Aexy+er A "ai)f
in A%, By a direct calculation, we get

der ne) | 3€1Ae tei A 2 [°
ax Tlox TP

= a61/\e 2—i—e /\aez +2 a61/\e e1 N 2

“lax 2 2 x ax I
deq dey 2 dey 2

= | — i -2 e1—
0x 0x 0x

So we have
2

IV@|* = |Vb|* —2|(de1, e2)|". (A1)

Now, we prove (1.1). Let (¢/, e}) be another positively oriented norm basis of X. Then we have

el =xe1 + ez, ey = — el + Aey,

where 1 = (e],e1) and u = (e}, e2). We have

GEA _ axe +Aae1 v Bue N de;
axi  oxi | ax xRk
% o der oA des

ax! 0x! ! Max’ +8x’ 2+ ox!
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We have
000 oo ok e devdey ) 0hdey . ode e
ax1 ox2 ax1 9x2 ax1 1 ox2 ax1 9x2 ax2 ox1 2 ax1 9x2
L e opdn e e e des e
ax1 29x2 " axl ox2 3x2 9x! ax! 9x2 ax! 9x2’
deyie, | dhdw v des  devden 0 der e e
9x2 9x1 9x2 9x1 ax2 L oxt ax2 9x1 ax1 9x2 > ax2 9x1
au  deq L OA I 3626 5 dep deq dey dey
“axZ 29x1 T 9x2 ox1 M8x1 ax2 ! ax2 9x! ° x2 ax1’
We have

deydey _deydey (0% D DR DRN o (0 0h L DK, Bea
axl 9x2  9x2 9x! ax2

axl 9x2  9x2 ox!
oA d de deq de deq de
+2</\ +u “) a—xf+(xz+uz)<—1—2——1—2>.

9x2 9x2 axl ax2  9x2 ox!
Since A% + u? =1, we have ;T)‘,;’T“Z — :Tkzl% =0, and A“ +'U‘ax1 =0, then we get (1.1).
We extend eq, e; to a normal basis e3,...,e; € W1 2 Such e; (i > 3) exists because ¢ is also a
W12 map from B to G(2,n).
We set
de; = wfj dx) ® ey + ij dxi @ ey,
where i =1,2 and « € {3, 4, ...,n}. Obviously, le = Wz: 0, Wz; = w%i = (%, ez), hence (A1) is

equivalent to

2
IVel> =) |B%|".
ij,o
We have
Klp) = (Wlflek + B ng) (Whyex + BSyna) — (Whier + Byng ) (Whiex + BSNa)
2
= Z(B% -B, — |B(1¥2 )
o
therefore we obtain

1
K(p) < 5|V<p|2. (A2)

Now, we consider the Gauss map of a conformal map f: 2 — R". Let u = %log(|Vf|2/2) and denote
by Xy the Gauss map induced by f.

Xy can be expressed as
—udf —u9f
Xr=le"—=|Ale "= ),
d ( axl) ( axZ)
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where u =1 log| |2 We will calculate |[VX¢|2. Since
2f  af 18 |af| o 0u
axlox!  ax! ~ 2 ax!|ax! ax1’
2
PfAf _af f 18 |af T 5 0u
ax1ox!  9x2 ax!  9x'9x? 2 9x2 | dx! ax2’
and
% f 3?f of o2 af  0*f of o—2u of
———=An+ = +— = ,
axlax! ax19x; 8x1 axl ' axl 8x2 ax2
we get

9 9 92 u 9 af a
(e ) e e (S

ax! ax19x, ax! ax! 9x2 9x2

In the same way, we get

9 (,udf —u af ou
—let—=)=e"A ——,
0x2 ( 8x1> 12 ax1 9x2

3 ( _,0f . 3f du
—le =e A —— )
ox1 ( 8x2> 2t 9x2 9x1

a

_,0f _ of ou
e —=)=e " An - —=— ).
8x2< 8x2> <22 ox! 8x1>

Then, we get
K(Xp) =e 2 (A11Axn — AL)) = Ke*"
and
IVXfP=e 2 " |Ayl%, ie |V XpPPdug, =|APdug;.
Appendix B

(A3)

(A4)

In this part, we will give an alternative proof about that fy is conformal in Theorem 1.12. We need

a special case of the following theorem proved by Hardt, Lin and Mou [7].

Theorem B.1. Let $2 be a smooth bounded domain in R%, and suppose 1 < p < oo and foreachi=1,2,...,

u; € WL-P() is a weak solution of

div(|VulP72Vu) + f; =0

with sup; [[u;|ly1.p + sup; || fill 1 < oo. If uj — u weakly in WP, then u; — u strongly in W9, whenever

1<q<p.
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Note that f;; is conformal, that is

0X1 0X2 -

ofe

2
3 fm
0X1

- 90X

and f;; is minimal, that is
Afm=0.
Thus by the above theorem we have that
fm — fo stronglyin WP,

whenever 1 < p < 2, which implies that

d 0
fm - o ae., and 3 fm N o ae.
0X1 0X1 X2 X2
Therefore we obtain
2 2
dfo|” _|3fo dfo 9fo _o
9x1 axy |’ X1 9x2 ’

implying that fp is conformal.
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