

On conformal surfaces of annulus type

Yong Luo ${ }^{1}$
Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany

A R T I C LE I N F O

Article history:

Received 12 September 2011
Revised 30 January 2012
Available online 19 September 2012

A B S T R A C T

Let $a>b>0$ and $B_{a} \backslash B_{b}=\left\{x=\left(x_{1}, x_{2}\right) \in R^{2}: b<|x|<a\right\}$, and assume that f is a conformal map from $B_{a} \backslash B_{b}$ into \mathbb{R}^{n}, with
 is a moving frame on $f\left(B_{a} \backslash B_{b}\right)$ and it satisfies the following equation

$$
d \star\left\langle d e_{1}, e_{2}\right\rangle=0
$$

where \star is the Hodge star operator on R^{2} with respect to the standard metric.
We will study the Dirichlet energy of this frame and give some applications.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a smooth bounded domain in R^{2} and f be a $W^{2,2}$ map from Ω to R^{n}, and $\left(e_{1}, e_{2}\right) \in$ $W^{1,2}\left(\Omega, \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ be a positively oriented basis of f. We define

$$
\mathcal{K}\left(e_{1}, e_{2}\right):=\frac{\partial e_{1}}{\partial x^{1}} \frac{\partial e_{2}}{\partial x^{2}}-\frac{\partial e_{1}}{\partial x^{2}} \frac{\partial e_{2}}{\partial x^{1}}:=\nabla e_{1} \nabla^{\perp} e_{2}
$$

It is easy to check that $\mathcal{K}\left(e_{1}, e_{2}\right)$ is invariant under the group action $U(2)$, that is for any

$$
e_{1}^{\prime}=e_{1} \cos \theta+e_{2} \sin \theta, \quad e_{2}^{\prime}=-e_{1} \sin \theta+e_{2} \cos \theta
$$

where $\theta \in W^{1,2}(\Omega, R)$, we have

[^0]\[

$$
\begin{equation*}
\mathcal{K}\left(e_{1}^{\prime}, e_{2}^{\prime}\right)=\mathcal{K}\left(e_{1}, e_{2}\right), \tag{1.1}
\end{equation*}
$$

\]

see Appendix A for a proof. Hence we can write $\mathcal{K}\left(X_{f}\right):=\mathcal{K}\left(e_{1}, e_{2}\right)$, where X_{f} is the Gauss map of the surface $f(\Omega)$ defined from $f(\Omega)$ to the Grassmannian $G(2, n)$. Moreover, we have

$$
K_{f} e^{2 u}=\mathcal{K}\left(X_{f}\right)=\nabla e_{1} \nabla^{\perp} e_{2},
$$

where K_{f} is the Gauss curvature of the immersed surface $f(\Omega)$ and $|\nabla f|=2 e^{2 u}$ (see Appendix A for a proof).

Since $\operatorname{div} \nabla^{\perp} e_{1}=0$, and rot $\nabla e_{2}=0, \mathcal{K}\left(X_{f}\right)$ has compensation compactness. Furthermore, Wente's type inequality can be applied here.

Recall Wente's type inequality, which states that if $a, b \in W^{1,2}(\Omega)$ and $u \in W_{0}^{1,2}(\Omega)$ solves the equation

$$
-\Delta u=\nabla a \nabla^{\perp} b \quad \text { in } \Omega
$$

then u is continuous and we have

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)}+\|\nabla u\|_{L^{2}(\Omega)} \leqslant C(\Omega)\|\nabla a\|_{L^{2}(\Omega)}\|\nabla b\|_{L^{2}(\Omega)}, \tag{1.2}
\end{equation*}
$$

see [1,2,12].
It is easy to see that $C(\Omega)$ is invariant under translations and dilations. F. Bethuel and J.-M. Ghidaglia in [3,4] showed that there exists a constant C_{1} which does not depend on Ω such that (1.2) holds true:

$$
\|u\|_{L^{\infty}(\Omega)}+\|\nabla u\|_{L^{2}(\Omega)} \leqslant C_{1}\|\nabla a\|_{L^{2}(\Omega)}\|\nabla b\|_{L^{2}(\Omega)} .
$$

We denote by $C_{\infty}(\Omega)$ the best constant involving the L^{∞} norm and by $C_{2}(\Omega)$ the best constant involving the L^{2} norm. Then we have

$$
\begin{align*}
\|u\|_{L^{\infty}(\Omega)} & \leqslant C_{\infty}(\Omega)\|\nabla a\|_{L^{2}(\Omega)}\|\nabla b\|_{L^{2}(\Omega)} \tag{1.3}\\
\|\nabla u\|_{L^{2}(\Omega)} & \leqslant C_{2}(\Omega)\|\nabla a\|_{L^{2}(\Omega)}\|\nabla b\|_{L^{2}(\Omega)} . \tag{1.4}
\end{align*}
$$

It is proved in [1] that $C_{\infty}(\Omega) \geqslant \frac{1}{2 \pi}$, and when Ω is simply connected, $C_{\infty}(\Omega)=\frac{1}{2 \pi}$. For the general Ω, it is proved by Topping [11] that $C_{\infty}(\Omega)=\frac{1}{2 \pi}$. It is proved by Ge in [5] that $C_{2}(\Omega)=$ $\sqrt{\frac{3}{64 \pi}}$.

Let $B \subseteq R^{2}$ be the unit disk centered at the origin, then Li, Luo and Tang proved the following theorem by using the inequality (1.3):

Theorem A. (See [9].) Let $\varphi \in W^{1,2}(B, G(2, n))$ with

$$
\int_{B}|\mathcal{K}(\varphi)| d \sigma \leqslant \gamma<2 \pi
$$

(see Appendix A for information about $\mathcal{K}(\varphi))$, then there exists a map $\left(e_{1}, e_{2}\right) \in W^{1,2}\left(B, \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that for almost every $z \in B,\left(e_{1}(z), e_{2}(z)\right)$ is a positively oriented basis of $\varphi(z)$. Furthermore, we have

$$
\left\|d\left(e_{1}, e_{2}\right)\right\|_{L^{2}(B)} \leqslant C(\gamma)\|\nabla \varphi\|_{L^{2}(B)},
$$

where $C(\gamma)$ is a constant depending on γ.

Note that $\mathcal{K}(\varphi) \leqslant \frac{1}{2}|\nabla \varphi|^{2}$, see (A.2). We have the following direct corollary:
Theorem B. (See [9].) Let $\varphi \in W^{1,2}(B, G(2, n))$ with

$$
\int_{B}|\nabla \varphi|^{2} d \sigma \leqslant \gamma<4 \pi
$$

then there exists a map $\left(e_{1}, e_{2}\right) \in W^{1,2}\left(B, \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that for almost every $z \in B,\left(e_{1}(z), e_{2}(z)\right)$ is a positively oriented basis of $\varphi(z)$. Furthermore, we have

$$
\left\|d\left(e_{1}, e_{2}\right)\right\|_{L^{2}(B)} \leqslant C(\gamma)\|\nabla \varphi\|_{L^{2}(B)},
$$

where $C(\gamma)$ is a constant depending on γ.

Remark 1.1. (1) The above theorem improves a theorem of Hélein [6, Chapter 5] by changing the constant from $\frac{8 \pi}{3}$ to 4π (the same result also is proved in [8] by using a difficult result of [10]). The difference between these results is that in Hélein's original proof he used Wente's inequality (1.4) of L^{2} norm, whereas we use Wente's inequality (1.3) of L^{∞} norm.
(2) The constant 4π is sharp for $n>3$ (see [8]).

Assume that $f: B \rightarrow R^{n}$ is a conformal map and $f \in C^{\infty}(\bar{B})$, and $X_{f}: f(B) \rightarrow G(2, n)$ is the Gauss map. Let $\varphi=X_{f} \circ f \in W^{1,2}(B, G(2, n))$, then we have (see (A.3), (A.4) in Appendix A):

$$
\begin{gathered}
\int_{B}\left|K_{f}\right| d \mu_{f}=\int_{B}|\mathcal{K}(\varphi)| d \sigma \\
\int_{B}|\nabla \varphi|^{2} d x=\int_{f(B)}\left|\nabla_{g_{f}} X_{f}\right|^{2} d \mu_{f}=\int_{B}\left|A_{f}\right|^{2} d \mu_{f}
\end{gathered}
$$

where $\nabla_{g_{f}}$ is the gradient with respect to g_{f}, μ_{f} is the area measure on $f(B)$, and A_{f} is the second fundamental form of $f(B)$. Hence for such a conformal immersion f with the L^{1} norm of the Gauss curvature bounded by 2π, there exists a moving frame on it whose Dirichlet energy is bounded by the L^{2} norm of the second fundamental form. Hélein [6, Chapter 5] used this moving frame to derive the weak compactness of immersed conformal surfaces from B into R^{n}. Using his argument, we have

Theorem C. (See [9].) Let $f_{k} \in C^{\infty}\left(\bar{B}, \mathbb{R}^{n}\right)$ be a sequence of conformal immersions with

$$
\sup _{k} \int_{B}\left|K_{f_{k}}\right| d \mu_{f_{k}} \leqslant \gamma<2 \pi, \quad \sup _{k} \int_{B}\left|A_{f_{k}}\right|^{2} d \mu_{f_{k}}<\infty
$$

where $d \mu_{f_{k}}$ is the volume form deduced from the metric $g_{f_{k}}$. Assume that f_{k} converges to f_{0} weakly in $W^{1,2}$, then f_{0} is either a point or a conformal immersion.

In this paper, we are interested in generalizing these above results to immersed conformal surfaces from Ω into R^{n} when Ω is not simply connected. We will consider the easiest case, that is when Ω is an annuli. In the following we will let $a>b>0$, and $B_{a} \backslash B_{b}=\left\{x \in R^{2}: b<|x|<a\right\}$. We have

Theorem 1.2. For every conformal map $f: B_{a} \backslash B_{b} \rightarrow R^{n}$ satisfying

$$
\left\|\mathcal{K}\left(X_{f}\right)\right\|_{L^{1}\left(B_{a} \backslash B_{b}\right)} \leqslant \gamma<2 \pi,
$$

there exists a map $b=\left(e_{1}, e_{2}\right)$ in $W^{1,2}\left(B_{a} \backslash B_{b}, \mathbb{R}^{n} \times R^{n}\right)$, such that for almost every $z \in B_{a} \backslash B_{b},\left(e_{1}(z), e_{2}(z)\right)$ is a positively oriented basis of $\varphi(z)$ and $\left\|d\left(e_{1}, e_{2}\right)\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}$ is bounded.

Furthermore, if

$$
\begin{equation*}
\frac{\beta}{1-\sqrt{\frac{\gamma}{2 \pi}}}<1 \tag{1.5}
\end{equation*}
$$

where

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2} d x=\beta^{2}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right),
$$

then we have that

$$
\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2} \leqslant C\left(\beta, \gamma, \frac{a}{b}\right)\left\|A_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2},
$$

where $C\left(\beta, \gamma, \frac{a}{b}\right)$ is a constant depending on β, γ and $\frac{a}{b}$.
As a direct corollary, we have
Theorem 1.3. For every conformal map $f: B_{a} \backslash B_{b} \rightarrow R^{n}$ satisfying

$$
\left\|A_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2} \leqslant \gamma<4 \pi,
$$

where A_{f} is the second fundamental form of f, there exists a map $b=\left(e_{1}, e_{2}\right)$ in $W^{1,2}\left(B_{a} \backslash B_{b}, \mathbb{R}^{n} \times R^{n}\right)$, such that for almost every $z \in B_{a} \backslash B_{b},\left(e_{1}(z), e_{2}(z)\right)$ is a positively oriented basis of $f(z)$ and $\left\|d\left(e_{1}, e_{2}\right)\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}$ is bounded.

Furthermore, if

$$
\frac{\beta}{1-\sqrt{\frac{\gamma}{2 \pi}}}<1
$$

where

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2} d x=\beta^{2}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right),
$$

then we have that

$$
\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2} \leqslant C\left(\beta, \gamma, \frac{a}{b}\right)\left\|A_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2},
$$

where $C\left(\beta, \gamma, \frac{a}{b}\right)$ is a constant depending on β, γ and $\frac{a}{b}$.

Remark 1.4. We can see that in the proof of the above two theorems these estimates hold true for any moving frame (e_{1}, e_{2}) satisfying

$$
\begin{cases}d \star\left\langle d e_{1}, e_{2}\right\rangle=0 & \text { in } B_{a} \backslash B_{b}, \\ \left\langle d e_{1}, e_{2}\right\rangle\left(\frac{\partial}{\partial v}\right)=0 & \text { on } \partial\left(B_{a} \backslash B_{b}\right),\end{cases}
$$

where \star is the Hodge star operator on R^{2} and $\frac{\partial}{\partial \nu}$ is the outward normal vector on the boundaries. In the following we will define such a moving frame to be a Coulomb frame.

It is nature to ask the following question:
Question. On which kind of conformal parametric surfaces from $B_{a} \backslash B_{b}$ to R^{n}, there exists a moving frame (e_{1}, e_{2}) on it and some $\beta \in[0,1$), such that

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2} d x=\beta^{2}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right) ?
$$

Definition 1.5. Let Ω be a domain in R^{2} and $f: \Omega \rightarrow R^{n}$ be a conformal immersion, and let (e_{1}, e_{2}) be a moving frame on $f(\Omega)$, then we call $\left(e_{1}, e_{2}\right)$ to be a Coulomb frame of $f(\Omega)$ if

$$
\begin{cases}d \star\left\langle d e_{1}, e_{2}\right\rangle=0 & \text { in } \Omega, \\ \left\langle d e_{1}, e_{2}\right\rangle\left(\frac{\partial}{\partial v}\right)=0 & \text { on } \partial \Omega .\end{cases}
$$

If we only have

$$
d \star\left\langle d e_{1}, e_{2}\right\rangle=0 \quad \text { in } \Omega
$$

then $\left(e_{1}, e_{2}\right)$ is called a semi-Coulomb frame.
We have
Lemma 1.6. Let $f: B_{a} \backslash B_{b} \rightarrow R^{n}$ be a conformal immersion, with $|\nabla f|^{2}=2 e^{2 u}$, and let $e_{1}=e^{-u} \frac{\partial f}{\partial r}$ and $e_{2}=r^{-1} e^{-u} \frac{\partial f}{\partial \theta}$, then (e_{1}, e_{2}) is a semi-Coulomb frame on $f\left(B_{a} \backslash B_{b}\right)$, and it is a Coulomb frame if and only if u are constants on the boundaries. We call $\left(e_{1}, e_{2}\right)$ to be the canonical semi-Coulomb frame of $f\left(B_{a} \backslash B_{b}\right)$.

The following theorem shows a relation between the canonical semi-Coulomb frame and the conformal factor of a conformal minimal immersion:

Theorem 1.7. Let $f: B_{a} \backslash B_{b} \rightarrow R^{n}$ be a conformal minimal immersion, that is, $f\left(B_{a} \backslash B_{b}\right)$ is a conformal minimal surface in R^{n}, then the canonical semi-Coulomb frame of $f\left(B_{a} \backslash B_{b}\right)$, $\left(e_{1}, e_{2}\right)$ satisfies that

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2} d x=\frac{1}{2} \int_{B_{a} \backslash B_{b}}\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2} d x,
$$

if and only if

$$
\int_{B_{a} \backslash B_{b}}\left(\frac{1}{r}+\frac{\partial u}{\partial r}\right)^{2} d x=\int_{B_{a} \backslash B_{b}} r^{-2}\left(\frac{\partial u}{\partial \theta}\right)^{2} d x,
$$

where $|\nabla f|^{2}=2 e^{2 u}$.
As a direct corollary we have
Corollary 1.8. Let f be a conformal minimal immersion with $|\nabla f|^{2}=2 e^{2 u}$. Assume that u is radially symmetric and $\left(e_{1}, e_{2}\right)$ is the canonical semi-Coulomb frame of f with

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2} d x=\frac{1}{2} \int_{B_{a} \backslash B_{b}}\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2} d x,
$$

then we can get

$$
u(x)=-\log r+c,
$$

where $r=|x|$ and c is a constant. In addition we can deduce that $A=0$ and e_{1}, e_{2} are constant vectors.
Remark 1.9. (1) Let f be defined on $B_{a} \backslash B_{b}$ as $f(r, \theta)= \pm e^{c}(\log r, \theta, 0, \ldots, 0)$, where c is a constant, then f is a conformal immersion into R^{n} with $u(x)=-\log r+c$. It is easy to see that the canonical semi-Coulomb frame of $f\left(B_{a} \backslash B_{b}\right)$ is $((1,0)(0,1))$ and the second fundamental form of $f\left(B_{a} \backslash B_{b}\right)$ is zero.
(2) Assume that f is a conformal immersion from $B_{a} \backslash B_{b}$ to R^{n}, with $|\nabla f|^{2}=2 e^{2 u}$, and u is radially symmetric. Let (e_{1}, e_{2}) be the canonical semi-Coulomb frame of $f\left(B_{a} \backslash B_{b}\right)$, then if e_{1} and e_{2} are constant vectors, we have

$$
\frac{\partial f}{\partial r}=e^{u}(a, b), \quad \frac{\partial f}{\partial \theta}=r e^{u}(c, d),
$$

where a, b, c, d are constants with $a^{2}+b^{2}=c^{2}+d^{2}=1, a c+b d=0$. Thus $\frac{\partial^{2} f}{\partial r \partial \theta}=\frac{\partial^{2} f}{\partial \theta \partial r}$ implies that $u_{r}=-\frac{1}{r}$, and so $u(r)=-\log r+c$ for some constant c.

As a corollary of the above results, we have the following theorem, which partially answers the above question:

Theorem 1.10. Let $f: B_{a} \backslash B_{b} \rightarrow R^{n}$ be a conformal minimal immersion, with $|\nabla f|^{2}=2 e^{2 u}$ and

$$
\begin{gather*}
\int_{B_{a} \backslash B_{b}}\left(\frac{1}{r}+\frac{\partial u}{\partial r}\right)^{2} d x=\int_{B_{a} \backslash B_{b}} r^{-2}\left(\frac{\partial u}{\partial \theta}\right)^{2} d x, \tag{1.6}\\
u=c_{a} \quad \text { on } \partial B_{a}, \quad u=c_{b} \quad \text { on } \partial B_{b}, \tag{1.7}\\
\int_{B_{a} \backslash B_{b}}\left|K_{f}\right| d \mu_{f} \leqslant \gamma<(3-2 \sqrt{2}) \pi, \tag{1.8}
\end{gather*}
$$

where c_{a} and c_{b} are constants.

Assume that $\left(e_{1}, e_{2}\right)$ is the canonical semi-Coulomb frame of $f\left(B_{a} \backslash B_{b}\right)$, then we have

$$
\begin{equation*}
\int_{B_{a} \backslash B_{b}}\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2} d x \leqslant C\left(\gamma, \frac{a}{b}\right) \int_{B_{a} \backslash B_{b}}\left|A_{f}\right|^{2} d \mu_{f}, \tag{1.9}
\end{equation*}
$$

where $C\left(\gamma, \frac{a}{b}\right)$ is a constant depending on γ and $\frac{a}{b}$.
Remark 1.11. The properties of Coulomb frames on conformal surface $f(\Omega)$ have big difference between the case when Ω is simply connected and the case when Ω is not simply connected. Recall that if f is a conformal immersion from the unit disk $B \subseteq R^{2}$ into R^{n}, then the energy of a Coulomb frame on it can be controlled by the L^{2} norm of the second fundamental form of $f(B)$, if the L^{2} norm of the second fundamental form of $f(B)$ is below some constant [6,9]. But for $f: B_{a} \backslash B_{b} \rightarrow R^{n}$ with $f(x, y)=(x, y, 0, \ldots, 0)$, the second fundamental form of $f\left(B_{a} \backslash B_{b}\right)$ is zero, and $((\cos \theta, \sin \theta),(-\sin \theta, \cos \theta))$ is a Coulomb frame on $f\left(B_{a} \backslash B_{b}\right)$ with nonzero energy.

Now we will give an application of the above theorem.
Theorem 1.12. Let $\left\{f_{m} \in C^{\infty}\left(\overline{B_{a} \backslash B_{b}}\right)\right\}_{m} \geqslant 1$ be a sequence of minimal conformal immersions from $B_{a} \backslash B_{b}$ into R^{n} with $\left|\nabla f_{m}\right|^{2}=2 e^{2 u_{m}}$, and

$$
\begin{gather*}
\int_{B_{a} \backslash B_{b}}\left(\frac{1}{r}+\frac{\partial u_{m}}{\partial r}\right)^{2} d x=\int_{B_{a} \backslash B_{b}} r^{-2}\left(\frac{\partial u_{m}}{\partial \theta}\right)^{2} d x, \tag{1.10}\\
u_{m}=c_{m a} \quad \text { on } \partial B_{a}, \quad u_{m}=c_{m b} \quad \text { on } \partial B_{b}, \tag{1.11}\\
\sup _{m} \int_{B_{a} \backslash B_{b}}\left|K_{f_{m}}\right| d \mu_{m}<(3-2 \sqrt{2}) \pi, \quad \sup _{m} \int_{B_{a} \backslash B_{b}}\left|A_{f_{m}}\right|^{2} d \mu_{m}<\infty, \tag{1.12}
\end{gather*}
$$

where $c_{m a}$ and $c_{m b}$ are constants, with $\sup _{m}\left\{\left|c_{m a}\right|+\left|c_{m b}\right|\right\}<\infty$.
Assume that f_{m} converges weakly to f_{0} in $W^{1,2}$, then f_{0} is a minimal conformal immersion with bounded conformal factor. Furthermore the metric induced by f_{0} is continuous.

Remark 1.13. The minimal property will be kept under the weak convergence by the definition, if the limit immersion is conformal. Hence the difficult and non-obvious part is to prove that the limit immersion is conformal, and has bounded conformal factor.

Note that when the domain is a disk, the weak limit map may be a single point, that is there may be a collapsing in the convergence process. But when the domain is an annulus this cannot happen.

This paper is organized as follows: In Section 2 results are proved. In Appendix A we will give some basic computations which have been used in this paper and in Appendix B we will give an alternative proof about that f_{0} is conformal in Theorem 1.12 by using a strong converge theorem of p-harmonic maps due to Hardt, Lin and Mou [7].

Notations. $\partial_{r}=\frac{\partial}{\partial r}, \partial_{\theta}=\frac{\partial}{\partial_{\theta}}, f_{r}=\frac{\partial f}{\partial r}, f_{\theta}=\frac{\partial f}{\partial_{\theta}}, \partial_{r r}=\ldots$.

2. Proof of the results

Proof of Theorem 1.2. Let $\left(e_{1}, e_{2}\right) \in W^{1,2}\left(B_{a} \backslash B_{b}, \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ be a positively oriented basis of f and X_{f} be the Gauss map of f. Let

$$
\digamma=\left\{\left(X_{f}, e_{1}, e_{2}\right) \in G(2, n) \times \mathbb{R}^{n} \times \mathbb{R}^{n} \mid\left(e_{1}, e_{2}\right) \text { is a positively oriented orthonormal basis of } X_{f}\right\} .
$$

Then \digamma is a fibre bundle over $G(2, n)$ with fibre S^{1}. Since f is conformal, there exists a section $\left(\widetilde{e_{1}}, \widetilde{e_{2}}\right)$ of $X_{f}^{*} \digamma$.

We consider for each $\theta \in W^{1,2}\left(B_{a} \backslash B_{b}, \mathbb{R}\right)$ the frame $\left(e_{1}, e_{2}\right)$ obtained by

$$
\left(e_{1}, e_{2}\right)=\left(\tilde{e_{1}}, \tilde{e_{2}}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Actually, we will minimize over $\theta \in W^{1,2}\left(B_{a} \backslash B_{b}, \mathbb{R}\right)$ the functional

$$
\begin{align*}
F(\theta) & =\frac{1}{2} \int_{B_{a} \backslash B_{b}}\left(\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2}\right) d \sigma \tag{2.1}\\
& =\int_{B_{a} \backslash B_{b}}\left|\omega_{2}^{1}\right|^{2} d \sigma \tag{2.2}
\end{align*}
$$

where $w_{2}^{1}=\left\langle d e_{1}, e_{2}\right\rangle$. By the arguments in [6], the minimum of F is attained, and the minimizer (e_{1}, e_{2}) satisfies

$$
\begin{cases}d\left(\star \omega_{2}^{1}\right)=0 & \text { in } B_{a} \backslash B_{b} \\ \omega_{2}^{1}\left(\frac{\partial}{\partial v}\right)=0 & \text { on } \partial\left(B_{a} \backslash B_{b}\right),\end{cases}
$$

where \star is the Hodge star operator and $\frac{\partial}{\partial \nu}$ is the outward normal vector on the boundary. Then there exists some $v \in W^{1,2}\left(B_{a} \backslash B_{b}, \mathbb{R}\right)$ such that

$$
\begin{equation*}
d v=\star \omega_{2}^{1}-\alpha d \theta \quad \text { in } B_{a} \backslash B_{b}, \tag{2.3}
\end{equation*}
$$

where $\alpha=\frac{1}{2 \pi} \int_{0}^{2 \pi} \star \omega_{2}^{1}$ is a constant. It is easy to check that $\frac{\partial v}{\partial \theta}=d v\left(\frac{\partial}{\partial \theta}\right)=-\alpha$ on $\partial\left(B_{a} \backslash B_{b}\right)$, and hence we have $\left.v\right|_{\partial B_{a}}=c_{a}-\alpha \theta$, and $\left.v\right|_{\partial B_{b}}=c_{b}-\alpha \theta$, where $c_{a}=v(a, 0)$ and $c_{b}=v(b, 0)$. A direct calculation yields

$$
\begin{equation*}
-\Delta v=\mathcal{K}\left(e_{1}, e_{2}\right) \tag{2.4}
\end{equation*}
$$

Decompose v to be $v=v_{1}+v_{2}$ where

$$
\begin{cases}-\Delta v_{1}=\mathcal{K}\left(e_{1}, e_{2}\right) & \text { in } B_{a} \backslash B_{b}, \\ v_{1}=0 & \text { on } \partial\left(B_{a} \backslash B_{b}\right),\end{cases}
$$

and

$$
\begin{cases}\Delta v_{2}=0 & \text { in } B_{a} \backslash B_{b}, \\ v_{2}=c_{a}-\alpha \theta & \text { on } \partial B_{a}, \\ v_{2}=c_{b}-\alpha \theta & \text { on } \partial B_{b} .\end{cases}
$$

To estimate v_{1}, we decompose $v_{1}=\Sigma_{k=1}^{n} v_{1}^{k}$ where v_{1}^{k} is the solution of

$$
\begin{cases}-\Delta v_{1}^{k}=\mathcal{K}\left(e_{1}^{k}, e_{2}^{k}\right) & \text { in } B_{a} \backslash B_{b}, \\ v_{1}^{k}=0 & \text { on } \partial\left(B_{a} \backslash B_{b}\right)\end{cases}
$$

Applying Wente's inequality, we have

$$
\left\|v_{1}^{k}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)} \leqslant \frac{1}{2 \pi}\left\|\nabla e_{1}^{k}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}\left\|\nabla e_{2}^{k}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)},
$$

which obviously implies that

$$
\left\|v_{1}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)} \leqslant \frac{1}{4 \pi}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right) .
$$

A simple calculation by integral by parts implies that

$$
\begin{aligned}
\int_{B_{a} \backslash B_{b}}\left|\nabla v_{1}\right|^{2} d \sigma & =\int_{B_{a} \backslash B_{b}} v_{1} \mathcal{K}\left(e_{1}, e_{2}\right) d \sigma \\
& \leqslant\left\|v_{1}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)} \int_{B_{a} \backslash B_{b}}\left|\mathcal{K}\left(e_{1}, e_{2}\right)\right| d \sigma \\
& \leqslant \frac{\gamma}{4 \pi}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right) .
\end{aligned}
$$

For v_{2}, we have

$$
v_{2}=\frac{c_{a}-c_{b}}{\log \frac{a}{b}} \log |x|+\frac{c_{b} \log a-c_{a} \log b}{\log \frac{a}{b}}-\alpha \theta .
$$

Noting that by calculations in Appendix A (see (A.1)) we have

$$
\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}=2\|d v+\alpha d \theta\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla X_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2} .
$$

We have

$$
\begin{aligned}
\|d v+\alpha d \theta\|_{L^{2}\left(B_{a} \backslash B_{b}\right)} & =\left\|d v_{1}+d v_{2}+\alpha d \theta\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)} \\
& \leqslant\left\|d v_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}+\left\|d v_{2}+\alpha d \theta\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)} \\
& \leqslant\left(\frac{\gamma}{4 \pi}\right)^{\frac{1}{2}}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right)^{\frac{1}{2}}+(2 \pi)^{\frac{1}{2}} \frac{\left|c_{a}-c_{b}\right|}{\left(\log \frac{a}{b}\right)^{\frac{1}{2}}} .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\left(1-\left(\frac{\gamma}{2 \pi}\right)^{\frac{1}{2}}\right)\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right)^{\frac{1}{2}} \leqslant(4 \pi)^{\frac{1}{2}} \frac{\left|c_{a}-c_{b}\right|}{\left(\log \frac{a}{b}\right)^{\frac{1}{2}}}+\left\|\nabla X_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)} . \tag{2.5}
\end{equation*}
$$

Without loss of generality, we assume that

$$
\int_{b}^{a}\left|\frac{\partial e_{2}}{\partial \theta}\right|^{2}(r, 0)+\left|\frac{\partial e_{1}}{\partial \theta}\right|^{2}(r, 0) d r \leqslant \int_{b}^{a}\left|\frac{\partial e_{2}}{\partial \theta}\right|^{2}(r, \theta)+\left|\frac{\partial e_{1}}{\partial \theta}\right|^{2}(r, \theta) d r,
$$

for $0 \leqslant \theta<2 \pi$.

To estimate the number $\left|c_{a}-c_{b}\right|$, we note that

$$
\begin{aligned}
\left|c_{a}-c_{b}\right|=\left|\int_{b}^{a} \frac{\partial v}{\partial r}(r, 0) d r\right| & \left.\leqslant \int_{b}^{a} \left\lvert\,\left\langle e_{1} \frac{\partial e_{2}}{\partial \theta}\right|\right. \right\rvert\,(r, 0) r^{-1} d r \\
& \leqslant\left(\frac{\log \frac{a}{b}}{2}\right)^{\frac{1}{2}}\left(\int_{b}^{a}\left(\left|\left\langle e_{1} \frac{\partial e_{2}}{\partial \theta}\right\rangle\right|^{2}+\left\lvert\,\left\langle\left. e_{2} \frac{\partial e_{1}}{\partial \theta}\right|^{2}\right) r^{-1} d r\right.\right)^{\frac{1}{2}}\right. \\
& \leqslant\left(\frac{\log \frac{a}{b}}{2}\right)^{\frac{1}{2}}\left(\int_{b}^{a}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} r d r\right)^{\frac{1}{2}} \\
& \leqslant\left(\frac{\log \frac{a}{b}}{4 \pi}\right)^{\frac{1}{2}}\left(\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} d x\right)^{\frac{1}{2}} \\
& \leqslant \beta\left(\frac{\log \frac{a}{b}}{4 \pi}\right)^{\frac{1}{2}}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right)^{\frac{1}{2}} \\
& \leqslant \frac{\beta}{1-\left(\frac{\gamma}{2 \pi}\right)^{\frac{1}{2}}}\left|c_{a}-c_{b}\right|+C\left(\gamma, \frac{a}{b}\right)\left\|\nabla X_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}
\end{aligned}
$$

where we have used the fact that $\star d \theta=r^{-1} d r$ and that

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} d x=\beta^{2}\left(\left\|\nabla e_{1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}+\left\|\nabla e_{2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\right) .
$$

Hence if

$$
\frac{\beta}{1-\sqrt{\frac{\gamma}{2 \pi}}}<1
$$

$\left|c_{a}-c_{b}\right|$ is controlled by $C\left(\beta, \gamma, \frac{a}{b}\right)\left\|\nabla X_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}$, and hence the energy of the Coulomb frame is controlled by $C\left(\beta, \gamma, \frac{a}{b}\right)\left\|\nabla X_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}$. Noting that $\left\|\nabla X_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}=\left\|A_{f}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}$, we complete the proof of Theorem 1.2.

Proof of Lemma 1.6. Note that $e_{1}=e^{-u} f_{r}$, and $e_{2}=r^{-1} e^{-u} f_{\theta}$, then we have

$$
\begin{aligned}
\left\langle d e_{1}, e_{2}\right\rangle & =\left\langle\frac{f_{r r}-f_{r} u_{r}}{e^{u}}, \frac{f_{\theta}}{r e^{u}}\right\rangle d r+\left\langle\frac{f_{r \theta}-f_{r} u_{\theta}}{e^{u}}, \frac{f_{\theta}}{r e^{u}}\right\rangle d \theta \\
& =\left\langle\frac{f_{r r}}{e^{u}}, \frac{f_{\theta}}{r e^{u}}\right\rangle d r+\left\langle\frac{f_{r \theta}}{e^{u}}, \frac{f_{\theta}}{r e^{u}}\right\rangle d \theta \\
& =\frac{-u_{\theta}}{r} d r+\left(1+r u_{r}\right) d \theta,
\end{aligned}
$$

hence

$$
\begin{aligned}
\star\left\langle d e_{1}, e_{2}\right\rangle & =\star\left(\frac{-u_{\theta}}{r} d r+\left(1+r u_{r}\right) d \theta\right) \\
& =\frac{-u_{\theta}}{r}(-r d \theta)+\left(1+r u_{r}\right) r^{-1} d r \\
& =u_{\theta} d \theta+\left(r^{-1}+u_{r}\right) d r
\end{aligned}
$$

finally we obtain

$$
d \star\left\langle d e_{1}, e_{2}\right\rangle=u_{\theta r} d r \wedge d \theta+u_{r \theta} d \theta \wedge d r=0,
$$

which implies that (e_{1}, e_{2}) is a semi-Coulomb frame on $f\left(B_{a} \backslash B_{b}\right)$. In addition, $\left\langle d e_{1}, e_{2}\right\rangle\left(\frac{\partial}{\partial \nu}\right)=0$ if and only if $\star\left\langle d e_{1}, e_{2}\right\rangle\left(\frac{\partial}{\partial \theta}\right)=0$. Note that $\star\left\langle d e_{1}, e_{2}\right\rangle\left(\frac{\partial}{\partial \theta}\right)=u_{\theta}$, so $\left\langle d e_{1}, e_{2}\right\rangle\left(\frac{\partial}{\partial \nu}\right)=0$ if and only if u are constants on the boundaries.

Proof of Theorem 1.7. Recall that $e_{1}=e^{-u} \frac{\partial f}{\partial r}$ and $e_{2}=r^{-1} e^{-u} \frac{\partial f}{\partial \theta}$, then we have

$$
\begin{gathered}
\frac{\partial e_{1}}{\partial \theta}=\frac{f_{r \theta}-f_{r} u_{\theta}}{e^{u}} \\
\frac{\partial e_{2}}{\partial \theta}=\frac{f_{\theta \theta}-f_{\theta} u_{\theta}}{r e^{u}},
\end{gathered}
$$

hence we can obtain

$$
\begin{aligned}
\left|\frac{\partial e_{1}}{\partial \theta}\right|^{2} & =e^{-2 u}\left[f_{r \theta}^{2}-2\left\langle f_{r \theta}, f_{r}\right\rangle u_{\theta}+f_{r}^{2} u_{\theta}^{2}\right] \\
& =e^{-2 u}\left[f_{r \theta}^{2}-2 e^{2 u} u_{\theta}^{2}+e^{2 u} u_{\theta}^{2}\right] \\
& =e^{-2 u} f_{r \theta}^{2}-u_{\theta}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\frac{\partial e_{2}}{\partial \theta}\right|^{2} & =r^{-2} e^{-2 u}\left[f_{\theta \theta}^{2}-2\left\langle f_{\theta \theta}, f_{\theta}\right\rangle u_{\theta}+f_{\theta}^{2} u_{\theta}^{2}\right] \\
& =r^{-2} e^{-2 u}\left[f_{\theta \theta}^{2}-\frac{\partial r^{2} e^{2 u}}{\partial \theta} u_{\theta}+f_{\theta}^{2} u_{\theta}^{2}\right] \\
& =r^{-2} e^{-2 u}\left[f_{\theta \theta}^{2}-2 r^{2} e^{2 u} u_{\theta}^{2}+r^{2} e^{2 u} u_{\theta}^{2}\right] \\
& =r^{-2} e^{-2 u} f_{\theta \theta}^{2}-u_{\theta}^{2}
\end{aligned}
$$

Similarly, we can obtain

$$
\begin{gathered}
\frac{\partial e_{1}}{\partial r}=\frac{f_{r r}-f_{r} u_{r}}{e^{u}}, \\
\frac{\partial e_{2}}{\partial r}=\frac{f_{r \theta}-f_{\theta}\left(\frac{1}{r}+u_{r}\right)}{r e^{u}},
\end{gathered}
$$

and

$$
\begin{gathered}
\left|\frac{\partial e_{1}}{\partial r}\right|^{2}=e^{-2 u} f_{r r}^{2}-u_{r}^{2} \\
\left|\frac{\partial e_{2}}{\partial r}\right|^{2}=r^{-2} e^{-2 u} f_{r \theta}^{2}-\left(\frac{1}{r}+u_{r}\right)^{2}
\end{gathered}
$$

Summarizing the above computations and noting that $|d \theta|^{2}=r^{-2}$, we have

$$
\begin{gather*}
\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2}=r^{-2} e^{-2 u} f_{r \theta}^{2}+r^{-4} e^{-2 u} f_{\theta \theta}^{2}-2 r^{-2} u_{\theta}^{2}, \tag{2.6}\\
\left|\frac{\partial e_{2}}{\partial r} d r\right|^{2}+\left|\frac{\partial e_{1}}{\partial r} d r\right|^{2}=e^{-2 u} f_{r r}^{2}+r^{-2} e^{-2 u} f_{r \theta}^{2}-u_{r}^{2}-\left(\frac{1}{r}+u_{r}\right)^{2} . \tag{2.7}
\end{gather*}
$$

On the other hand, by the definition of the second fundamental form, we have

$$
\begin{aligned}
A_{r r} & =f_{r r}-e^{-2 u}\left\langle f_{r r}, f_{r}\right\rangle f_{r}-r^{-2} e^{-2 u}\left\langle f_{r r}, f_{\theta}\right\rangle f_{\theta}, \\
A_{\theta \theta} & =f_{\theta \theta}-e^{-2 u}\left\langle f_{\theta \theta}, f_{r}\right\rangle f_{r}-r^{-2} e^{-2 u}\left\langle f_{\theta \theta}, f_{\theta}\right\rangle f_{\theta},
\end{aligned}
$$

therefore we have

$$
\begin{aligned}
A_{r r}^{2} & =f_{r r}^{2}-2\left\langle f_{r r}, f_{r}\right\rangle^{2} e^{-2 u}-2\left\langle f_{r r}, f_{\theta}\right\rangle^{2} r^{-2} e^{-2 u}+\left\langle f_{r r}, f_{r}\right\rangle^{2} e^{-2 u}+\left\langle f_{r r}, f_{\theta}\right\rangle^{2} r^{-2} e^{-2 u} \\
& =f_{r r}^{2}-\left\langle f_{r r}, f_{r}\right\rangle^{2} e^{-2 u}-\left\langle f_{r r}, f_{\theta}\right\rangle^{2} r^{-2} e^{-2 u} \\
& =f_{r r}^{2}-u_{r}^{2} e^{2 u}-u_{\theta}^{2} r^{-2} e^{2 u}
\end{aligned}
$$

and similar computations implies that

$$
A_{\theta \theta}^{2}=f_{\theta \theta}^{2}-r^{4} e^{2 u}\left(\frac{1}{r}+u_{r}\right)^{2}-r^{2} e^{2 u} u_{\theta}^{2}
$$

Note that f is minimal, so

$$
\operatorname{Trace}(A)=g^{r r} A_{r r}+2 g^{r \theta} A_{r \theta}+g^{\theta \theta} A_{\theta \theta}=g^{r r} A_{r r}+g^{\theta \theta} A_{\theta \theta}=0,
$$

where $g^{r r}=e^{-2 u}, g^{\theta \theta}=r^{-2} e^{-2 u}$ hence

$$
A_{r r}=-r^{-2} A_{\theta \theta},
$$

which implies that

$$
A_{r r}^{2}=r^{-4} A_{\theta \theta}^{2}
$$

Thus we obtain

$$
\begin{equation*}
f_{r r}^{2}-u_{r}^{2} e^{2 u}=r^{-4} f_{\theta \theta}^{2}-e^{2 u}\left(\frac{1}{r}+u_{r}\right)^{2} \tag{2.8}
\end{equation*}
$$

Note that

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} d x=\frac{1}{2} \int_{B_{a} \backslash B_{b}}\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2} d x,
$$

if and only if

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} d x=\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial r} d r\right|^{2}+\left|\frac{\partial e_{1}}{\partial r} d r\right|^{2} d x,
$$

thus we can get by combining (2.6)-(2.8) that

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} d x=\frac{1}{2} \int_{B_{a} \backslash B_{b}}\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2} d x,
$$

if and only if

$$
\int_{B_{a} \backslash B_{b}}\left(\frac{1}{r}+\frac{\partial u}{\partial r}\right)^{2} d x=\int_{B_{a} \backslash B_{b}} r^{-2}\left(\frac{\partial u}{\partial \theta}\right)^{2} d x .
$$

Proof of Corollary 1.8. From Theorem 1.7 we know that

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} d x=\frac{1}{2} \int_{B_{a} \backslash B_{b}}\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2} d x,
$$

implies

$$
\int_{B_{a} \backslash B_{b}}\left(\frac{1}{r}+\frac{\partial u}{\partial r}\right)^{2} d x=\int_{B_{a} \backslash B_{b}} r^{-2}\left(\frac{\partial u}{\partial \theta}\right)^{2} d x,
$$

hence if u is radially symmetric we must have that

$$
\int_{B_{a} \backslash B_{b}}\left(\frac{1}{r}+\frac{\partial u}{\partial r}\right)^{2} d x=0
$$

which implies that

$$
\frac{1}{r}+\frac{\partial u}{\partial r}=0
$$

and so there is a constant c such that

$$
u(r)=-\log r+c .
$$

Hence we have $\Delta u=0$, which implies that the Gauss curvature $K=0$, and so $A=0$. By Theorem 1.10 (note that u are constants on boundaries and hence (e_{1}, e_{2}) is a Coulomb frame), we know that (e_{1}, e_{2}) has zero energy and so e_{1} and e_{2} are constant vectors.

Proof of Theorem 1.10. We know that $\left(e_{1}, e_{2}\right)$ is a Coulomb frame and so when (1.6) holds we have that

$$
\int_{B_{a} \backslash B_{b}}\left|\frac{\partial e_{2}}{\partial \theta} d \theta\right|^{2}+\left|\frac{\partial e_{1}}{\partial \theta} d \theta\right|^{2} d x=\frac{1}{2} \int_{B_{a} \backslash B_{b}}\left|\nabla e_{1}\right|^{2}+\left|\nabla e_{2}\right|^{2} d x
$$

by Theorem 1.7. Then the constant β in Theorem 1.2 is $\frac{\sqrt{2}}{2}$ and so when

$$
\int_{B_{a} \backslash B_{b}}\left|K_{f}\right| d u_{f} \leqslant \gamma<(3-2 \sqrt{2}) \pi
$$

we have (1.5) holds, and then we get the desired inequality (1.9) from Theorem 1.2.

Proof of Theorem 1.12. Let $\left(e_{m 1}, e_{m 2}\right)$ be the canonical semi-Coulomb frame on $f_{m}\left(B_{a} \backslash B_{b}\right)$, then by Theorem 1.10 we have the following inequality

$$
\int_{B_{a} \backslash B_{b}}\left|\nabla e_{m 1}\right|^{2}+\left|\nabla e_{m 2}\right|^{2} d x \leqslant C \int_{B_{a} \backslash B_{b}}\left|A_{m}\right|^{2} d \mu_{f_{m}}
$$

where C is independent of m.
Note that we have

$$
-\Delta u_{m}=K_{m} e^{2 u_{m}}=\mathcal{K}\left(e_{m 1}, e_{m 2}\right) \quad \text { in } B_{a} \backslash B_{b}
$$

where K_{m} is the Gauss curvature.
Let v_{m} solves the following equation

$$
\begin{cases}-\Delta v_{m}=\mathcal{K}\left(e_{m 1}, e_{m 2}\right) & \text { in } B_{a} \backslash B_{b} \\ v_{m}=0 & \text { on } \partial\left(B_{a} \backslash B_{b}\right)\end{cases}
$$

Let $e_{m i}=\left(e_{m i}^{1}, \ldots, e_{m i}^{n}\right), i=1,2$, and $v_{m}=v_{m}^{1}+\cdots+v_{m}^{n}$, such that for each $1 \leqslant k \leqslant n$,

$$
\begin{cases}-\Delta v_{m}^{k}=\mathcal{K}\left(e_{m 1}^{k}, e_{m 2}^{k}\right) & \text { in } B_{a} \backslash B_{b} \\ v_{m}^{k}=0 & \text { on } \partial\left(B_{a} \backslash B_{b}\right)\end{cases}
$$

then by Wente's inequality we obtain

$$
\left\|v_{m}^{k}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)} \leqslant \frac{1}{2 \pi}\left\|\nabla e_{m 1}^{k}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}\left\|\nabla e_{m 2}^{k}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}
$$

hence

$$
\begin{aligned}
\left\|v_{m}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)} & \leqslant \sum_{k}\left\|v_{m}^{k}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)} \\
& \leqslant \sum_{k} \frac{1}{2 \pi}\left\|\nabla e_{m 1}^{k}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}\left\|\nabla e_{m 2}^{k}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)} \\
& \leqslant \frac{1}{2 \pi}\left\|\nabla e_{m 1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}\left\|\nabla e_{m 2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}
\end{aligned}
$$

where in the last inequality we have used Holder's inequality.
By using the equation satisfied by v_{m} and by integral by parts we have

$$
\begin{aligned}
\int_{B_{a} \backslash B_{b}}-v_{m} \Delta v_{m} & =\int v_{m} \nabla e_{m 1} \nabla^{\perp} e_{m 2} d x \\
& \leqslant\left\|v_{m}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)}\left\|\nabla e_{m 1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}\left\|\nabla e_{m 2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)} \\
& \leqslant \frac{1}{2 \pi}\left\|\nabla e_{m 1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\left\|\nabla e_{m 2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}
\end{aligned}
$$

That is

$$
\left\|\nabla v_{m}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2} \leqslant \frac{1}{2 \pi}\left\|\nabla e_{m 1}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}\left\|\nabla e_{m 2}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}^{2}
$$

On the other hand,

$$
\begin{cases}\Delta\left(u_{m}-v_{m}\right)=0 & \text { in } B_{a} \backslash B_{b} \\ u_{m}-v_{m}=c_{m a} & \text { on } \partial B_{a} \\ u_{m}-v_{m}=c_{m b} & \text { on } \partial B_{b}\end{cases}
$$

thus we have

$$
u_{m}-v_{m}=\frac{c_{m a}-c_{m b}}{\log \frac{a}{b}} \log |x|+\frac{c_{m b} \log a-c_{m a} \log b}{\log \frac{a}{b}}
$$

which implies that

$$
\begin{equation*}
\left\|\nabla u_{m}\right\|_{L^{2}\left(B_{a} \backslash B_{b}\right)}+\left\|u_{m}\right\|_{L^{\infty}\left(B_{a} \backslash B_{b}\right)} \leqslant C<\infty \tag{2.9}
\end{equation*}
$$

for some constant C independent of m.
Then by using an argument given by [6, Chapter 5], we can get that f_{0} is a conformal immersion with bounded conformal factor as the following: Because f_{m} is conformal, there exists $0 \leqslant \theta_{m} \in C^{\infty}<$ 2π such that

$$
\begin{equation*}
d f_{m}=e^{u_{m}}\left(\left(\cos \theta_{m} e_{m 1}+\sin \theta_{m} e_{m 2}\right) d x_{1}+\left(-\sin \theta_{m} e_{m 1}+\cos \theta_{m} e_{m 2}\right) d x_{2}\right) \tag{2.10}
\end{equation*}
$$

In particular, projecting the equation $d^{2} f_{m}=0$ along $e_{m 1}$ and $e_{m 2}$ we obtain

$$
\left\{\begin{array}{l}
\frac{\partial \theta_{m}}{\partial x_{1}}+\frac{\partial u_{m}}{\partial x_{2}}=\omega_{m 2}^{1}\left(\frac{\partial}{\partial x_{1}}\right) \\
\frac{\partial \theta_{m}}{\partial x_{2}}-\frac{\partial u_{m}}{\partial x_{1}}=\omega_{m 2}^{1}\left(\frac{\partial}{\partial x_{2}}\right)
\end{array}\right.
$$

where $\omega_{m 2}^{1}=\left\langle d e_{m 2}, e_{m 1}\right\rangle$.

Note that these equations imply θ_{m} is bounded in $W^{1,2}$, hence we have that (we do not distinguish a sequence and its subsequences)

$$
\left(b_{m}, \theta_{m}, u_{m}\right) \rightharpoonup(b, \theta, u) \quad \text { weakly in } W^{1,2}
$$

and so

$$
\left(b_{m}, \theta_{m}, u_{m}\right) \rightarrow(b, \theta, u) \quad \text { in } L^{2}
$$

therefore we have

$$
\left(b_{m}, \theta_{m}, u_{m}\right) \rightarrow(b, \theta, u) \quad \text { a.e. in } B_{a} \backslash B_{b},
$$

where $b_{m}=\left(e_{m 1}, e_{m 2}\right)$, and $b=\left(e_{1}, e_{2}\right)$.
By passing to the limit in (2.10) we get

$$
\begin{equation*}
d f_{0}=e^{u}\left(\left(\cos \theta e_{1}+\sin \theta e_{2}\right) d x_{1}+\left(-\sin \theta e_{1}+\cos \theta e_{2}\right) d x_{2}\right) \tag{2.11}
\end{equation*}
$$

which implies that f_{0} is conformal, with bounded conformal factor e^{u}.
Because u satisfies the following Wente's type equation

$$
-\Delta u=\nabla e_{1} \nabla^{\perp} e_{2} \quad \text { in } B_{a} \backslash B_{b}
$$

hence u is continuous.
Note that

$$
\Delta f_{m}=0 \quad \text { in } B_{a} \backslash B_{b}
$$

and

$$
f_{m} \rightarrow f_{0} \quad \text { weakly in } W^{1,2}\left(B_{a} \backslash B_{b}\right)
$$

therefore we have that

$$
\begin{equation*}
\Delta f_{0}=0 \tag{2.12}
\end{equation*}
$$

On the other hand, because f_{0} is a conformal immersion with $\left|\nabla f_{0}\right|^{2}=2 e^{2 u}$, we have that

$$
\begin{equation*}
\Delta f_{0}=e^{2 u} H_{f_{0}} \tag{2.13}
\end{equation*}
$$

where $H_{f_{0}}$ is the mean curvature vector of f_{0}.
By comparing (2.12) with (2.13) we get that $H_{f_{0}}=0$, and so f_{0} is a minimal immersion.

Acknowledgments

The author would like to thank his advisor, Professor Guofang Wang for discussions on this subject and constant encouragement. He also appreciate Professor Ernst Kuwert for discussions. At last but not the least I would like to thank Professor Yuxiang Li for a lot of discussions on this subject.

Appendix A

In this appendix, we review briefly some basic facts of Grassmannian manifolds. The concept in this appendix can be found in any textbook on the theory of Grassmannian manifolds.

Let

$$
\Lambda^{2}=\Lambda^{2}\left(\mathbb{R}^{n}\right)=\left\{a_{i j} v^{i} \wedge v^{j}: v^{i}, v^{j} \in \mathbb{R}^{n}\right\}
$$

Λ^{2} is a linear space of dimension $\frac{n(n-1)}{2}$. If e_{k} is a normal basis of \mathbb{R}^{n}, then $\left\{e_{i} \wedge e_{j}: i<j\right\}$ is a basis of Λ^{2}. The standard inner product of Λ^{2} is defined by:

$$
\left\langle v_{1} \wedge v_{2}, w_{1} \wedge w_{2}\right\rangle:=\left(v_{1} \cdot w_{1}\right)\left(v_{2} \cdot w_{2}\right)-\left(v_{1} \cdot w_{2}\right)\left(v_{2} \cdot w_{1}\right)
$$

So, $\left\{e_{i} \wedge e_{j}\right\}$ is a normal basis of Λ^{2}.
Let $P\left(\Lambda^{2}\right)$ be the projective space getting from Λ^{2}. Recall that there is a nature map π from the unit sphere of Λ^{2} to $P\left(\Lambda^{2}\right)$ which is a covering map.

Let ψ to be the Plücker embedding from $G(2, n)$ to $P\left(\Lambda^{2}\right)$, which endows $G(2, n)$ a Riemannian metric. Thus, given a $b=\left(e_{1}, e_{2}\right) \in W^{1,2}$, we think of $\varphi(x)=e_{1} \wedge e_{2}$ as a map from Ω to the unit sphere of Λ^{2} (also a map to Λ^{2}), then the normal of $\frac{\partial\left(e_{1} \wedge e_{2}\right)}{\partial x}$ is just the normal of $\frac{\partial e_{1}}{\partial x} \wedge e_{2}+e_{1} \wedge \frac{\partial e_{2}}{\partial x}$ in Λ^{2}. By a direct calculation, we get

$$
\begin{aligned}
\left|\frac{\partial\left(e_{1} \wedge e_{2}\right)}{\partial x}\right|^{2} & =\left|\frac{\partial e_{1}}{\partial x} \wedge e_{2}+e_{1} \wedge \frac{\partial e_{2}}{\partial x}\right|^{2} \\
& =\left|\frac{\partial e_{1}}{\partial x} \wedge e_{2}\right|^{2}+\left|e_{1} \wedge \frac{\partial e_{2}}{\partial x}\right|^{2}+2\left\langle\frac{\partial e_{1}}{\partial x} \wedge e_{2}, e_{1} \wedge \frac{\partial e_{2}}{\partial x}\right\rangle \\
& =\left|\frac{\partial e_{1}}{\partial x}\right|^{2}+\left|\frac{\partial e_{2}}{\partial x}\right|^{2}-2\left|e_{1} \frac{\partial e_{2}}{\partial x}\right|^{2}
\end{aligned}
$$

So we have

$$
\begin{equation*}
|\nabla \varphi|^{2}=|\nabla b|^{2}-2\left|\left\langle d e_{1}, e_{2}\right\rangle\right|^{2} \tag{A.1}
\end{equation*}
$$

Now, we prove (1.1). Let $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ be another positively oriented norm basis of X. Then we have

$$
e_{1}^{\prime}=\lambda e_{1}+\mu e_{2}, \quad e_{2}^{\prime}=-\mu e_{1}+\lambda e_{2}
$$

where $\lambda=\left(e_{1}^{\prime}, e_{1}\right)$ and $\mu=\left(e_{1}^{\prime}, e_{2}\right)$. We have

$$
\begin{aligned}
\frac{\partial e_{1}^{\prime}}{\partial x^{i}} & =\frac{\partial \lambda}{\partial x^{i}} e_{1}+\lambda \frac{\partial e_{1}}{\partial x^{i}}+\frac{\partial \mu}{\partial x^{i}} e_{2}+\mu \frac{\partial e_{2}}{\partial x^{i}} \\
\frac{\partial e_{2}^{\prime}}{\partial x^{i}} & =-\frac{\partial \mu}{\partial x^{i}} e_{1}-\mu \frac{\partial e_{1}}{\partial x^{i}}+\frac{\partial \lambda}{\partial x^{i}} e_{2}+\lambda \frac{\partial e_{2}}{\partial x^{i}}
\end{aligned}
$$

We have

$$
\begin{aligned}
\frac{\partial e_{1}^{\prime}}{\partial x^{1}} \frac{\partial e_{2}^{\prime}}{\partial x^{2}}= & -\frac{\partial \lambda}{\partial x^{1}} \frac{\partial \mu}{\partial x^{2}}+\lambda \frac{\partial \lambda}{\partial x^{1}} e_{1} \frac{\partial e_{2}}{\partial x^{2}}-\lambda \mu \frac{\partial e_{1}}{\partial x^{1}} \frac{\partial e_{1}}{\partial x^{2}}+\lambda \frac{\partial \lambda}{\partial x^{2}} \frac{\partial e_{1}}{\partial x^{1}} e_{2}+\lambda^{2} \frac{\partial e_{1}}{\partial x^{1}} \frac{\partial e_{2}}{\partial x^{2}} \\
& -\mu \frac{\partial \mu}{\partial x^{1}} e_{2} \frac{\partial e_{1}}{\partial x^{2}}+\frac{\partial \mu}{\partial x^{1}} \frac{\partial \lambda}{\partial x^{2}}-\mu \frac{\partial \mu}{\partial x^{2}} \frac{\partial e_{2}}{\partial x^{1}} e_{1}-\mu^{2} \frac{\partial e_{2}}{\partial x^{1}} \frac{\partial e_{1}}{\partial x^{2}}+\mu \lambda \frac{\partial e_{2}}{\partial x^{1}} \frac{\partial e_{2}}{\partial x^{2}}, \\
\frac{\partial e_{1}^{\prime}}{\partial x^{2}} \frac{\partial e_{2}^{\prime}}{\partial x^{1}}= & -\frac{\partial \lambda}{\partial x^{2}} \frac{\partial \mu}{\partial x^{1}}+\lambda \frac{\partial \lambda}{\partial x^{2}} e_{1} \frac{\partial e_{2}}{\partial x^{1}}-\lambda \mu \frac{\partial e_{1}}{\partial x^{2}} \frac{\partial e_{1}}{\partial x^{1}}+\lambda \frac{\partial \lambda}{\partial x^{1}} \frac{\partial e_{1}}{\partial x^{2}} e_{2}+\lambda^{2} \frac{\partial e_{1}}{\partial x^{2}} \frac{\partial e_{2}}{\partial x^{1}} \\
& -\mu \frac{\partial \mu}{\partial x^{2}} e_{2} \frac{\partial e_{1}}{\partial x^{1}}+\frac{\partial \mu}{\partial x^{2}} \frac{\partial \lambda}{\partial x^{1}}-\mu \frac{\partial \mu}{\partial x^{1}} \frac{\partial e_{2}}{\partial x^{2}} e_{1}-\mu^{2} \frac{\partial e_{2}}{\partial x^{2}} \frac{\partial e_{1}}{\partial x^{1}}+\mu \lambda \frac{\partial e_{2}}{\partial x^{2}} \frac{\partial e_{2}}{\partial x^{1}} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\frac{\partial e_{1}^{\prime}}{\partial x^{1}} \frac{\partial e_{2}^{\prime}}{\partial x^{2}}-\frac{\partial e_{1}^{\prime}}{\partial x^{2}} \frac{\partial e_{2}^{\prime}}{\partial x^{1}}= & -2\left(\frac{\partial \lambda}{\partial x^{1}} \frac{\partial \mu}{\partial x^{2}}-\frac{\partial \lambda}{\partial x^{2}} \frac{\partial \mu}{\partial x^{1}}\right)+2\left(\lambda \frac{\partial \lambda}{\partial x^{1}}+\mu \frac{\partial \mu}{\partial x^{1}}\right) e_{1} \frac{\partial e_{2}}{\partial x^{2}} \\
& +2\left(\lambda \frac{\partial \lambda}{\partial x^{2}}+\mu \frac{\partial \mu}{\partial x^{2}}\right) e_{1} \frac{\partial e_{2}}{\partial x^{1}}+\left(\lambda^{2}+\mu^{2}\right)\left(\frac{\partial e_{1}}{\partial x^{1}} \frac{\partial e_{2}}{\partial x^{2}}-\frac{\partial e_{1}}{\partial x^{2}} \frac{\partial e_{2}}{\partial x^{1}}\right)
\end{aligned}
$$

Since $\lambda^{2}+\mu^{2}=1$, we have $\frac{\partial \lambda}{\partial x^{1}} \frac{\partial \mu}{\partial x^{2}}-\frac{\partial \lambda}{\partial x^{2}} \frac{\partial \mu}{\partial x^{1}}=0$, and $\lambda \frac{\partial \lambda}{\partial x^{i}}+\mu \frac{\partial \mu}{\partial x^{i}}=0$, then we get (1.1).
We extend e_{1}, e_{2} to a normal basis $e_{3}, \ldots, e_{n} \in W^{1,2}$. Such $e_{i}(i \geqslant 3)$ exists because φ is also a $W^{1,2}$ map from B to $G(2, n)$.

We set

$$
d e_{i}=w_{i j}^{k} d x^{j} \otimes e_{k}+B_{i j}^{\alpha} d x^{j} \otimes e_{\alpha}
$$

where $i=1,2$ and $\alpha \in\{3,4, \ldots, n\}$. Obviously, $w_{1 i}^{1}=w_{2 i}^{2}=0, w_{2 i}^{1}=-w_{1 i}^{2}=\left\langle\frac{\partial e_{1}}{\partial x^{i}}, e_{2}\right\rangle$, hence (A.1) is equivalent to

$$
|\nabla \varphi|^{2}=\sum_{i j, \alpha}\left|B_{i j}^{\alpha}\right|^{2}
$$

We have

$$
\begin{aligned}
\mathcal{K}(\varphi) & =\left(w_{11}^{k} e_{k}+B_{11}^{\alpha} n_{\alpha}\right)\left(w_{22}^{k} e_{k}+B_{22}^{\alpha} n_{\alpha}\right)-\left(w_{12}^{k} e_{k}+B_{12}^{\alpha} n_{\alpha}\right)\left(w_{21}^{k} e_{k}+B_{21}^{\alpha} n_{\alpha}\right) \\
& =\sum_{\alpha}\left(B_{11}^{\alpha} \cdot B_{22}^{\alpha}-\left|B_{12}^{\alpha}\right|^{2}\right),
\end{aligned}
$$

therefore we obtain

$$
\begin{equation*}
\mathcal{K}(\varphi) \leqslant \frac{1}{2}|\nabla \varphi|^{2} . \tag{A.2}
\end{equation*}
$$

Now, we consider the Gauss map of a conformal map $f: \Omega \rightarrow \mathbb{R}^{n}$. Let $u=\frac{1}{2} \log \left(|\nabla f|^{2} / 2\right)$ and denote by X_{f} the Gauss map induced by f.
X_{f} can be expressed as

$$
X_{f}=\left(e^{-u} \frac{\partial f}{\partial x^{1}}\right) \wedge\left(e^{-u} \frac{\partial f}{\partial x^{2}}\right)
$$

where $u=\frac{1}{2} \log \left|\frac{\partial f}{\partial x^{1}}\right|^{2}$. We will calculate $\left|\nabla X_{f}\right|^{2}$. Since

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{1} \partial x^{1}} \cdot \frac{\partial f}{\partial x^{1}}=\frac{1}{2} \frac{\partial}{\partial x^{1}}\left|\frac{\partial f}{\partial x^{1}}\right|^{2}=e^{2 u} \frac{\partial u}{\partial x^{1}}, \\
\frac{\partial^{2} f}{\partial x^{1} \partial x^{1}} \cdot \frac{\partial f}{\partial x^{2}}=-\frac{\partial f}{\partial x^{1}} \cdot \frac{\partial^{2} f}{\partial x^{1} \partial x^{2}}=-\frac{1}{2} \frac{\partial}{\partial x^{2}}\left|\frac{\partial f}{\partial x^{1}}\right|^{2}=-e^{2 u} \frac{\partial u}{\partial x^{2}},
\end{gathered}
$$

and

$$
\frac{\partial^{2} f}{\partial x^{1} \partial x^{1}}=A_{11}+\frac{\partial^{2} f}{\partial x^{1} \partial x_{1}} \cdot \frac{\partial f}{\partial x^{1}} e^{-2 u} \frac{\partial f}{\partial x^{1}}+\frac{\partial^{2} f}{\partial x^{1}} \cdot \frac{\partial f}{\partial x^{2}} e^{-2 u} \frac{\partial f}{\partial x^{2}},
$$

we get

$$
\frac{\partial}{\partial x^{1}}\left(e^{-u} \frac{\partial f}{\partial x^{1}}\right)=e^{-u} \frac{\partial^{2} f}{\partial x^{1} \partial x_{1}}-e^{-u} \frac{\partial u}{\partial x^{1}} \frac{\partial f}{\partial x^{1}}=e^{-u}\left(A_{11}-\frac{\partial f}{\partial x^{2}} \frac{\partial u}{\partial x^{2}}\right) .
$$

In the same way, we get

$$
\begin{aligned}
\frac{\partial}{\partial x^{2}}\left(e^{-u} \frac{\partial f}{\partial x^{1}}\right) & =e^{-u}\left(A_{12}+\frac{\partial f}{\partial x^{1}} \frac{\partial u}{\partial x^{2}}\right), \\
\frac{\partial}{\partial x^{1}}\left(e^{-u} \frac{\partial f}{\partial x^{2}}\right) & =e^{-u}\left(A_{21}+\frac{\partial f}{\partial x^{2}} \frac{\partial u}{\partial x^{1}}\right), \\
\frac{\partial}{\partial x^{2}}\left(e^{-u} \frac{\partial f}{\partial x^{2}}\right) & =e^{-u}\left(A_{22}-\frac{\partial f}{\partial x^{1}} \frac{\partial u}{\partial x^{1}}\right) .
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
\mathcal{K}\left(X_{f}\right)=e^{-2 u}\left(A_{11} A_{22}-A_{12}^{2}\right)=K e^{2 u} \tag{A.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla X_{f}\right|^{2}=e^{-2 u} \sum\left|A_{i j}\right|^{2}, \quad \text { i.e. } \quad\left|\nabla_{g_{f}} X_{f}\right|^{2} d \mu_{g_{f}}=|A|^{2} d \mu_{g_{f}} \tag{A.4}
\end{equation*}
$$

Appendix B

In this part, we will give an alternative proof about that f_{0} is conformal in Theorem 1.12. We need a special case of the following theorem proved by Hardt, Lin and Mou [7].

Theorem B.1. Let Ω be a smooth bounded domain in R^{2}, and suppose $1<p<\infty$ and for each $i=1,2, \ldots$, $u_{i} \in W^{1, p}(\Omega)$ is a weak solution of

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+f_{i}=0
$$

with $\sup _{i}\left\|u_{i}\right\|_{W^{1, p}}+\sup _{i}\left\|f_{i}\right\|_{L^{1}}<\infty$. If $u_{i} \rightarrow u$ weakly in $W^{1, p}$, then $u_{i} \rightarrow u$ strongly in $W^{1, q}$, whenever $1<q<p$.

Note that f_{m} is conformal, that is

$$
\left|\frac{\partial f_{m}}{\partial x_{1}}\right|^{2}=\left|\frac{\partial f_{m}}{\partial x_{2}}\right|^{2}, \quad \frac{\partial f_{m}}{\partial x_{1}} \cdot \frac{\partial f_{m}}{\partial x_{2}}=0
$$

and f_{m} is minimal, that is

$$
\Delta f_{m}=0
$$

Thus by the above theorem we have that

$$
f_{m} \rightarrow f_{0} \quad \text { strongly in } W^{1, p}
$$

whenever $1<p<2$, which implies that

$$
\frac{\partial f_{m}}{\partial x_{1}} \rightarrow \frac{\partial f_{0}}{\partial x_{1}} \quad \text { a.e., } \quad \text { and } \quad \frac{\partial f_{m}}{\partial x_{2}} \rightarrow \frac{\partial f_{0}}{\partial x_{2}} \quad \text { a.e. }
$$

Therefore we obtain

$$
\left|\frac{\partial f_{0}}{\partial x_{1}}\right|^{2}=\left|\frac{\partial f_{0}}{\partial x_{2}}\right|^{2}, \quad \frac{\partial f_{0}}{\partial x_{1}} \cdot \frac{\partial f_{0}}{\partial x_{2}}=0
$$

implying that f_{0} is conformal.

References

[1] Sami Baraket, Estimates of the best constant involving the L^{∞} norm in Wente's inequality, Ann. Fac. Sci. Toulouse Math. V (3) (1996) 373-385.
[2] H. Brezis, J.-M. Coron, Multiple solutions of H-system and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984) 149-187.
[3] F. Bethuel, J.-M. Ghidaglia, Improved regularity of elliptic equations involving Jacobians and applications, J. Math. Pures Appl. (9) 72 (5) (1993) 441-474.
[4] F. Bethuel, J.-M. Ghidaglia, Some applications of coarea formula to partial differential equations, in: A. Pràstaro, Th.M. Rassias (Eds.), Geometry in Partial Differential Equations, World Sci. Publishing, River Edge, NJ, 1994, pp. 1-17.
[5] Y. Ge, Estimations of the best constant involving the L^{2} norm in Wente's inequality and compact H-surfaces in Euclidean space, ESAIM Control Optim. Calc. Var. 3 (1998) 263-300.
[6] F. Hélein, Harmonic maps, conservation laws and moving frames, second edition, Cambridge Tracts in Math., vol. 150, Cambridge University Press, Cambridge, 2002, translated from the 1996 French original, with a foreword by James Eells.
[7] R. Hardt, F.H. Lin, L. Mou, Strong convergence of p-harmonic mappings, in: M. Chipot, J.S.J. Paulin, I. Shafris (Eds.), Partial Defferential Equations: The Metz Surveys, 3, in: Pitman Res., Longman Scientific Technical, 1994.
[8] E. Kuwert, Y. Li, $W^{2,2}$-conformal immersions of a closed Riemann surface into \mathbb{R}^{n}, Comm. Anal. Geom. 20 (2012) 313-340.
[9] Yuxiang Li, Yong Luo, Hongyan Tang, On the moving frame of a conformal map from 2-disk into \mathbb{R}^{n}, Calc. Var. Partial Differential Equations (2011), http://dx.doi.org/10.1007/s00526-011-0471-2, in press.
[10] S. Müller, V. Šverák, On surfaces of finite total curvature, J. Differential Geom. 42 (1995) 229-258.
[11] P. Topping, The optimal constant in Wente's L^{∞} estimate, Comment. Math. Helv. 72 (1997) 316-328.
[12] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969) 318-344.

[^0]: E-mail address: yong.luo@math.uni-freiburg.de.
 1 The author is supported by the DFG Collaborative Research Center SFB/Transregio 71.
 0022-0396/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jde.2012.08.036

