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Abstract

This paper contributes towards establishing the category QCB, of topological quotients of count-
ably based spaces, and its subcategory TP, of topological predomains, as a flexible framework for
denotational semantics of programming languages. In particular, we show that both categories
have free algebras for arbitrary countable parametrised equational theories, and are thus, following
ideas of Plotkin and Power, able to model a wide range of computational effects. Furthermore, we
give an explicit construction of the free algebras.
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1 Introduction

One of the main tasks in denotational semantics is to provide a mathemati-
cal framework for modelling programming languages that supports many type
constructions and models a wide variety of computational phenomena. The
most popular approach to this is (classical) domain theory (see [1]), in which
categories of directed complete partially ordered sets (dcpos) and continuous
maps are considered. Domain theory has succeeded in providing categories
that are cartesian closed (and hence allow type constructions such as prod-
ucts and function spaces), categories that model nontermination, recursion
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and recursive types, categories that allow polymorphic type constructions and
categories that support other computational phenomena such as nondetermin-
ism or probabilistic computations (via powerdomain constructions). However,
domain theory has not succeeded to provide a single category combining all
these positive results. Another, simpler, approach to denotational semantics
has been proposed by Smyth [19] and is based on the analogy of datatypes to
topological spaces and programs to continuous functions. The goal of topo-
logical domain theory is to combine these approaches and provide a category
of topological spaces that models all of the features mentioned above.

The category underlying our proposed framework is QCB, the category
of topological quotients of countably-based topological spaces, which has been
shown to be cartesian-closed (see [4,8]) and to have a full reflective exponential
ideal TP (see [2,18]) of topological predomains, which allows domain-theoretic
constructions in a topological setting. One striking property is that these
categories can be viewed as subcategories in the realizability topos over Scott’s
combinatory algebra Pω (see [2]), from which it follows that polymorphism
can be modelled in them.

The goal of the present paper is to show how computational effects in the
sense of Moggi [9,10] can be modelled in QCB and TP, via a free algebra
approached based on the work of Plotkin and Power [12,13,14].

In general, the underlying concept of a functional programming language
is given by a clean mathematical calculus, the λ-calculus, enriched with some
basic features, such as basic types, constants or functions. However, in com-
puting non-functional behaviour occurs, such as for instance nondeterministic
choice, nontermination, exceptions, side-effects or input/output, and these so-
called computational effects are in general not covered by the pure λ-calculus.
Thus, if one aims at giving semantics to an actual implemented programming
language, the relevant computational effects have to be taken into account.

The initial approach to this was taken by Moggi [9,10], who distinguished
between types of values and types of computations. For each type of values X
in the language, there is a corresponding type of computations TX, on which a
computational effect can be modelled. In Moggi’s theory, T is the functor of a
monad, and he introduced the computational λ-calculus, for which a semantic
model is given by the Kleisli-category CT over some cartesian-closed category
C. Recently, Plotkin and Power [12,13,14] have shown that a surprising num-
ber of the computationally interesting monads are generated as free algebras
for equational theories in the sense of universal algebra. What is striking
about this approach is that the associated algebraic operations are exactly
the natural computational primitives for generating the relevant effects. For
example, if one considers a binary operation choose : TX2 → TX subject to
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equations expressing idempotence, commutativity and associativity, then the
corresponding free algebra functor will be the functor for the nondeterminism
monad. Thus, Plotkin and Power reformulated Moggi’s approach, taking the
operations of the effects as primitive, relating them by equations to get an
equational theory in the sense of universal algebra, and then calculating the
corresponding monad T as the functor that associates to an object X the
free algebra TX of this equational theory. In view of Plotkin and Power’s
approach, one would like to show that a general framework for denotational
semantics supports a free algebra construction for a sufficiently rich class of
equational theories, in order to model a wide class of computational effects.

Therefore, we show that the category QCB and its subcategory TP have
free algebras for countable parametrised equational theories, and thus indeed
many computational effects can be modelled in them. As the objects of QCB
are topological spaces, we start by looking at free algebras in Top, the category
of topological spaces and continuous maps. Work on free algebras for finitary
(non-parametrised) equational theories in Top has been done for instance by
Malcev [7] and Taylor [20]. However, even though free algebras for equational
theories exist in Top, a well-known categorical colimit construction does not
work here. Equations cause particular problems, due to the lack of cartesian
closedness of Top. Therefore, Porst [15] has investigated free algebras for
coreflective cartesian closed subcategories of Top, and shown that here the
situation improves. In [8], QCB has been introduced as a subcategory of Seq,
the category of sequential spaces and continuous maps, which is a coreflective
cartesian closed subcategory of Top. We will show that QCB is closed under
the free algebra construction in Seq, and that free algebras in TP are obtained
using the reflection functor. Some of our results on free algebras for Top and
Seq in this paper are generalisations of known results for finitary equational
theories to countable parametrised equational theories, such as e.g. Lemma
3.3 below. Other results, e.g. Theorem 3.8, seem to be new.

The main result of this paper is the proof that free algebras for a wide
class of equational theories exist in QCB and TP, which enables us to model
computational effects in the sense of Plotkin and Power. Moreover, we give an
explicit construction of the free algebras in both categories, which promises to
be very useful for combining our results with other properties of the framework
QCB.

We start by introducing QCB and topological predomains and relating
them to Seq, in Section 2. Then, guided by examples, we give our definition
of countable parametrised signatures in Section 3 and examine absolutely free
algebras in the categories of topological and sequential spaces, showing that
countably-based spaces are preserved under this construction. In Section 4, we
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look at algebraic operations (in the sense of Plotkin and Power [14]), use them
to introduce equations, and show the existence of free algebras for countable
parametrised equational theories in QCB. In Section 5, we transfer these free
algebras to TP. We end by giving conclusions in Section 6.

2 Preliminaries

Let Top denote the category of topological spaces and continuous maps. A
subset U of a topological space X is called sequentially open if whenever x ∈ U
and a sequence (xn)n converges to x, then the sequence is eventually in U , i.e.
there exists a K ∈ N such that for all n ≥ K, xn ∈ U . Notice that open sets of
a topological space are always sequentially open. A space X is called sequential
if the converse holds, i.e. if all its sequentially open sets are open. By Seq,
we denote the category of sequential spaces and continuous maps. Seq is a
full coreflective subcategory of Top, the coreflection adds to the topology of a
space X all its sequentially open subsets. Moreover, Seq is cartesian closed, a
property Top famously does not have. From a computational viewpoint Seq
seems to be more natural than Top, as here continuity is characterised by
convergence of sequences.

QCB is the category whose objects are topological quotients of second
countable topological spaces and continuous maps between them. We call
the objects of QCB simply qcb-spaces. QCB is a full subcategory of Top
and also of Seq. It has been shown to be bi-cartesian closed in [8], and to
inherit this structure from Seq and other cartesian closed subcategories and
supercategories of Top in [8,4]. Furthermore, QCB can be interpreted as
a category in the realizability model over Scott’s graph model Pω (see [2]),
and also as a category in the theory of Type-2 Effectivity (see [16]). For the
purposes of the present paper, we only consider QCB as a subcategory of
Top and Seq, and ignore the other connections.

A topological space can be equipped with its specialisation pre-order �,
where x � y if any open set containing x also contains y. Then � is a partial
order on a space if and only if it satisfies the T0-separation axiom. Conversely,
any ordered set can be equipped with its Scott topology (see [5]). Then a
monotone convergence space is a topological space whose specialisation pre-
order is a dcpo, and whose topology is coarser than the Scott-topology. A qcb-
space that is a monotone convergence space is called a topological predomain
[18], and TP is the full subcategory of topological predomains and continuous
maps. It turns out that TP is a full reflective exponential ideal of QCB (see
[3]), so in particular it is cartesian closed.

In classical domain theory, one often distinguishes those dcpos that have
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a least element (dcppos). Topological predomains whose specialisation pre-
order is a dcppo are called topological domains, and they form the category
TD. Drawing a comparison between QCB and classical domain theory, TP
and TD are topological analogues of DCPO and DCPPO, the categories
of dcpos, resp. dcppos, and continuous maps. Remarkably, many domain
theoretic properties and constructions readily carry over to the topological
setting (see e.g. [18,3]).

3 Parametrised signatures and absolutely free algebras

Our aim is to model computational effects in QCB and TP, and our approach
is based on the work by Plotkin and Power [12,13,14]. We start by considering
some examples of effects and using them to motivate our theory.

Nondeterministic choice: Suppose we want to model nondeterminism for
a datatype X. Then it is natural to have an operation choose : X2 → X,
such that choose(x, y) denotes a nondeterministic choice between the compu-
tations x and y. Notice that by successively applying choose we can model a
nondeterministic choice between any finite number of computations.

Probabilistic choice: To model probabilistic nondeterminism for a datatype
X, we again need to have a choice operation choose : I × X2 → X, but this
time parametrised by the closed unit interval I. Here choose(λ, x, y) denotes
that a computation x is executed with probability λ, and y with probability
1 − λ. We choose this approach with a parameter object I instead of the
one presented in [12], where one operation chooseλ : X2 → X is given for
each λ ∈ I for two reasons. The first is that in our approach, we capture
computability (given by continuity in QCB) in both the parameter object I

and the computational type, not just the latter. The second reason is that
having an operation for each λ ∈ I means to have an uncountable number of
operations, which will not be possible in the theory presented below.

Nontermination: To model nontermination for a datatype X, we require
it to have an element ⊥ : X, which denotes some kind of nontermination.
This can be seen as a nullary operation or constant ⊥ : 1 → X (where 1 is
the terminal element in the category we are working in). Typically, in domain
theory ⊥ denotes the least element of a dcppo X.

Global State: Let V be a set of values, L be a set of memory locations, and
the global state of a system be an assignment of values to locations s ∈ V L. We
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want to model a system in which the state can be changed by updating a value
in a location, and a memory location can be read out to determine a computa-
tion. For this we need a type X to support operations update : L×V ×X → X,
such that update(l, v, x) takes the value v, writes it into location l and carries
out some computation x, and lookup : L × XV → X, such that lookup(l, f)
reads out the value vl of location l, and dependent on this executes some com-
putation f(vl).

We see that in all these examples the computational types for the effects
support corresponding operations, and these operations are similar to the kind
of operations considered in universal algebra. Recall that in universal algebra,
one has a signature Σ, which is a set of operations, each of which having an
arity ar(σ), given by a finite number. Then a Σ-algebra is a set on which
each of this operations can be interpreted. Following a suggestion by Plotkin,
we generalise this definition to allow parameter objects, so we can interpret
parametrised operations as in the example for probabilistic choice, and we
allow our arities to be countably infinite, as for the lookup operation in the
example for global state. To stay as general as possible, we work in a fixed
category C which has countable products.

Definition 3.1 A countable parametrised signature Σ is a countable set of
operation symbols, each of which having an arity ar(σ) ≤ ω, and a parameter
object Pσ, which is an object of C.

As in universal algebra, we can now define Σ-algebras, Σ-homomorphisms
and absolutely free Σ-algebras in the category C. The datatypes on which
computational effects can be modelled will then be given by algebras for a
signature Σ, whose operations are the ones causing the corresponding compu-
tational effect. As is standard, the free algebra construction presented below
will yield the functors of the associated monad.

Definition 3.2 If Σ is a countable parametrised signature for C, a CΣ-algebra
(A, {σA}) is given by an object A of C together with a C-morphism σA :
Pσ × Aar(σ) → A, for each σ ∈ Σ.

For CΣ-algebras (A, {σA}), (B, {σB}), a CΣ-homomorphism is a C-mor-
phism f : A → B such that the following diagram commutes for all σ ∈ Σ:

Pσ × Bar(σ) BσB
��

Pσ × Aar(σ)

Pσ × Bar(σ)

Pσ×far(σ)

��

Pσ × Aar(σ) A
σA �� A

B

f

��
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By CΣ we denote the category of CΣ-algebras and CΣ-homomorphisms.

For a C-object X, the absolutely free CΣ-algebra over X is an object
(FX, {σFX}) of CΣ, for which there exists a C-morphism ηX : X → FX,
such that for any CΣ-algebra (A, {σA}) and C-morphism f : X → A, there

exists a unique CΣ-homomorphism f̂ : (FX, {σFX}) → (A, {σA}) which makes
the following diagram (in C) commute:

FX A
bf �������FX

X

��

ηX

A

X

��

f

��
��

��
��

��
��

��

Notice that if C is a cartesian closed category, Z any object of C, and
(A, {σA}) a CΣ-algebra, then we can equip AZ with a CΣ-algebra structure,
by setting σAZ to be the exponential transpose of:

σA ◦ (Pσ × eval) : Pσ × (AZ)ar(σ) × Z ∼= Pσ × (Aar(σ))Z × Z → A.

Then the diagram above can be generalised to

Z × FX A
bf �����Z × FX

Z × X

��

Z×ηX

A

Z × X

��

f

��
��

��
��

��
��

��

where f̂ has to be a homomorphism on its second component. So in this case,
a free algebra is automatically ”parametrically free”.

Using the Adjoint Functor Theorem, one can show that if C = Set,Top,
Seq, then for any countable parametrised signature Σ, the forgetful functor
CΣ → C has a left adjoint F which is the absolutely free algebra functor. In
the following sections, we show that QCB is closed under the absolutely free
algebra construction in Seq, for which we give an explicit construction, and
that free algebras in TP can be obtained by reflecting free QCB-algebras.

In the set-theoretic case there is an inductive way to construct absolutely
free algebras, which are also called term algebras. Let Σ be a countable
parametrised signature, and Σ be the functor assigning to a set X, the set

{σ(p, (xi)i∈ar(σ))| σ ∈ Σ, p ∈ Pσ, ∀i. xi ∈ X},
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i.e. Σ(−) ∼=
∐

σ∈Σ Pσ × (−)ar(σ). Now define inductively for all ordinals α,
F0(X) = X, Fα+1(X) = X ∪ Σ(Fα(X)) and for limit ordinals β, Fβ(X) =⋃

α<β Fα(X). In other words, to obtain Fα+1(X) add all terms obtained by
applying the operations of Σ to terms of Fα(X) and for a limit ordinal β take
the union of all terms appearing in Fα(X) for all α < β. It is not hard to see
that for α ≤ α′, Fα(X) ⊆ Fα′(X). Moreover, for the first uncountable cardinal
ω1, we have ar(σ) < ω1 for all σ ∈ Σ, and thus we get Fω1+1(X) = Fω1(X),
and can show that the absolutely free algebra over X is given by Fω1(X).
Operations are defined by σFX(p, (ti)i∈ar(σ)) = σ(p, (ti)i∈ar(σ)). For any term
t of the absolutely free algebra over X we denote the smallest ordinal α such
that t ∈ Fα(X) by occ(t). Notice that occ(t) is never a limit ordinal.

For the remainder of the section, assume that Σ is a countable parametrised
signature such that any parameter object is a countably-based topological
space. Then Σ is a well-defined parametrised signature for Top, Seq and
QCB, as these categories include all countably-based spaces. We show that
the absolutely-free algebra functor F for Top and Seq preserves countably-
based spaces. For this, let |Σ| be the parametrised signature for Set whose
operation symbol and arities coincide with Σ and the parameter set for σ ∈ Σ
is |Pσ|, where | · | : Top → Set is the obvious forgetful functor.

Lemma 3.3 Given a topological space X, the absolutely free TopΣ-algebra
(FX, {σFX}) has as underlying set the absolutely free set-theoretic |Σ|-algebra
(|FX|, {σFX}) over |X|, and the topology O(FX) is the finest topology, sat-
isfying:

(A)O(FX) is compatible, i.e. all operations σX : Pσ × FXar(σ) → FX are
continuous,

(B) the inclusion map ηX : X → FX is continuous.

Given a sequential space X, the absolutely free SeqΣ-algebra (FX, {σFX})
has as underlying set the absolutely free set-theoretic |Σ|-algebra (|FX|, {σFX})
over |X|, and the topology O(FX) is the finest topology, satisfying (B) and:

(A′)O(FX) is sequentially compatible, i.e. all operations σX : Pσ × FXar(σ) →
FX are continuous, when FXar(σ) is equipped with the product topology of
Seq.

Proof. Notice that the result is well known for finitary signatures for Top.
Let X be a topological space. If T is a set of topologies on |FX| satisfying (A)
and (B), then the topology generated by

⋃
T also satisfies these conditions.

Thus, the finest topology O(FX) on |FX| exists.

It remains to show that (|FX|, {σFX}) equipped with O(FX) satisfies the
universal property of a free algebra. For this let f : X → A be a continu-
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ous map into a CΣ-algebra. Then there exists a set-theoretic homomorphism
extension f̂ : |FX| → |A|. But the topology given by {f̂−1(V )| V ∈ O(A)}
satisfies conditions (A) and (B), thus is coarser than O(FX), and so f̂ is con-
tinuous, as required. Uniqueness follows again from the set-theoretic result.

Similarly, if X is a sequential space, one shows that whenever S is a set of
sequential structures on |FX| (a set of sequences with limit points satsfying
certain conditions, see e.g. [16,8]) satisfying (A′) and (B), then the sequential
structure generated by

∧
S also satisfies these conditions, and taking the

topology with respect to
∧

S gives a finest topology satisfying (A′) and (B).
That the universal property of a free algebra is fulfilled is then shown by a
similar argument as above. �

Remark 3.4 A similar lemma with same proof will also hold for free algebras
for parametrised equational theories, which are introduced in the next section.

We now show that once we have the absolutely-free algebra over the un-
derlying set, we can construct the absolutely-free topological algebra over a
space via a countable inductive limit construction. This construction is cru-
cial to show that F preserves countably-based spaces, which cannot be de-
duced from the above characterisation of the free algebra topology. So assume
X is given, and we have constructed (|FX|, {σFX}) and obtained the map
η : |X| ↪→ |FX|. Let Ω0 be the topology generated by {η(U)| U ∈ O(X)},
and for a given topology Ωn, let Ωn+1 be the topology generated by

Ωn ∪ {σ|FX|(V × U)| σ ∈ Σ, V ∈ O(Pσ), U ∈ On(FXar(σ))},

where On(FXar(σ)) is the product topology with respect to Ωn. We obviously
get that Ωn+1 is finer than Ωn, and so we obtain the diagram:

(|FX|, Ω0) (|FX|, Ω1)�� (|FX|, Ω2)�� · · ·��

where all arrows are the identity map. Let (|FX|, Ω∞) be the limit of this
diagram, i.e. Ω∞ =

⋃
n∈N

Ωn. Then we get:

Theorem 3.5 For all topological spaces X, the topology on the absolutely-free
TopΣ-algebra (FX, {σFX}) is given by Ω∞.

Proof. We have to show that Ω∞ = O(FX), where O(FX) denotes the
topology of the absolutely free algebra. As Ω∞ =

⋃
n∈N

Ωn and by construction
all the Ωn satisfy conditions (A) and (B) of Lemma 3.3, Ω∞ satisfies these
conditions, and so it is coarser than O(X). Thus we only have to show O(X) ⊆
Ω∞.
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We will show that for all terms t ∈ FX, and U ⊆ O(FX), there exists
V ∈ Ω∞ such that t ∈ V ⊆ U . For this we use transfinite induction on occ(t).
If occ(t) = 0, then t = x ∈ X, and as ηX : X → FX is continuous, we get
for V = η−1(U) that η(V ) ∈ Ω0 and t ∈ η(V ) ⊆ U . So let occ(t) = α ≥ 1
and for all terms t′ with occ(t′) < α and opens U ′ ∈ O(X) containing t′, there
exists V ′ ∈ Ω∞ such that t′ ∈ V ′ ⊆ U ′. Suppose t = σ(p, (ti)i∈ar(σ)). As all
operations are continuous on FX, we have that (p, (ti)i∈ar(σ))) ∈ σ−1

FX(U), and

find a basic open W ×
∏

i∈ar(σ) Ui ⊆ σ−1
FX(U), containing (p, (ti)i∈ar(σ))), such

that Ui = FX for i ∈ ar(σ) \ F for some finite F . For all i ∈ F , occ(ti) < α
and so we can apply the induction hypothesis, i.e. for all i ∈ F , there exists
Vi ∈ Ω∞ such that ti ∈ Vi ⊆ Ui. Now, for each i ∈ F , there exists ni ∈ N such
that Vi ∈ Ωni

, and so, as F is finite, m = maxi∈F ni exists and we get for

V = {σ(p, (si)i∈ar(σ))| p ∈ W, ∀i ∈ F. si ∈ Vi, ∀i ∈ ar(σ) \ F. si ∈ FX)},

V ∈ Ωm+1 ⊆ Ω∞ and t ∈ V ⊆ U , as required. �

Remark 3.6 The theorem also holds for more general parametrised signa-
ture Σ, where there is no size restriction on the arities of operations or the
parameter spaces. It is a surprising result, as it shows that no matter how
large the arities of operations and |Σ| are, the topology on the absolutely free
algebra can always be obtained in a countable process.

Proposition 3.7 For a sequential space X, the absolutely free SeqΣ-algebra
is given by the coreflection (into Seq) of the absolutely free TopΣ-algebra.

Proof. Just for the proof, let TSeq : Seq → SeqΣ and TTop : Top → TopΣ

denote the absolutely free algebra functors. Then we have to show that the
identity maps TSeqX ↔ Seq(TTopX) are both sequentially continuous.

It is a straightforward observation that Seq(TTopX) is a SeqΣ-algebra, and
therefore the universal property of TSeqX yields that the identity TSeqX →
Seq(TTopX) is continuous. For the converse, show by induction on occ(t) and
using theorem 3.5 that a sequence of terms (tk) converges to t in TTopX if and
only if the tk have eventually the same structure as t, say tk = σ(pk, (si,k)i∈ar(σ))
and t = σ(p, (si)i∈ar(σ)), and for all i ∈ ar(σ), (si,k) converges to si and (pk)
converges to p. But as all operations in TSeqX are sequentially continuous, the
sequence also converges here. Thus the identity map Seq(TTopX) → TSeqX
is sequentially continuous as well, showing the claim. �

We now come to our main theorem of this section, showing that countably-
based spaces are closed under the absolutely-free algebra construction in Seq.

Theorem 3.8 If X is a countably-based topological space, then the absolutely
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free TopΣ-algebra and the absolutely free SeqΣ-algebra coincide and are again
countably-based topological spaces.

Proof. With the result of the previous proposition, it suffices to show that
the absolutely-free TopΣ-algebra over a countably-based space X is again
countably-based. For this, we use theorem 3.5. We prove by induction that
all the Ωn used in the construction for 3.5 have a countable base.

As X is countably-based, it is straightforward to see that (|TX|, Ω0) is
countably-based, as well. Now assume (|TX|, Ωn) is countably-based, hence
any countable product of (|TX|, Ωn) is countably-based, and so if Bα is a
countable base for (|TX|, Ωn)α and B a countable base for Pσ, then by count-
ability of Σ, we obtain a countable base for (|TX|, Ωn+1) by:

B1 ∪ {σ|TX|(V × U)| σ ∈ Σ, V ∈ B, U ∈ Bar(σ)}.

Thus all the Ωn have a countable base, and so has Ω∞ =
⋃

n∈N
Ωn which by

theorem 3.5 is the topology on TX. �

This theorem will be a major part in the proof that QCB is closed under
the free algebra construction in Seq for parametrised equational theories.

4 Parametrised algebraic operations and equational the-
ories

So far we have introduced countable parametrised algebraic theories, in order
to capture operations, which generate computational effects, on objects of a
category of topological spaces. We have also shown that, in the case that
all parameter spaces are countably-based, the absolutely free algebra functor
F : C → CΣ preserves countably-based spaces for C = Top,Seq. In order
to faithfully model the effects, however, we have to relate the operations by
equations, as in Plotkin and Power’s work. To motivate this, consider again
our examples.

Nondeterministic choice: Nondeterminism was generated by a binary oper-
ation choose : X2 → X, where choose(x, y) denotes a nondeterministic choice
between x and y. For real nondeterminism we will then have the following
identities:

• Idempotence: choose(x, x) = x,

• Commutativity: choose(x, y) = choose(y, x),

• Associativity: choose(choose(x, y), z) = choose(x, choose(y, z)).
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Probabilistic choice: Probabilistic choice was generated by an operation
choose : I × X2 → X, so that choose(λ, x, y) denotes that a computation x
is chosen with probability λ and y is chosen with probability 1 − λ. A real
probabilistic choice will also satisfy the following equations:

• choose(1, x, y) = x,

• choose(λ, x, x) = x,

• choose(λ, x, y) = choose(1 − λ, y, x),

• choose(λ, choose(λ′, x, y), z) = choose(λλ′, x, choose((1 − λ(1−λ′)
1−λλ′ ), y, z).

In a category of topological spaces, I will be equipped with the topology of
lower semicontinuity (equivalently the Scott topology with respect to the usual
order on I).

Nontermination: Nontermination was given by a constant (or nullary op-
eration) ⊥ ∈ X. In traditional denotational semantics, there is the inequation
⊥ ≤ x denoting that a nonterminating program gives less information than a
terminating one. If we consider nontermination in a category of topological
spaces, we want to have ⊥ � x, where � denotes the specialisation pre-order
on X. This can be achieved, using a parametrised equational theory, by con-
sidering an auxiliary operation σ : S × X → X, where S denotes Sierpinski
space, the two element space {0, 1}, in which the singleton {1} is open, but
the singleton {0} not. Then the equations:

• σ(0, x) = ⊥,

• σ(1, x) = x

yields for the specialisation pre-order on X, ⊥ � x for all x ∈ X, as by conti-
nuity of σ, we get for any open U containing ⊥, (0, x) = ⊥ ∈ σ−1(U), hence
(1, x) ∈ σ−1(U), and so x = σ(1, x) ∈ U .

Remark 4.1 In a similar fashion we can model arbitrary inequations with re-
spect to the specialisation pre-order for Σ-terms. We use this indirect approach
to inequations, because the theory (presented below) with parametrised equa-
tions seems much easier to handle than a theory directly using inequations.

Global State: Recall that for modelling the global state of a system, we
used operations update : L × V × X → X and lookup : L × XV → X, where
L is an object of C representing a set of memory locations and V an object
representing a set of values. Notice that V occurs as both, a parameter object
and an arity, so for our theory we have to interpret it both as an object of C
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and a countable set. In particular if C = Top,Seq,QCB, then our approach
supports this effect only if V is a countable discrete space, in which case it
can be interpreted as a countable topological space and a countable set. For
the equations, we refer to Plotkin and Power’s paper [14], where 7 identities
relating lookup and update are given. All these identities fit into the theories
of equations presented below.

We now introduce equations for CΣ-algebras and define what it means
for a CΣ-algebra A to satisfy such equations. We thus obtain the category
C(Σ,E) of CΣ-algebras satisfying a set of equations E . We then give a con-
dition under which the forgetful functor U : C(Σ,E) → C creates coequaliz-
ers, and use this result we construct the free algebra FX over X explicitly
as a coequalizer of the absolutely-free CΣ-algebra FX. Applying these re-
sults to C = Seq will finally enable us to show that the free algebra functor
F : Seq → Seq(Σ,E) preserves qcb-spaces, and so restricts to a free algebra
functor F : QCB → QCB(Σ,E). Having achieved this, we will be able to
model computational effects such as the ones given in the examples above
in the categories of algebras, QCB(Σ,E), for the corresponding parametrised
equational theory (Σ, E).

Definition 4.2 Let Σ be a countable parametrised signature for C

An algebraic operation of arity α and parameter object Z is an Ob(CΣ)-
indexed family of C-morphisms p(−) : Z × (−)α → (−) such that for all CΣ-
homomorphisms f : (A, {σA}) → (B, {σB}), the following diagram commutes:

Z × Bα BpB
��

Z × Aα

Z × Bα

Z×fα

��

Z × Aα A
pA �� A

B

f

��

Sometimes we will call such an algebraic operation a (α, Z)-operation.
The concept of an algebraic operation is taken from Plotkin and Power’s [12],
though their notion of algebraic operation is more general in the sense that it
can be applied to any category of algebras of a monad in a suitable categorical
setting. Examples for algebraic operations are all term maps (maps that can
be defined inductively by composing operations of Σ and projection maps). In
the literature about finitary unparametrised signatures, such term maps are
also called Σ-polynomials or derived operations. It would be interesting to
investigate whether algebraic operations for parametrised signatures can also
be defined inductively.
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Definition 4.3 An equation e : (p = p′) of arity ar(e) and parameter object
Pe is given by a pair of (ar(e), Pe)-algebraic operations p, p′. A Σ-algebra
(A, {σA}) satisfies an equation e : (p = p′), if pA = p′A : Pe × Aar(e) → A. If E
is a countable set of equations and ar(e) ≤ ω for all e ∈ E , the tuple (Σ, E) is
called a countable parametrised equational theory.

A C(Σ,E)-algebra is a CΣ-algebra (A, {σA}) that satisfies all equations e ∈ E ,
and by C(Σ,E) we denote the category of C(Σ,E)-algebras and CΣ-homomorphisms.
For a C-object X, the free C(Σ,E)-algebra over X is an object (FX, {σFX}) of
C(Σ,E), for which there exists a C-morphism ηX : X → FX, such that for any
C(Σ,E)-algebra (A, {σA}) and C-morphism f : X → A, there exists a unique

CΣ-homomorphism f̂ : (FX, {σFX}) → (A, {σA}) which makes the following
diagram (in C) commute:

FX A
bf �������FX

X

��

ηX

A

X

��

f

��
��

��
��

��
��

��

For the remainder of the paper (Σ, E) will always denote a countable equa-
tional theory.

Notice that if C has countable coproducts, then a CΣ-algebra (A, {σA}) is
a C(Σ,E)-algebra if and only if the maps

∐
e∈E Pe × Aar(e) A

τA ��∐
e∈E Pe × Aar(e) A

τ ′
A

��

coincide, where the e-component of τA, τ ′
A are the respective algebraic opera-

tions of e.

For the following theorems, assume C has countable products and coprod-
ucts, and that the forgetful functor U : C(Σ,E) → C has a left adjoint, i.e. the
free algebra functor F exists.

Theorem 4.4 If in C countable products preserve coequalizer diagrams, then
the forgetful functor U creates coequalizers.

Proof. Assume f, g : (A, {σA}) → (B, {σB}) are CΣ-homomorphisms. Ap-
plying the forgetful functor gives C-morphisms f, g : A → B. We claim that
if q : B → Q is the coequalizer of f and g in C, then Q can be equipped
with a CΣ-algebra structure such that (Q, {σQ}) satisfies all equations in E , q
becomes a CΣ-homomorphism and

(A, {σA}) (B, {σB})
f ��(A, {σA}) (B, {σB})g

�� (B, {σB}) (Q, {σQ})q �� ��
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is a coequalizer diagram in C(Σ,E). The proof of these claims is analogous to
the proof of VI.8 Theorem 1 in [6], where the property of being an absolute
coequalizer is replaced by the countable product preservation. �

If T = UF , then T becomes the functor of a monad and we can consider CT

the category of Eilenberg-Moore algebras for C. Beck’s Theorem now gives:

Corollary 4.5 If in C countable products preserve coequalizer diagrams, then
CΣ,E ∼= CT .

Theorem 4.6 Let F : C → CΣ denote the absolutely free algebra functor,
and countable products preserve coequalizer diagrams in C, then:

(i) for any CΣ-algebra (A, {σA}), the coequalizer of:

F (
∐

e∈E Pe × Aar(e)) A
cτA ��F (

∐
e∈E Pe × Aar(e)) A

cτ ′
A

��

is a C(Σ,E)-algebra, where τ̂A, τ̂ ′
A are the unique CΣ-homomorphisms extend-

ing τA, τ ′
A :

∐
e∈E Pe × Aar(e) → A.

(ii) for each object X of C, the free C(Σ,E)-algebra (FX, {σFX}) is obtained as
the coequalizer of:

F (
∐

e∈E Pe × FXar(e)) FX
dτF X ��F (

∐
e∈E Pe × FXar(e)) FX

dτ ′
F X

��

Proof.

(i) By theorem 4.4, it is clear that the coequalizer q : (A, {σA}) → (Q, {σQ})
of τ̂A, τ̂ ′

A exists in CΣ, and that it is calculated as in C. So it remains to
show that (Q, {σQ}) satisfies all equations in E . For this let e0 : (p = p′)
be one of these, then as q ◦ τ̂A = q ◦ τ̂ ′

A, we have q ◦ τA = q ◦ τ ′
A and hence

q ◦ pA = q ◦ p′A. Now consider the following commuting diagram in C:

Pe0 × Aar(e0) A
pA ��Pe0 × Aar(e0) A
p′A

��

Pe0×qar(e0)

����

q

����

Pe0 × Qar(e0) Q
pQ ��Pe0 × Qar(e0) Q
p′Q

��

Pe0 × qar(e0) : Pe0 × Aar(e0) → Pe0 × Qar(e0) is the coequalizer of Pe0 ×
τ̂

ar(e0)
A , Pe0 × τ̂ ′ar(e0)

A . But we also have that q ◦ pA = q ◦ p′A coequalizes
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(Pe0 × τ̂
ar(e0)
A ), (Pe0 × τ̂ ′ar(e0)

A ), and thus there is a unique mediating arrow
Pe0 ×Qar(e0) → Q making the diagram commute, giving pQ = p′Q, and so Q
satisfies e0.

(ii) It remains to show that the coequalizer (Q, {σQ}) τ̂FX , τ̂ ′
FX satisfies the

universal property. For this, let (A, {σA}) be any C(Σ,E)-algebra, f : X → A

be any C-morphism and f̂ : (FX, σFX) → (A, {σA}) the corresponding
CΣ-homomorphism. Then the commutativity of the following diagram:

F (
∐

e∈E Pe × FXar(e)) FX
dτF X ��F (

∐
e∈E Pe × FXar(e)) FX

dτ ′
F X

��

F (〈 bfar(e)〉e∈E )

��

bf

��

F (
∐

e∈E Pe × Aar(e)) A
cτA ��F (

∐
e∈E Pe × Aar(e)) A

cτ ′
A

��

ensures that f̂ coequalizes τ̂FX and τ̂ ′
FX , giving the required mediating arrow

h : (Q, {σQ}) → (A, {σA}).
�

Now assume C = Seq, Σ is a countable parametrised signature such that
all parameter spaces are countably-based, and E a countable set of equations.
Then the adjoint functor theorem can be applied and the forgetful functor
U : Seq(Σ,E) → Seq has a left adjoint F . Moreover, we have the following
result.

Proposition 4.7 In Seq, countable products preserve coequalizer diagrams.

Proof. Schröder and Simpson [17] have shown that in Seq countable products
of topological quotient maps are topological quotient maps. As the topological
quotient maps are exactly the coequalizers in Seq, it is straightforward to show
that countable products indeed preserve coequalizer diagrams. �

Now we are able to state our main result.

Theorem 4.8 The free algebra functor F : Seq → Seq(Σ,E) preserves qcb-
spaces.

Proof. Let X be a qcb-space, and (FX, {σFX}) the free Seq(Σ,E)-algebra over
X. We have to show that FX is a qcb-space. For this, notice that the free
algebra functor F is a left adjoint, hence preserves coequalizers, which in the
categories of algebras are topological quotient maps by Theorem 4.4. Suppose
q : A � X is a topological quotient map for a countably-based space A. Now
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we have the following diagram:

FX FX�� ��

FA

FX
����

FA FA�� �� FA

FX
����

where by the previous theorems the upper and lower maps are regular epis
in SeqΣ, hence topological quotient maps. As topological quotient maps are
closed under composition, we thus obtain FX as a topological quotient of FA,
which is a countably-based space by 3.8. �

5 Reflecting algebras to TP

We have seen that QCB is closed under the construction of free algebras for
countable parametrised equational theories in Seq, and therefore we obtain a
left adjoint for the forgetful functor QCB(Σ,E) → QCB namely the restriction
of the free algebra functor F : Seq → Seq(Σ,E) to QCB. However, the free
algebra functor does in general not preserve topological predomains, which
can be seen if we consider the equational theory for nondeterministic choice.

Let (Σ, E) be the equational theory for nondeterministic choice, and con-
sider the free algebra over the space X, given by 3-element chain 0 < 1 < 2
equipped with the Alexandroff (or Scott) topology. Then the free algebra
(FX, {σFX}) has as underlying set the power set PX, and the operation is
union. But in the specialisation pre-order we get {1, 3} = {1, 2, 3}, as in the
absolutely free algebra we have

choose(1, choose(1, 3)) � choose(1, choose(2, 3)) � choose(1, choose(3, 3))

and the left and right hand terms will be identified with {1, 3}, the one in
the middle with {1, 2, 3}. Thus FX is not a T0-space, and so not a topo-
logical predomain. (A similar argument can be found in the chapter about
powerdomains in [11].)

To fix this deficit, we consider algebras in reflective subcategories, and
show that the reflection functor M : QCB → TP restricts to a reflection
functor on the respective categories of algebras.

Assume that D is a full reflective subcategory of C with reflection functor
R : C → D, both are countably complete and cocomplete, and (Σ, E) is
a countable parametrised equational theory for C such that all parameter
objects are in D. Then we get the following theorem which will be proved by
two lemmas.
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Theorem 5.1 If the reflection functor R : C → D preserves countable prod-
ucts, then it restricts to a functor R(Σ,E) : C(Σ,E) → D(Σ,E).

For the two lemmas assume the assumption of the theorem is fulfilled.

Lemma 5.2 For any C(Σ,E)-algebra (A, {σA}), RA can be equipped with a
C(Σ,E)-algebra structure, so that it becomes a D(Σ,E)-algebra and the canonical
map ηA : A → RA a CΣ-homomorphism.

Proof. As R preserves countable products, for each σ ∈ Σ the map

RσA : R(Pσ × Aar(σ)) ∼= Pσ × RAar(σ) → RA

is well defined. So setting σRA = RσA, makes (RA, {σRA}) into a CΣ-algebra,
and therefore a DΣ-algebra. To see that ηA is a CΣ-homomorphism, observe
that the diagram below commutes for each σ ∈ Σ:

Pσ × RAar(σ) RA
σRA

∼=RσA

��

Pσ × Aar(σ)

Pσ × RAar(σ)

Pσ×η
ar(σ)
A

∼=η
Pσ×Aar(σ)

��

Pσ × Aar(σ) A
σA �� A

RA

ηA

��

It remains to show that for each e : (p = p′) ∈ E , pRA, p′RA : Pe×RAar(e) → RA
coincide. But as ηA : A → RA is a CΣ-homomorphism and R preserves
countable products, we get the following commuting diagram:

Pe × Aar(e) A
pA ��Pe × Aar(e) A
p′A

��

Pe×η
ar(e)
A

∼=η
Pe×Aar(e)

��

Pe × RAar(e) ∼= R(Pe × Aar(e)) RA
pRA ��Pe × RAar(e) ∼= R(Pe × Aar(e)) RA
p′RA

��

ηA

��

And so as pA and p′A coincide, the universal property of the reflection functor
yields pRA = p′RA, as required. �

Lemma 5.3 R maps CΣ-homomorphisms onto CΣ-homomorphisms, and there-
fore onto DΣ-homomorphisms.

Proof. Let f : (A, {σA}) → (B, {σB}) be a CΣ-homomorphism. As CΣ-
homomorphisms are closed under composition, we get the following commut-
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ing diagram:

RBar(σ) RBσRB
��

Aar(σ)

RBar(σ)

(ηB◦f)ar(σ)

��

Aar(σ) A
σA �� A

RB

ηB◦f
��

Now the properties of a reflection ensure that Rf : (RA, {σRA}) → (RB, {σRB})
is a CΣ-homomorphism, as well. �

This completes the proof of Theorem 5.1.

Now we can apply these results to the reflection M : QCB → TP, because
Schröder and Simpson have shown the following result in [17].

Proposition 5.4 The reflection functor M : QCB → TP preserves count-
able products.

Thus we get that for a topological predomain X, ((M ◦F )X, {σ(M◦F )X}) is
a TP(Σ,E)-algebra and it is easy to verify that it satisfies the universal property
for a free algebra in TP. Thus we obtain the following commutative diagram
of functors:

QCB(Σ,E) TP(Σ,E)M
��

QCB

QCB(Σ,E)

F

��

QCB TPM �� TP

TP(Σ,E)

��

where the unlabelled arrow is obtained as the composite of the inclusion
functor followed by forming the free QCB(Σ,E)-algebra and then reflecting
back to TP. This yields the following result.

Corollary 5.5 For countable parametrised equational theories (Σ, E) for TP,
the forgetful functor TP(Σ,E) → TP has a left adjoint. Moreover, the free
algebra functor is obtained as the free algebra functor in QCB followed by the
reflection into TP.

6 Conclusions

We have shown that computational effects can be modelled in the categories
QCB and TP via a free algebra approach. In order to do this, we have in-
troduced countable parametrised equational theories for the category Seq, in
which free algebras exist by the Adjoint Functor Theorem, and are formed as
in the set-theoretic case. We have then shown that QCB is closed under the
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free algebra construction in Seq, and free algebra functors for Seq restrict
to free algebra functors for QCB. Furthermore, we have obtained free alge-
bra functors in the subcategory TP using the reflection functor from QCB
to TP. We have motivated our results by examples of how to model some
specific effects in QCB. Our results can be applied to most of the effects and
combinations of them covered by the work of Plotkin and Power (there are
a few exceptions where functor categories are involved, as e.g. for the local
state effect).

It is worth mentioning that the category TD⊥ of topological domains and
strict continuous maps, i.e. those continuous maps that preserve the smallest
element of the specialisation order, is exactly the category of TP-algebras for
the nontermination effect. Here the free algebra functor is just the reflection
from TP to TD.

Considering the global state example, it certainly is a drawback that our
theory only captures the case when V , the space of values, is discrete. It
would be more satisfactory if we could generalise the results to operations
whose arity is given by certain kind of topological spaces, e.g. countably-based
core compact spaces. However, once non-discrete arities are introduced, any
approach based on the set-theoretic construction (such as ours) breaks down,
and one has to come up with a new construction. Notice, that QCB and TP
are internally complete in the realizability topos over Pω, and thus the free
algebras exist for abstract reasons. However, it is not straightforward to give
an explicit construction of these free algebras, as in the present paper.

Parametrised equational theories also arise in standard mathematics. For
instance topological vector spaces can be described by a parametrised equa-
tional theory (Σ, E), where Σ consists of a binary operation for vector addition,
a unary operation for vector negation, a constant for the zero vector and a
parametrised (1, R)-operation for scalar multiplication, and E is given by the
usual nine vector space axioms. Then the free algebra over the n-element
discrete space will be isomorphic to the topological vector space Rn.

Computational effects have also been investigated in classical domain the-
ory. The category DCPO indeed has free algebras for arbitrary equational
theories by the Adjoint Functor Theorem. However, it has no intrinsic notion
of computability and does not model polymorphism. Also the categories of
continuous, resp. algebraic, dcpos, which have a notion of computability, have
free algebras for arbitrary equational theories. However, these categories are
not cartesian closed, and the general existence proof of free algebras fails when
one restricts attention to the cartesian closed subcategories thereof. Various
notions of powerdomains have been considered, e.g. the Plotkin powerdo-
main to model nondeterminism and the probabilistic powerdomain to model
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probabilistic computations. But, whereas it has been shown that there exist
cartesian closed categories of continuous domains which support the Plotkin
powerdomain construction, this is not the case for the probabilistic powerdo-
main. It is one of the benefits of Topological Domain Theory that it provides
us with the category of topological predomains, which is cartesian closed, and
supports arbitrary combinations of effects specified by countable parametrised
equational theories. It would also be interesting to compare the classical no-
tions of powerdomains with the algebras for nondeterministic and probabilistic
choice given here.
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