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a b s t r a c t

We derive expressions for the potential of a point charge as well as the weighting potential and
weighting field of a rectangular pad for a plane condenser, which are well suited for numerical
evaluation. We relate the expressions to solutions employing the method of image charges, which allows
discussion of convergence properties and estimation of errors, providing also an illuminating example of
a problem with an infinite number of image charges.
& 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this report we derive the potential of a point charge and the
so-called weighting potential and weighting field of a rectangular
pad in a parallel plate geometry. These solutions are needed to
calculate the signals in e.g. silicon pixel detectors as well as
micropattern detectors with pixel or pad readout. The surface charge
density σ induced on the metal planes by the presence of the point
charge Q is related to the electric field E on the metal surface by
σ ¼ ε0E. Knowing the potential ϕ of a point charge Q at a (possibly
time dependent) position x0; y0; z0, the induced charge and current
on a rectangular pad centred at zero is therefore given by

Qind ¼
Z wx=2

�wx=2

Z wy=2

�wy=2
�ε0∇

!
ϕjz ¼ 0 dx dy; Iind ¼ �dQind

dt
ð1Þ

Due to Green's reciprocity theorem [1] the charge and current are
also given by

Qind ¼ � Q
Vw

ϕwð x
!

0Þ; Iind ¼ � Q
Vw

E
!

wð x!0Þw
d x!0

dt
ð2Þ

where ϕw and Ew ¼ � ∇
!
ϕw are the potential and electric field in the

detector volume, respectively, in case all charges in the detector are
removed, the pad is put to potential Vw and the rest stays grounded
[2,3]. In the following we derive the expressions for ϕ;ϕw and Ew.

2. Potential

Fig. 1a shows a point charge between two grounded metal
planes at a distance d. The potential is written as ϕ1 in the region
0ozoz0 and ϕ2 in the region z0ozod. We have

ϕ1ðr; zÞ ¼
Q

2πε0

Z 1

0
J0ðkrÞ

sin hðkzÞ sin hðkðd�z0ÞÞ
sin hðkdÞ dk ð3Þ

ϕ1ðx; y; zÞ ¼
Q

π2ε0

Z 1

0

Z 1

0

cos ðkxxÞ cos ðkyyÞ
k

sin hðkzÞ sin hðkðd�z0ÞÞ
sin hðkdÞ dkx dky

ð4Þ
in cylindrical and cartesian coordinates, respectively [1,4]. J0(x) is
the Bessel function of first kind and in Eq. (4) we have defined

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þk2y

q
. For ϕ2 we just have to swap z and z0. The integrand

has an infinite number of complex poles at kn ¼ inπ=d and by
finding an appropriate contour in the complex plane the integral
of Eq. (3) can be expressed as the sum of the residues which
evaluates to [1]

ϕðr; zÞ ¼ Q
πε0d

∑
1

n ¼ 1
sin

nπz
d

� �
sin

nπz0
d

� �
K0

nπr
d

� �
ð5Þ

where K0ðxÞ is the modified Bessel function of second kind. Since
K0ðxÞ has a logarithmic singularity at x¼0 the expression diverges for
r¼0 and has slow convergence close to r¼0. For numerical evalua-
tion it is therefore easier to focus on the integral in Eqs. (3) and (4)
for which very efficient methods are available. For large values of k
the integrand of Eq. (3) behaves as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðkrπÞ

p
cos ðkr �π=4Þe�kðz0 � zÞ.

The exponential behaviour therefore allows to set the upper integra-
tion limit for k to a multiple of 1=ðz0�zÞ for precise numerical
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evaluation. For values of z¼ z0 i.e. in the plane of the point charge,
the integral however shows very slow 1=

ffiffiffiffiffi
kr

p
decay and numerical

evaluation is difficult. We therefore apply the methods discussed in
[4] where we subtract one or more exponential terms from the
integrand which can be integrated explicitly. We can rewrite part of
the integrand in the following form:

sin hðkzÞ sin hðkðd�z0ÞÞ
sinhðkdÞ ¼ 1

2
e�kðz0 � zÞ �1

2
e�kðz0 þ zÞ

þ ∑
N

n ¼ 1

1
2
e�kð2nd� z0 þ zÞ þ1

2
e�kð2ndþ z0 � zÞ

�

�1
2
e�kð2nd� z0 � zÞ �1

2
e�kð2ndþ z0 þ zÞ

�

�e�kð2Nþ1Þd sin hðkzÞ sin hðkz0Þ
sinhðkdÞ ð6Þ

where N40 is an arbitrary positive integer. Inserting this expression
into Eqs. (3) and (4) and using the relations [1]Z 1

0
J0ðkrÞe�kjzj dk¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þz2
p

2
π

Z 1

0

Z 1

0
cos ðkxxÞ cos ðkyyÞ

e�kjzj

k
dkx dky ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
we find

4πε0
Q

ϕðr; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðz�z0Þ2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðzþz0Þ2

q

þ ∑
N

n ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðzþ2nd�z0Þ2

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðz�2nd�z0Þ2

q
2
64

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðz�2ndþz0Þ2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðzþ2ndþz0Þ2

q
3
75

�
Z 1

0
2J0ðkrÞe�kð2Nþ1Þd sinhðkzÞ sinhðkz0Þ

sin hðkdÞ dk ð7Þ

and

4πε0
Q

ϕðx; y; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðz�z0Þ2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðzþz0Þ2

q

þ ∑
N

n ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðzþ2nd�z0Þ2

q
2
64

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðz�2nd�z0Þ2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðz�2ndþz0Þ2

q

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðzþ2ndþz0Þ2

q
3
5

�
Z 1

0

Z 1

0

4
π

cos ðkxxÞ cos ðkyyÞ
k

e�kð2Nþ1Þd

� sin hðkzÞ sin hðkz0Þ
sin hðkdÞ dkx dky ð8Þ

Since the expressions are symmetric with respect to z and z0 we do
not have to distinguish betweenϕ1 andϕ2 andϕ is therefore valid in
the entire range of 0ozod. The above expressions represent the
potential created by a point charge and 4Nþ1 mirror charges
together with a remaining integral part: charges of �Q at positions
�z0 and �z072nd and charges of þQ at positions z0 and z072nd.

For the maximum possible values of z; z0 ¼ d the remaining
integrand behaves as e�2kNd, so for numerical evaluation of the
integral an upper integration limit as a multiple of 1=ð2NdÞ will be
sufficient for precise evaluation. Since J0ðkrÞr1 the integral part of
Eqs. (7) and (8) is always smaller thanZ 1

0
2e�kð2Nþ1Þd sin hðkdÞ dk¼ 1

2d
1

N2þN
ð9Þ

so we find the upper limit on the error Δϕ of the calculated
potential ϕ by terminating the series at N and neglecting the
integral to be

jΔϕjoQ=ð8πε0N2dÞ ð10Þ
By bringing N to 1 the error becomes zero and the field is
represented as an infinite number of mirror charges. This also
provides the mathematical proof that the procedure of an infinite
number of mirror charges converges to the correct potential. By
moving the grounded plate at z¼d to infinity, only the first two
terms in Eqs. (7) and (8) remain, which represents the correct
result for a point charge in the presence of a single grounded plane
i.e. a charge Q at z=z0 and a single mirror charge of value �Q at
z¼ �z0.

3. Induced charge and weighting field

Using Eqs. (1) and (4) we can now calculate the charge induced
on the rectangular pad, as shown in Fig. 1b, according to

Qindðx0; y0; z0Þ ¼
Z wx=2

�wx=2

Z wy=2

�wy=2
�ε0

∂ϕðx�x0; y�y0; zÞ
∂z z ¼ 0 dx dy

��
ð11Þ

With Eq. (2) we can express the result through the weighting
potential ϕw as

ϕwðx; y; zÞ ¼
4Vw

π2

Z 1

0

Z 1

0
cos ðkxxÞ sin kx

wx

2

� �
cos ðkyyÞ

� sin ky
wy

2

� � sin hðkðd�zÞÞ
kxky sin h ðkdÞ dkx dky ð12Þ

We can now verify that this is indeed equal to the solution of the
Laplace equation with boundary condition ϕwðx; y; z¼ 0Þ ¼ Vw in

x 

z

Q 
z=z0

z=0  

z=d  

1

2

x=y=r=0 

d 

x 

z

wx

wy

Fig. 1. (a) Point charge Q between two grounded metal planes. (b) Readout pad or pixel of dimension wx and wy centred at the origin.
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the range �wx=2oxowx=2 and �wy=2oyowy=2. The most
general solution of the Laplace equation in cartesian coordinates
that is symmetric in x and y and that satisfies the boundary
condition of ϕðx; y; z¼ dÞ ¼ 0 is given by

ϕwðx; y; zÞ ¼
Z 1

0

Z 1

0
Aðkx; kyÞ cos ðkxxÞ cos ðkyyÞ sin hðkðd�zÞÞ dkx dky

ð13Þ

Now Aðkx; kyÞ has to be chosen such that the boundary condition
ϕðx; y; z¼ 0Þ ¼ Vw in the defined x; y-range is satisfied. If we write
Bðkx; kyÞ ¼ Aðkx; kyÞ sin hðkdÞ we see that Eq. (13) (with z¼0) just
expresses the ‘two-dimensional box’ as a cosine Fourier integral
with the well known solution [1]

Bðkx; kyÞ ¼ 4Vw

π2

sin ðkxwx=2Þ
kx

sin ðkywy=2Þ
ky

ð14Þ

and the solution is equal to Eq. (12). We have therefore explicitly
verified the reciprocity theorem for this geometry. Before discuss-
ing the numerical evaluation we check whether the solution yields
the proper expression for a pad of infinite size. We change
variables to sx ¼ kxwx=2 and sy ¼ kywy=2 and let wx;wy-1, which
is equal to having kx; ky-0. With sin ðkðd�zÞÞ= sin ðkdÞ-ðd�zÞ=d
and using

R1
0 ð sin sÞ=sds¼ π=2 we therefore recuperate the correct

weighting potential and weighting field for an infinite plane

ϕwðx; y; zÞ ¼ Vw 1� z
d

� �
Ezw ¼ �∂ϕw

∂z
¼ Vw

d
ð15Þ

The weighting potential for a strip of infinite length in y-direction
is derived by having wy-1. The integral can then be expressed in
closed form and the resulting expression for the weighting
potential can be found elsewhere [4,5].

For finite wx;wy the integral in Eq. (12) cannot be expressed in
closed form and we have to use numerical evaluation. For small
values of z the integral shows slow convergence and we therefore
use Eq. (8) in Eq. (11) to find

ϕwðx; y; zÞ
Vw

¼ 1
2π

f ðx; y; zÞ� 1
2π

∑
N

n ¼ 1
½f ðx; y;2nd�zÞ� f ðx; y;2ndþzÞ�

� 4
π2

Z 1

0

Z 1

0
cos ðkxxÞ sin kx

wx

2

� �
cos ðkyyÞ

� sin ky
wy

2

� �e�kð2Nþ1Þd

kxky

sin hðkzÞ
sin hðkdÞ dkxdky ð16Þ

with

f ðx; y;uÞ ¼
Z xþwx=2

x�wx=2

Z yþwy=2

y�wy=2

u

ðx02þy02þu2Þ3=2
dx0 dy0

¼ arctan
x1y1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þy21þu2

q
0
B@

1
CAþarctan

x2y2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22þy22þu2

q
0
B@

1
CA

�arctan
x1y2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þy22þu2

q
0
B@

1
CA�arctan

x2y1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22þy21þu2

q
0
B@

1
CA

ð17Þ
and

x1 ¼ x�wx

2
; x2 ¼ xþwx

2
; y1 ¼ y�wy

2
; y2 ¼ yþwy

2
ð18Þ

Again we see that for large number of N the integral part tends to
zero and the weighting potential can be expressed and an infinite
sum of expressions involving f ðx; y;uÞ. The integral term of Eq. (16)
is smaller than

r
Z 1

0

Z 1

0

4
π2

wx

2
wy

2
e�kð2Nþ1Þd sin hðkzÞ

sin hðkdÞ dkx dky ¼
wxwy

8πd2
ψ Nþ1� z

2d

� �h

�ψ Nþ1þ z
2d

� �i
ð19Þ

where ψ ðxÞ ¼ d=dx ln ΓðxÞ is the digamma function [6]. Since the
expression in brackets asymptotically approaches z=ðN2dÞ from
‘below’ we find that the error on the weighting potential in case of
terminating the series at N and neglecting the integral is smaller
than

jΔϕwjo
Vw

8π
wxwy

d2
1

N2

z
d

ð20Þ

It is interesting to observe that the error goes to zero for z-0, and
indeed in Eq. (16) we see that for z-0 all expressions except for
the first one i.e. 1=ð2πÞf ðx; y; z-0Þ vanish, and this expression
represents the correct ‘box shaped’ potential distribution on the
metal surface.

The z-component of the weighting field Ezw ¼ �∂ϕw=∂z is then
given by

Ezwðx; y; zÞ
Vw

¼ 1
2π

gðx; y; zÞþ 1
2π

∑
N

n ¼ 1
½gðx; y;2ndþzÞþgðx; y;2nd�zÞ�

þ 4
π2

Z 1

0

Z 1

0
cos ðkxxÞ sin kx

wx

2

� �
cos ðkyyÞ

� sin ky
wy

2

� �e�kð2Nþ1Þd

kxky
k
cos hðkzÞ
sin hðkdÞ dkx dky ð21Þ

with

gðx; y;uÞ ¼ �∂f ðx; y;uÞ
∂u

¼ x1y1ðx21þy21þ2u2Þ
ðx21þu2Þðy21þu2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þy21þu2

q

þ x2y2ðx22þy22þ2u2Þ
ðx22þu2Þðy22þu2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22þy22þu2

q

� x1y2ðx21þy22þ2u2Þ
ðx21þu2Þðy22þu2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þy22þu2

q

Fig. 2. Weighting potential (left) and z-component of the weighting field (right) for the geometry from Fig. 1 with wx ¼wy ¼ 2d.
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� x2y1ðx22þy21þ2u2Þ
ðx22þu2Þðy21þu2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22þy21þu2

q ð22Þ

Again we see that for large number of N the integral part tends to
zero. The integral term is smaller than

r
Z 1

0

Z 1

0

4
π2

wx

2
wy

2
e�kð2Nþ1Þdk

cos hðkzÞ
sin hðkdÞ dkx dky

¼ wxwy

16πd3
�ψ 0 Nþ1� z

2d

� �
�ψ 0 Nþ1þ z

2d

� �h i
ð23Þ

The expression in brackets approaches the expression 2=N2 ‘from
below’ for large values of N, so the error on the weighting field
when terminating the series at N and neglecting the integral part
is smaller than

jΔEwz jo
Vw

8π
wxwy

d3
1

N2 ð24Þ

Fig. 2 shows an example for the weighting potential and z-compo-
nent of the weighting field for different x, y-positions. A value of
N¼100 was used for the evaluation.

4. ‘Trouble’ with the method of images

The expression for the weighting potential in Eq. (16) gives an
interesting insight into the ‘trouble with the method of images’
discussed in [7]. Since the infinite series of mirror charges, i.e.
Eq. (7) for N-1, gives the correct potential one could assume that
this expression can be used to calculate the total induced charge
on the metal plane. This approach is equal to using Eq. (16) with
N-1, omitting the integral part and evaluating the expression for
wx;wy-1. Since

lim
wx ;wy-1

f ðx; y;uÞ ¼ 2π ð25Þ

we get ϕwðx; y; zÞ ¼ Vw, since only the first image charge term
contributes and all other cancel. The result is clearly wrong since it

refers to the situation where there is only one metal plane at z¼0.
It is correct that for a convergent infinite series of functions, also
the sum of the integrals of these functions over a finite interval
converges to the correct result, but for an integral over an infinite
interval this is not the case. In this specific case this is very clear
from expression (16), where for wx;wy-1 the integral part
approaches �z=d independent from N, showing that the integral
cannot be omitted even for an arbitrarily large value of N. Another
indication of this fact comes from the expression for the error on
the potential when terminating the series at N (Eq. (20)), which for
wx;wy-1 diverges for every value of N.

5. Conclusion

We have presented expressions for the potential of a point
charge (Eqs. (7) and (8)) as well as the weighting potential (Eq. (16))
and weighting field (Eq. (21)) of a rectangular electrode for a
parallel plate geometry. The expressions are well suited for numer-
ical evaluation by either using numerical algorithms to evaluate the
integrals with well defined upper limits, or by using the infinite
sum representation. The errors on the calculated potentials or fields
due to truncating the sum at N terms are derived, and it is shown
that they are bounded by p1=N2.
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