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We derive expressions for the potential of a point charge as well as the weighting potential and
weighting field of a rectangular pad for a plane condenser, which are well suited for numerical
evaluation. We relate the expressions to solutions employing the method of image charges, which allows
discussion of convergence properties and estimation of errors, providing also an illuminating example of
a problem with an infinite number of image charges.
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1. Introduction

In this report we derive the potential of a point charge and the
so-called weighting potential and weighting field of a rectangular
pad in a parallel plate geometry. These solutions are needed to
calculate the signals in e.g. silicon pixel detectors as well as
micropattern detectors with pixel or pad readout. The surface charge
density ¢ induced on the metal planes by the presence of the point
charge Q is related to the electric field E on the metal surface by
o = gyE. Knowing the potential ¢b of a point charge Q at a (possibly
time dependent) position X, ¥, Zo, the induced charge and current
on a rectangular pad centred at zero is therefore given by

Wx/2 wy /2
de = / / _80€¢|z:0 dX dy,

Wy /2 wy /2

do.
ling = — %’tnd (1)

Due to Green's reciprocity theorem [1] the charge and current are
also given by

Q Q dx
Qing = —TW¢W(70), ling = “Vu Ew(X o)y dto (2)
where ¢, and Ey, = — ngw are the potential and electric field in the
detector volume, respectively, in case all charges in the detector are
removed, the pad is put to potential V,, and the rest stays grounded

[2,3]. In the following we derive the expressions for ¢, ¢, and E,,.

* Corresponding author.
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2. Potential

Fig. 1a shows a point charge between two grounded metal
planes at a distance d. The potential is written as ¢; in the region
0<z<zp and ¢; in the region zo < z < d. We have

Q [™ sin h(kz) sinh(k(d—zp))
780/0 Jotk) dk

sin h(kd) 3)

¢,(r,2) =

/ /”" c0s (kyX) cos(kyy) sin h(kz) sin h(k(d —zp)) dk. dk
x ARy

$(x.y.2) = sin h(kd)

ey
4)

in cylindrical and cartesian coordinates, respectively [1,4]. Jo(x) is
the Bessel function of first kind and in Eq. (4) we have defined

k= kﬁ +I<§. For ¢, we just have to swap z and zo. The integrand

has an infinite number of complex poles at k, =inz/d and by
finding an appropriate contour in the complex plane the integral
of Eq. (3) can be expressed as the sum of the residues which
evaluates to [1]

-2 5, s () sin (") ()

where Ko(x) is the modified Bessel function of second kind. Since
Ko(x) has a logarithmic singularity at x=0 the expression diverges for
r=0 and has slow convergence close to r=0. For numerical evalua-
tion it is therefore easier to focus on the integral in Eqgs. (3) and (4)
for which very efficient methods are available. For large values of k
the integrand of Eq. (3) behaves as \/2/(krx) cos (kr —r/4)e Kz -2,
The exponential behaviour therefore allows to set the upper integra-
tion limit for k to a multiple of 1/(zo—2) for precise numerical
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Fig. 1. (a) Point charge Q between two grounded metal planes. (b) Readout pad or pixel of dimension w, and w, centred at the origin.

evaluation. For values of z=z; i.e. in the plane of the point charge,
the integral however shows very slow 1/vkr decay and numerical
evaluation is difficult. We therefore apply the methods discussed in
[4] where we subtract one or more exponential terms from the
integrand which can be integrated explicitly. We can rewrite part of
the integrand in the following form:

1

sinh(kz) sinh(k(d—zp)) 1
sin h(kd) )

+ g: 1e—k(2nd—zo+z)+1e—k(2nd+zo—z)
n=1 2 2

efk(zofz) _ efk(zo +2)

1 —k(2nd —zy —2) 1 —k(2nd +z9 +2)
_je 0 _Ee 0
_e—keN+na S h(kz) sin h(kzo)

sin h(kd)

where N > 0 is an arbitrary positive integer. Inserting this expression
into Egs. (3) and (4) and using the relations [1]

(6)
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Since the expressions are symmetric with respect to z and zy we do
not have to distinguish between ¢, and ¢, and ¢ is therefore valid in
the entire range of 0 <z < d. The above expressions represent the
potential created by a point charge and 4N-+1 mirror charges
together with a remaining integral part: charges of —Q at positions
—2zo and —zy + 2nd and charges of +Q at positions zo and zy + 2nd.

For the maximum possible values of z,zg =d the remaining
integrand behaves as e~ 2N so for numerical evaluation of the
integral an upper integration limit as a multiple of 1/(2Nd) will be
sufficient for precise evaluation. Since J,(kr) < 1 the integral part of
Egs. (7) and (8) is always smaller than

0 1 1
2e~kCN+Dd ginhikd) dk = =— ——— 9
/0 (kad) 2dN? 4N ©
so we find the upper limit on the error A¢ of the calculated
potential ¢ by terminating the series at N and neglecting the
integral to be

|Ag| < Q/(8megN?d)

By bringing N to oo the error becomes zero and the field is
represented as an infinite number of mirror charges. This also
provides the mathematical proof that the procedure of an infinite
number of mirror charges converges to the correct potential. By
moving the grounded plate at z=d to infinity, only the first two
terms in Egs. (7) and (8) remain, which represents the correct
result for a point charge in the presence of a single grounded plane
i.e. a charge Q at z=z; and a single mirror charge of value —Q at
Z= —2p.

(10

3. Induced charge and weighting field

Using Eqgs. (1) and (4) we can now calculate the charge induced
on the rectangular pad, as shown in Fig. 1b, according to

we/2  pwy/2 . OP(X—X0,Y —Y0,2)
— 0—
w2 oz

Qina(X0,Y0,20) = /

|z— o dx dy
—wy/2

an

With Eq. (2) we can express the result through the weighting
potential ¢,, as

LAV, [ (L Wy
(X, y,z)_7 /O /0 cos (kyx) sin (kx7) cos (kyy)

« sin (kyﬂ)w dk, dk,

2 )Rk, sinh (kd) a2

We can now verify that this is indeed equal to the solution of the
Laplace equation with boundary condition ¢, (x,y,z=0)=V,, in
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the range —wy/2 <x<wy/2 and —w,/2 <y <w,/2. The most
general solution of the Laplace equation in cartesian coordinates
that is symmetric in x and y and that satisfies the boundary
condition of ¢(x,y,z=d) =0 is given by

Du(X,y,2) = /0 - /0 ooA(k,(,ky) cos (kxx) cos (kyy) sinh(k(d —2z)) dky dk,
(13)

Now A(ky, ky) has to be chosen such that the boundary condition
¢(x,y,z=0)=V,, in the defined x, y-range is satisfied. If we write
B(k, ky) = A(kx, ky) sinh(kd) we see that Eq. (13) (with z=0) just
expresses the ‘two-dimensional box’ as a cosine Fourier integral
with the well known solution [1]

4VW sin (kywy/2) sin (kyw,/2)
Ky ky

B(kx, ky) = (14)
and the solution is equal to Eq. (12). We have therefore explicitly
verified the reciprocity theorem for this geometry. Before discuss-
ing the numerical evaluation we check whether the solution yields
the proper expression for a pad of infinite size. We change
variables to sy = kywy/2 and sy, = k,w),/2 and let wy, w), > oo, which
is equal to having ky, ky—0. With sin (k(d—z))/ sin (kd)—(d —z)/d
and using [°(sin s)/sds = z/2 we therefore recuperate the correct
weighting potential and weighting field for an infinite plane

</)W(x,y,2)=vw(1—§) E, = _a%:\%w (15)
The weighting potential for a strip of infinite length in y-direction
is derived by having wy, — co. The integral can then be expressed in
closed form and the resulting expression for the weighting
potential can be found elsewhere [4,5].

For finite wy, w), the integral in Eq. (12) cannot be expressed in
closed form and we have to use numerical evaluation. For small
values of z the integral shows slow convergence and we therefore

use Eq. (8) in Eq. (11) to find
¢W(x y.2)_ 1

57 %Y. 29—
_% /0 - / cos (kyx) sin (kx%> cos (kyy)

wy\ e ~KCeN+Dd sin h(kz)
2 ) kxky,  sinh(kd) dkxdly

Z [fx,y,2nd—2z)—f(x,y,2nd+2z)]

x sin (ky (16)

with

fxy,u= /
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(17)
and

w w, w w
Xi=X="5 X=Xt Yi=Y-oh Va=Yt+o (18)
Again we see that for large number of N the integral part tends to
zero and the weighting potential can be expressed and an infinite
sum of expressions involving f(x, y, u). The integral term of Eq. (16)
is smaller than

bk
ltegy)

where y(x) =d/dx In I'(x) is the digamma function [6]. Since the
expression in brackets asymptotically approaches z/(N’d) from
‘below’ we find that the error on the weighting potential in case of
terminating the series at N and neglecting the integral is smaller
than

1A, | <

It is interesting to observe that the error goes to zero for z— 0, and
indeed in Eq. (16) we see that for z—0 all expressions except for
the first one i.e. 1/(27)f(x,y,z—0) vanish, and this expression
represents the correct ‘box shaped’ potential distribution on the
metal surface.

The z-component of the weighting field EZ, =

4wxwy _Kk@N+ 1) smh(kz)d dk, —
722 2°¢ sin h(kd)

wxwy

oo [y (N+1- %)

(19)

waxwy 1z
87 g2 N2d

(20)

—a¢,,/0z is then

given by
1

w ﬁg(x y,z)+— Z [8(x,y,2nd+2)+g(x,y, 2nd —2)]

w

/ / cos (kyx) sin (kx ) cos (kyy)
—k@N+1d - cos h(kz)
Wy
x sin (k 5 ) % k sin h(kd) dky dk, 21)
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Fig. 2. Weighting potential (left) and z-component of the weighting field (right) for the geometry from Fig. 1 with wy =w, =2d.
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Xy (G+yi+2u?)
(X3 +u)(y? +u2)\ /x5 +y? +u?

(22)

Again we see that for large number of N the integral part tends to
zero. The integral term is smaller than

) Wi&& —k@2N+1)d M
g/o /0 22 2°¢ ksinh(kd) dky dky

_ Wny YV _i Y4 i
n 167rd3[ v <N+1 Zd) v (N+l+2d)} 23
The expression in brackets approaches the expression 2/N? ‘from
below’ for large values of N, so the error on the weighting field
when terminating the series at N and neglecting the integral part
is smaller than

Vi wowy 1

W
|AEY| < 8% £ N

24

Fig. 2 shows an example for the weighting potential and z-compo-
nent of the weighting field for different x, y-positions. A value of
N=100 was used for the evaluation.

4. ‘Trouble’ with the method of images

The expression for the weighting potential in Eq. (16) gives an
interesting insight into the ‘trouble with the method of images’
discussed in [7]. Since the infinite series of mirror charges, i.e.
Eq. (7) for N— oo, gives the correct potential one could assume that
this expression can be used to calculate the total induced charge
on the metal plane. This approach is equal to using Eq. (16) with
N — oo, omitting the integral part and evaluating the expression for
Wy, Wy — o0. Since

wX,!/}/,l;ll Jxyw=2z (25

we get ¢, (x,y,z) =V, since only the first image charge term
contributes and all other cancel. The result is clearly wrong since it

refers to the situation where there is only one metal plane at z=0.
It is correct that for a convergent infinite series of functions, also
the sum of the integrals of these functions over a finite interval
converges to the correct result, but for an integral over an infinite
interval this is not the case. In this specific case this is very clear
from expression (16), where for wy,wy—oo the integral part
approaches —z/d independent from N, showing that the integral
cannot be omitted even for an arbitrarily large value of N. Another
indication of this fact comes from the expression for the error on
the potential when terminating the series at N (Eq. (20)), which for
wy, Wy — oo diverges for every value of N.

5. Conclusion

We have presented expressions for the potential of a point
charge (Egs. (7) and (8)) as well as the weighting potential (Eq. (16))
and weighting field (Eq. (21)) of a rectangular electrode for a
parallel plate geometry. The expressions are well suited for numer-
ical evaluation by either using numerical algorithms to evaluate the
integrals with well defined upper limits, or by using the infinite
sum representation. The errors on the calculated potentials or fields
due to truncating the sum at N terms are derived, and it is shown
that they are bounded by o 1/N?.
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