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Abstract
Studying early response to cancer treatment is significant for patient treatment stratification and follow-up.
Although recent advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) allow
for evaluation of tumor response, a quantitative objective assessment of treatment-related effects offers
localization and quantification of structural and functional changes in the tumor region. Radiomics, the process of
computerized extraction of features from radiographic images, is a new strategy for capturing subtle changes in
the tumor region that works by quantifying subvisual patterns which might escape human identification. The goal
of this study was to demonstrate feasibility for performing radiomics analysis on integrated PET/MRI to
characterize early treatment response in metastatic renal cell carcinoma (RCC) undergoing sunitinib therapy. Two
patients with advanced RCC were imaged using an integrated PET/MRI scanner. [18 F] fluorothymidine (FLT) was
used as the PET radiotracer, which can measure the degree of cell proliferation. Image acquisitions included test/
retest scans before sunitinib treatment and one scan 3 weeks into treatment using [18 F] FLT-PET, T2-weighted
(T2w), and diffusion-weighted imaging (DWI) protocols, where DWI yielded an apparent diffusion coefficient (ADC)
map. Our framework to quantitatively characterize treatment-related changes involved the following analytic steps:
1) intraacquisition and interacquisition registration of protocols to allow voxel-wise comparison of changes in
radiomic features, 2) correction and pseudoquantification of T2w images to remove acquisition artifacts and
examine tissue-specific response, 3) characterization of information captured by T2w MRI, FLT-PET, and ADC via
radiomics, and 4) combining multiparametric information to create a map of integrated changes from PET/MRI
radiomic features. Standardized uptake value (from FLT-PET) and ADC textures ranked highest for reproducibility in
a test/retest evaluation as well as for capturing treatment response, in comparison to high variability seen in T2w
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MRI. The highest-ranked radiomic feature yielded a normalized percentage change of 63% within the RCC region
and 17% in a spatially distinct normal region relative to its pretreatment value. By comparison, both the original
and postprocessed T2w signal intensity appeared to be markedly less sensitive and specific to changes within the
tumor. Our preliminary results thus suggest that radiomics analysis could be a powerful tool for characterizing
treatment response in integrated PET/MRI.

Translational Oncology (2016) 9, 155–162
Introduction
Early characterization of in vivo structural and functional changes in
tumors due to treatment is vital for defining individualized treatment
stratification and follow-up [1]. If treatment response evaluation is
performed late in the treatment regimen, this may result in a substantial
overtreatment or ineffective treatment of many patients: 1) those that do
not respond to therapy should be referred to alternative treatments, and 2)
those that developed a maximal metastatic inhibition response could
benefit from adjuvant chemotherapy [2].

Fluorothymidine (FLT) has emerged as a promising positron
emission tomography (PET) radiotracer for imaging cell proliferation
[3] and associated treatment effects. In Murakami et al. (2013), FLT
uptake levels in human renal cell carcinoma (RCC) xenograft models
decreased after only 7 days into cytostatic treatment [4]. Bao et al.
(2014) used a cytostatic drug, sunitinib, in their application of
treating human glioblastoma xenograft models and also saw decreased
FLT uptake levels after only 7 days [5]. Thus, in cytostatic treatments
which attempt to inhibit tumor proliferation (contrary to conven-
tionally used cytotoxic drugs whose effects can be measured via tumor
volume reduction), FLT uptake may be a useful imaging biomarker
for visualizing early treatment effects.

Magnetic resonance imaging (MRI) provides high-contrast
structural and functional information for characterizing soft tissue
and has been examined extensively in both pre- and posttreatment
settings. T2-weighted (T2w) MRI demonstrates pathological features
arising from differences in water content within internal structures.
Diffusion-weighted imaging (DWI) MRI captures changes in the
cellular architecture of the tissue based on differences in movement of
water protons within different tissue regions. Diffusion can be
quantified by generating an apparent diffusion coefficient (ADC)
map, which has previously demonstrated great promise as an imaging
biomarker of treatment response [6,7]. In therapeutic options that
affect the vascularization of tumors (e.g., cytostatic treatment) and
thus the anatomical structure of tissue, both T2w MRI and ADC
maps may be expected to capture in vivo changes due to treatment.

Furthermore, combining multiple imaging protocols (e.g., PET and
MRI) holds great promise in clinical oncology applications, especially
with the advent of newly developed hybrid scanners [8]. MRI offers
anatomical localization and an attenuation correction map for
quantification of PET data due to concurrent acquisition within the
same frame of reference, enabling an overlay of independent in vivo
structural, functional, and metabolic characterizations of tumor response.

Conventional assessment of in vivo imaging is based on tumor
morphology measurements, which have demonstrated a limited
ability to identify treatment response. For example, the most widely
used method in clinical standard of care to evaluate response to
cytostatic drugs is the Response Evaluation Criteria in Solid Tumors
version 1.1 (RECIST v1.1) [9]. The RECIST v1.1 classification is
solely based on unidimensional measurements on radiologic imaging
to quantify changes in parameters such as the tumor diameter on
MRI. However, morphological changes may only appear months into
the treatment regimen, because of which RECIST v1.1 may not be
able to identify any early treatment effects [10]. Alternative
characterization of tumor response using in vivo imaging have
involved measuring changes in contrast (for MRI), metabolic activity
(for PET), or functional activity (for DWI). Although there are
guidelines for assessing treatment response on PET and MRI
independently [9,11,12], to the best of our knowledge, there are no
techniques for a joint combined assessment of PET/MRI to evaluate
treatment response in oncological applications.

We hypothesize that to quantitatively characterize treatment-re-
lated changes in the tumor region on imaging modalities such as PET
and MRI, we need to better capture these subtle changes in the tumor
region before macroscopic changes in tumor morphology become
visible. Furthermore, by quantitatively combining parameters derived
from PET, ADC, and T2w MRI, we expect an improved
characterization of treatment response in vivo compared with the
individual imaging sequences.

To accurately quantify changes in the molecular and functional
characterization of the tumor in the posttreatment setting, specific
challenges must be overcome. First, the different imaging acquisitions
(PET, T2w, ADC) must be transformed into voxel-wise correspon-
dence to evaluate the spatial heterogeneity of associated parameters.
By more rigorously evaluating treatment-related changes, we would
expect to achieve greater sensitivity than region-based approaches
(such as RECIST v1.1). Second, acquisition artifacts due to patient
movement and image parameter drift [13,14] must be corrected for,
as these would significantly affect the ability of imaging parameters to
capture subtle treatment-related changes in a voxel-wise approach.
Finally, visual assessment of imaging parameters may not be able to
identify subtle changes in the tumor region in vivo, a problem further
exacerbated when evaluating such changes early into treatment
(a time point at which these changes may be even less visually
appreciable). This issue may be overcome by deriving computer-
extracted features from radiographic images, termed radiomics[15].
Radiomic features attempt to capture “image texture” through
quantification of local changes in image intensity values in relation to
their voxel-wise arrangement [16–19]. This offers the ability to
quantitatively capture subvisual “textural” changes in the tumor
region, changes that may characterize early treatment response but
escape visual identification.

The current study examines these methods in the context of
evaluating treatment response in patients with metastatic RCC,
which has a poor prognosis with a 5-year survival rate of 12.3% [2].
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Recently, tyrosine kinase inhibitors (TKIs) have been introduced as a
cytostatic treatment for advanced RCC. For example, sunitinib is a
TKI used as first-line therapy for patients with relapsed or medically
unresectable RCC because it targets the vascular endothelial growth
factor and its receptor [20,21], inhibition of which has been shown to
prolong progression-free survival in metastatic RCC [22,23].
Preclinical studies have shown that early treatment response as a
result of sunitinib is a combination of both antiangiogenesis as well as
inhibition of tumor proliferation [24,25], implying that FLT-PET
and MRI may be able to capture and visualize these treatment-related
effects in vivo.
In this proof-of-concept study, we present a first attempt at

performing radiomics analysis to identify imaging features and a
combination thereof that are both sensitive and specific for
identifying voxel-wise in vivo treatment-related changes on
FLT-PET/MRI acquired from metastatic RCC patients. For each
patient, acquisition sets acquired on different days were spatially
coregistered, in addition to which imaging protocols within each
acquisition were spatially aligned, to enable a voxel-wise comparison
across different imaging sequences. T2w intensities were additionally
processed by correcting for intensity nonuniformity (within an image)
as well as for intensity drift between patient acquisitions. A number of
different radiomic features were then extracted from each protocol to
obtain a comprehensive set of quantitative descriptors of image
Figure 1. Overview of the metho
structure and function to ensure that we completely characterized
response to treatment despite having a limited-sized data set. Finally, a
weighted multiparametric (MP)-PET/MRI signature was constructed to
give an optimal assessment of early treatment response in vivo.

Material and Methods

Data Description
Two patient studies were obtained from a prospective study evaluating

the use of FLT-PET/MRI in monitoring antiangiogenic therapy (PI: Dr.
N. Avril, MD, ClinicalTrials.gov Identifier: NCT02055586) at the Case
Comprehensive Cancer Center Cleveland. Before imaging, patients had
been diagnosed with advanced metastatic RCC and were scheduled to
begin sunitinib therapy. Before starting treatment, patients were imaged
on consecutive days (termed test/retest). Patient 1 was additionally imaged
3 weeks into the treatment regimen (termed mid). Image acquisitions
were acquired using the Ingenuity TF PET/MR (Philips Healthcare,
Cleveland, OH). Imaging sequences considered in each acquisition set
included a respiratory-triggered T2w turbo spin echo MRI, DWI spin
echo, and a whole-body PET protocol. DWI yielded an ADC map
(b values = 0, 400, 800). [18 F]-labeled FLT was used as the PET
radiotracer. Annotations of the tumor region (RCC) as well as a
homogenous region of healthy tissue (termed norm) were obtained on the
T2w volumes via an expert radiologist (Figure 1).
dology and overall workflow.



Table 1. Parameters for Each PET/MRI Protocol Used in Study

Parameters T2w DWI PET

Sequence RT T2w TSE DWIse WB PET (at ~60 min Δt)
Matrix dimensions 480 × 480 192 × 192 144 × 144
Slice thickness (mm) 5.5 5.5 4
Acquisition parameters TR/TE = 1590/80 ms b values = 0, 400, 800 Radiopharmaceutical = FLT-F18

RT T2w TSE, respiratory-triggered T2w turbo spin echo; DWIse, DWI spin echo; WB, whole body; TR, repetition time; TE, echo time.
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Intraacquisition Spatial Alignment
T2w, PET, and ADC map image volumes within each acquisition

set were spatially aligned to one another using the T2w volume as a
reference. This was done by resampling and cropping PET and ADC
map volumes to the same field of view (as the T2w volume) to
account for imaging differences in protocol-specific image dimensions
and voxel sizes. This enabled a voxel-wise correspondence between
the three PET/MRI protocols under consideration (Table 1).

Bias Field Correction
Intensity inhomogeneity is an MR image acquisition artifact which

refers to the gradual intensity variation within a tissue region over the
image domain [26]. This occurs due to imaging instrumentation
radiofrequency nonuniformity or static field inhomogeneity and is
known to significantly affect image analysis methods and radiomic feature
Figure 2. Transformation of RCC volumes into a voxel-wise correspon
original T2w volumes. Note slight differences in annotated region betw
coregistration shown as checkerboard images. Note contiguity of st
(Bottom row) Creation of minimum overlapping volume mask from in
across acquisitions to ensure voxel-wise comparison within tumor
across all three columns. Dice similarity coefficients between test/r
0.83, respectively (note ideal Dice value between two volumes shou
extraction [27]. Intensity inhomogeneity is visualized as a significant
variation in gray-level intensities across the MR image and was found to
be present in the T2w images upon visual inspection. Thus, before
registration, T2w volumes were bias field corrected for this image
intensity nonuniformity by convolving the images with a Gaussian
low-pass filter, resulting in uniform intensities across the volume [28].

Interacquisition Coregistration
Acquisitions acquired on each of the 3 days were found to be

misaligned because of organ and patient movement. Three-
dimensional (3D) affine coregistration followed by a 3D deformable
coregistration was applied between T2w volumes across the different
acquisition sets to enable per-voxel correspondence and comparison
between test/retest and test/midtreatment acquisitions. Image
registration was driven using mutual information as the similarity
dence across acquisitions. (Top row) Annotations of RCC region on
een each column. (Middle row) Results of 3D rigid plus deformable
ructures across checkerboard, indicating accuracy of registration.
tersection of transformed annotations of coregistered RCC region
region. Note that annotated region and structures are consistent
etest and test/midtreatment volumes were calculated as 0.90 and
ld be 1).
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measure and was performed using the ITK framework in Elastix [29].
The transformation matrices obtained from each registration T2w
pairing were then applied to the corresponding PET and ADC maps
(i.e., the matrix to transform retest T2w into alignment with test T2w
was then applied to retest PET and retest ADC map.) Thus, all three
protocols across all three acquisition sets were in the same frame of
reference with the ability to perform voxel-wise correspondences.
Separate annotation volumes had been created for each of test/

retest/midtreatment T2w acquisitions. The transformation matrices
from the coregistration step were applied to these annotations,
following which a minimum overlapping volume mask was made
from the intersection of test, retest, and midtreatment acquisition
annotations. This was done separately for annotations of healthy
tissue and RCC regions, which were then used as regions of interest
for the remainder of the analysis (Figure 2).

Intensity Standardization
T2w images visualize different in vivo tissue regions as having

different levels of intensity contrast within the same field of view.
However, the image intensities in T2w MRI lack a fixed
tissue-specific meaning even when protocol, scanner, and patient
parameters are held constant [30]. This artifact is termed intensity
nonstandardness, which implies that differences in image intensities
between corresponding voxels within the same tissue region, but from
2 different T2w acquisitions, cannot be assigned quantitative
meaning. Thus, T2w volumes were standardized to align intensity
distributions across acquisitions using the method presented by Nyul
et al. (2000) [30]. Intensities of the homogenous healthy tissue
regions from each T2w acquisition were used to generate
standardization maps which were then applied to the entire T2w
volume. The output of standardization is a pseudoquantitative T2w
value at every voxel, which has tissue region-specific meaning.
Intensity standardization was performed after registration because
registration was found to exacerbate drift between intensity
distributions (possibly because of implicit interpolation).

Radiomics Analysis
For each imaging protocol, a specific set of quantitative features

(where f is the set of all features) was extracted within the annotated
regions. Standard uptake value (SUV) was measured from FLT
uptake in PET volumes using a decay-correction intensity computer
algorithm [31]. ADC map values were automatically generated from
the magnitude of diffusion of water molecules in DWI volumes
(b values = 0, 400, 800).
Texture features were extracted from both the postprocessed T2w and

ADC volumes. A total of 30 first- and second-order statistical features
were used, including nonsteerable gradient (gray level, Kirsch, Sobel) [32]
and Haralick [33] operators. Radiomic analysis on PET data has
demonstrated limited robustness and reproducibility due to the low
spatial resolution of PET (in comparison to T2w, ADC) [34,35]. Based
on findings in a recent validation study, we decided to only extract
entropy and difference average texture features from FLT-PET [36]. In
total, a set of 66 radiomic features was implemented (raw T2w signal,
postprocessed T2w, 30 postprocessed T2w textures, raw ADC map, 30
ADC textures, SUV, and 2 PET textures).

Statistical Analysis
To rank features, the distribution of feature intensities within the

RCC and healthy tissue regions across acquisition sets was compared.
Differences in intensity distributions (D) were measured using the
Bhattacharyya distance [37]. Bhattacharyya values (B) were normal-
ized from 0 ≤B ≤ 1 to represent perfectly aligned and perfectly
misaligned intensity distributions, respectively.

A two-part scoring function was implemented:

S1 ¼ B Dtest
norm;D

retest
norm

� �

S2 ¼ B Dtest
RCC ;D

mid
RCC

� �

where S1 quantifies the variability of each parameter between test/
retest acquisitions (i.e., a measure of specificity) and S2 quantifies the
ability of a parameter to capture early response between test/
midtreatment acquisitions (a measure of sensitivity). Intensity
distributions of a homogenous healthy region between test/retest
acquisitions are expected to be aligned (i.e., ideally, S1 = 0 implies low
variability), whereas intensity distributions of the RCC region are
expected to be markedly misaligned as a result of sunitinib treatment
(i.e., ideally, S1 = 1 implies maximal response). Features were ranked
based on a combination of the feature’s performance in each of the
two parts of the scoring function based on a weighted ratio:

Soverall ¼ S2
w2

S1
w1

The weighting factors were set as w1 = w2 = 0.5 to attribute equal
importance to both terms of the scoring function. Soverall was
computed for each feature in f.

Multiparametric Map
Percent difference (denoted %Δ) for each feature fi∈ f, i= {1, …, 66}
was measured on a per-voxel basis between test/midtreatment
acquisitions. A weighted difference image (Ī ) was then computed
by combining %Δ from a subset of features f j⊂ f ; j∈f1;…; ng
using a weighted summation as follows:

I ¼
Xn

j¼1

a f j
� %Δ f j

where theweighted contribution factor a f j
for each feature f j is based

on how well Soverall for each feature f j ranked relative to other features.
The number of features used in generating Īwas set asn = 3, where SUV, the
top-rankedADC feature, and the top-rankedT2w feature were combined to
yield a MP-PET/MRI difference image.

Experimental Results and Discussion
Table 2 summarizes the top 25 PET/MRI radiomic features for each
patient, ranked in the descending order, based on the scoring function
S1 alone. It may be observed that SUV and ADCHaralick features are
relatively highly ranked in both patients, suggesting low variability in
a test/retest evaluation. By comparison, ADC gradient features and
the original T2w signal intensity ranked relatively high for patient 2
only and therefore may not be as reliable. Most T2w radiomic
features, including the postprocessed T2w signal intensity, the raw
ADC value, and both PET texture features, were among the
lowest-ranked features, implying relatively high variability in a test/
retest evaluation. It has previously been shown that, in a comparison
of feature reliability, ADC texture features have ranked higher than
T2w features in demonstrating more consistent changes in healthy
tissue regions [16]. In a previous case study that presented some of the
data used in this work [38], FLT-PET was shown to have an overall



Table 2. Top 25 Ranked PET/MRI Radiomic Features for Each Patient Based on Scoring Function
S1 (Quantifying Test/Retest Variability)

S1 Rank Patient 1 Patient 2

1 T2w gradient Y ADC gradient X
2 ADC energy ADC Sobel YX
3 T2w Sobel Y ADC entropy
4 ADC difference average ADC Sobel X
5 SUV SUV
6 ADC gradient X ADC sum entropy
7 ADC inverse difference moment ADC difference entropy
8 T2w correlation ADC inverse difference moment
9 ADC Sobel YX ADC energy
10 T2w Sobel YX ADC range
11 ADC difference entropy ADC Sobel XZ
12 ADC difference variance T2w correlation
13 ADC gradient Y ADC gradient Y
14 ADC entropy ADC gradient magnitude
15 ADC Sobel X ADC difference average
16 T2w gradient X PET difference average
17 T2w Sobel XY Raw T2w
18 ADC inertia ADC Sobel YZ
19 ADC sum entropy ADC Sobel ZY
20 ADC Sobel Y PET entropy
21 ADC Sobel XY ADC information metric 1
22 ADC information metric 1 ADC information metric 2
23 ADC information metric 2 T2w gradient Y
24 T2w Sobel X ADC gradient Z
25 ADC correlation ADC Sobel Z
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high repeatability (i.e., low variability) between test/retest studies.
DWI-ADC was found to be less repeatable likely because of
respiration artifacts affecting image quality, whereas T2w MRI and
radiomic features were not evaluated.

Figure 3 visualizes box plots of %Δ between test/midtreatment
within healthy tissue and RCC regions for the three top-ranked
radiomic feature based on the scoring function Soverall (in order: SUV,
ADC energy, and T2w difference average) for patient 1 alone, as well
as for the original signal intensities (midtreatment acquisition for
patient 2 was unavailable). The three top-ranked features were
combined to yield an MP-PET/MRI map, for which box plots of %Δ
are also shown. SUV and both T2w and ADC texture features appear
to be able to capture treatment-related changes, whereas the original
T2w signal intensity does not appear to capture any significant change
other than differences due to acquisition variability. The MP-PET/
MRI map may be considered most reflective of a marked difference in
Figure 3. Box plots showing %Δ between test/midtreatment acquis
top-ranked PET/MRI radiomic features (based on scoring function So
the tumor region but may not necessarily best reflect change due to
treatment alone (because of a greater change captured in the healthy
tissue compared with SUV). This indicates the need for either a better
weighting of the different modalities or a modified scoring function to
optimize the integrated map.

Figure 4 visualizes the difference maps between test/midtreatment
acquisitions for patient 1. Displayed are percent difference images for
the three top-ranked radiomic features based on Soverall and for the
original signal intensities. Hotter colors represent greater percent
changes as a result of sunitinib treatment. Although differences in
uptake appear across the entire functional tumor volume of
FLT-PET, regions of change captured by SUV appear to be rather
homogeneous (minimal differences within a small neighborhood of
voxels), reflecting marked changes being captured by molecular
imaging due to treatment, as well as the limited spatial resolution of
PET. The regions of change seen on the difference maps of the
original ADC and T2w images are visually much more heterogeneous
(marked differences within a small neighborhood of voxels),
indicative of these modalities capturing voxel-wise changes at the
anatomic or structural level. Each of the different PET/MRI protocols
appears to capture unique information regarding early treatment
response, and the MP-PET/MRI map appears to combine these
complementary sources of information to yield a comprehensive
characterization of response due to TKI treatment.

The raw T2w value and postprocessed T2w signal intensities were
among the lowest-ranking features based on Soverall, reflecting high
test/retest variability as well as not optimally capturing treatmen-
t-related changes. By comparison, T2w texture features appear to
yield an improved performance in capturing treatment-related
changes due to cytostatic treatment. Similarly, ADC texture features
also appeared to capture additional information related to treatment
change compared with the raw ADC value. In contrast, texture
features from PET (not shown) appear to exhibit high test/retest
variability and be unable to capture treatment-related changes. This
however is somewhat expected because of the limited spatial
resolution of PET [36]. SUV was the highest-ranking feature overall.

T2w radiomic features have previously been demonstrated to be
able to differentiate tumor and healthy regions based on appearance of
the prostate [17,39]. In addition, in cytotoxic applications, such as
laser ablation, both T2w and ADC radiomic features were able to
itions for patient 1 in both the RCC and healthy tissue regions for
verall) as well as the original signal intensities.



Figure 4. Percent difference maps based on treatment-related changes between corresponding voxels in test/midtreatment acquisitions
for patient 1 in the (A) healthy tissue and (B) RCC regions for PET/MRI radiomic features. (C) Difference maps of SUV, ADC energy, and
T2w difference average are combined based on each feature’s weighted contribution factor to compute an integrated MP-PET/MRI map,
reflecting a comprehensive characterization of early treatment-related changes and response.
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detect treatment-related changes in the ablation zone of the prostate
[16,18]. A subset of the radiomic features examined in these previous
studies was used in this study to characterize treatment response in
RCC based on changes in appearance before and during treatment.
Because we are examining changes only 3 weeks into treatment,
qualitative changes on intensity images were hard to observe.
However, our initial results suggest that T2w and ADC radiomic
features may be capturing subvisual changes in anatomic texture, thus
quantifying changes in the microscopic structures of the tumor as a
result of sunitinib treatment.
Although we have evaluated a large number of radiomic features to

quantitatively characterize treatment response on FLT-PET/MRI, the
goal was to determine which radiomic features best reflected treatmen-
t-related change while being resilient to acquisition-related artifacts. The
results of this study could therefore help guide future studies for selecting
the appropriate radiomics feature set to examine for treatment evaluation
in the context of different body regions and diseases.
In summary, we have presented a first attempt of using radiomics

analysis for evaluating treatment-related changes in vivo after early
sunitinib treatment for RCC via FLT-PET/MRI. Our experimental
results suggested that PET/MRI radiomic features, namely, SUV,
ADC energy, and T2w difference average, might be able to identify
early structural and functional response to cytostatic treatment in
metastatic RCC, but our conclusions are limited because of the fact
that only two studies were considered in this work. A test/retest
evaluation indicated that SUV and ADC Haralick features appeared
to display low variability across acquisitions for each patient. By
comparison, the original T2w signal intensity and T2w radiomic
features seemed inconsistent across acquisitions even after intensity
standardization. T2w and ADC texture features appeared to yield an
improved performance in capturing treatment-related changes
compared with the original T2w and ADC signal intensities, whereas
PET texture features seemed to degrade in performance. Although
SUV was the highest-ranking individual feature for overall sensitivity
and specificity, the integration of top-performing radiomic features
yielded an even higher sensitivity by combining complementary
information from the different PET/MRI protocols. As this was only
a proof-of-concept study, further investigation is needed to validate
our findings on a larger cohort of data. Additional studies are also
needed to correlate early treatment changes with progression-free
survival. Through the presented workflow, we also hope to perform
radiomics analysis to identify imaging features predictive of treatment
response in other cancers via PET/MRI.
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