An Inequality for L_{p}-Norms with Respect to the Multivariate Normal Distribution

W. Stadie
University of Göttingen
Submitted by R. P. Boas

A partial converse of Jensen's inequality for integrals of norms on \mathbb{R}^{k} is proved.

Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^{k}, A a positive definite $(k \times k)$-matrix and N_{A} the normal distribution on \mathbb{R}^{k} with mean 0 and covariance matrix A. The purpose of this note is the proof of the following:

Theorem. For $p \in[1, \infty)$

$$
\begin{equation*}
\left(\int\|x\|^{p} N_{A}(d x)\right)^{1 / p} \leqslant 2 \Gamma\left(\frac{p+1}{2}\right)^{1 / p} \pi^{(p-1) / 2 p} \int\|x\| N_{A}(d x) . \tag{1}
\end{equation*}
$$

If we denote the L_{p}-norm of a measurable function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ with respect to N_{A} by $\|f\|_{p, N_{A}}$, the theorem says that

$$
\|\|\cdot\|\|_{p, N_{A}} \leqslant c_{p}\| \| \cdot\| \|_{1, N_{A}},
$$

where c_{p} is a constant only depending on p, especially not on the norm $\|\cdot\|: c_{p}:=2 \Gamma((p+1) / 2)^{1 / p} \pi^{(p-1) / 2 p}$. It is a simple consequence of Jensen's inequality that $\|f\|_{1, \mathcal{N}_{A}} \leqslant\|f\|_{p, N_{A}}$ for $p \geqslant 1$. Thus (1^{\prime}) can be considered as a partial converse of this inequality for a special family of functions $[1, \mathrm{p} .39]$. If we take for example $\|x\|:=\left(\sum_{i=1}^{k} \alpha_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$, where $\alpha_{1}, \ldots, \alpha_{k}>0$, $\left(1^{\prime}\right)$ transforms into

$$
\begin{equation*}
\int\left(\sum_{i=1}^{k} \alpha_{i}\left|x_{i}\right|^{p}\right)^{1 / p} N_{A}(d x) \geqslant \frac{1}{c_{p}}\left(\sum_{i=1}^{k} \alpha_{i} \int\left|x_{i}\right|^{p} N_{A}(d x)\right)^{1 / p} . \tag{2}
\end{equation*}
$$

The right-hand side of (2) can be computed directly, and if the variances of the components x_{1}, \ldots, x_{n} (i.e., the diagonal elements of A) are denoted by $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$, we get

$$
\begin{equation*}
\int\left(\sum_{i=1}^{k} \alpha_{i}\left|x_{i}\right|^{p}\right)^{1 / p} N_{A}(d x) \geqslant(2 \pi)^{-1 / 2}\left(\sum_{i=1}^{k} \alpha_{i} \sigma_{i}^{p}\right)^{1 / p}, \tag{3}
\end{equation*}
$$

which in the case of the standard normal distribution becomes

$$
\begin{equation*}
\int\left(\sum_{i=1}^{k} \alpha_{i}\left|x_{i}\right|^{p}\right)^{1 / p} e^{-|x|^{2} / 2} \lambda^{k}(d x) \geqslant(2 \pi)^{(k-1) / 2}\left(\sum_{i=1}^{k} \alpha_{i}\right)^{1 / p} \tag{4}
\end{equation*}
$$

The proof of (1) depends on the following lemma whose easy proof is included for completeness. A function $f:(a, b) \rightarrow[0, \infty)$ satisfying $f \geqslant 0$ and $\int_{a}^{b} f(t) d t=1$ is called a density function on (a, b). Further we set $\|f\|_{p}:=\left(\int_{a}^{b} f^{p} d t\right)^{1 / p}$.

Lemma. Let f and g be two positive functions on the interval (a, b) such that f, g and g / f are monotone nondecreasing. Then we have for all $p \in[1, \infty]$

$$
\begin{equation*}
\|f\|_{p} \leqslant\|g\|_{p} \tag{5}
\end{equation*}
$$

If equality holds for some $p \in(1, \infty)$, it follows that $f=g$ Lebesgue-almost everywhere.

Proof. Since the case $p \in\{1, \infty\}$ is trivial, let $p \in(1, \infty)$. There are numbers $\quad a \leqslant c \leqslant d \leqslant b$ satisfying $\{t \in(a, b) \mid g(t)<f(t)\} \subset(a, c], \quad\{t \in$ $(a, b) \mid g(t)>f(t)\} \subset[d, b),\{t \in(a, b) \mid g(t)=f(t)\} \supset(c, d)$. For $0 \leqslant \lambda \leqslant 1$ and $h_{\lambda}:=p(\lambda f+(1-\lambda) g)^{p-1}$ we clearly have $\sup _{(a, c]} h_{\lambda} \leqslant \sup _{[d, b)} h_{\lambda}$. If $\|f\|_{p}=\infty$, obviously

$$
\int_{d}^{b} g^{p} d t \geqslant \int_{d}^{b} f^{p} d t=\infty
$$

implying (5). Thus, without loss of generality we may assume $\|f\|_{p}<\infty,\|g\|_{p}<\infty$. Then we obtain using $\int_{a}^{c}(f-g) d t=-\int_{d}^{b}(f-g) d t$:

$$
\begin{align*}
(d / d \lambda) & \left\{\int_{a}^{b}[\lambda f+(1-\lambda) g]^{p} d t\right\} \\
& =p \int_{a}^{b}[\lambda f+(1-\lambda) g]^{p-1}(f-g) d t \\
& \leqslant \sup _{(a, c)} h_{\lambda} \int_{a}^{c}(f-g) d t+\inf _{(d, b)} h_{\lambda} \int_{d}^{b}(f-g) d t \tag{6}\\
& =\left(\inf _{(d, b)} h_{\lambda}-\sup _{(a, c)} h_{\lambda}\right) \int_{d}^{b}(f-g) d t \leqslant 0 .
\end{align*}
$$

Hence $\lambda \rightarrow\|\lambda f+(1-\lambda) g\|_{p}$ decreases monotonically on $[0,1]$ and attains its minimum for $\lambda=1$ and its maximum for $\lambda=0$. This proves (5). Now let
$f \neq g$ with respect to Lebesgue measure so that $\int_{d}^{b}(f-g) d t<0<$ $\int_{a}^{c}(f-g) d t . \lambda \rightarrow\|\lambda f+(1-\lambda) g\|_{p}$ can be a constant function only if for all $\lambda \in[0,1] h_{\lambda}=$ const. on (a, c) and on (d, b). As g / f is monotone nondecreasing, in that case both f and g have to be constant on (a, c) as well as on $(d, b): f\left|(a, c)=\alpha_{1}>\alpha_{2}=g\right|(a, c), f\left|(d, b)=\beta_{1}<\beta_{2}=g\right|(d, b)$. Since the derivative in (6) vanishes, we must have $\inf _{(d, b)} h_{\lambda}=\sup _{(a, c)} h_{\lambda}$, and this implies $\lambda \alpha_{1}+(1-\lambda) \alpha_{2}=\lambda \beta_{1}+(1-\lambda) \beta_{2}$ for all $\lambda \in[0,1]$. Thus we can conclude $f=g=1$ contradicting the assumption $f \neq g$.

Proof of the Theorem. It is sufficient to show (1) for the standard normal distribution N, as is easily seen by the substitution $y=A^{-1 / 2} x$, for $y \rightarrow\left\|A^{1 / 2} y\right\|$ is again a norm. Let $F(t):=N\{x \mid\|x\| \leqslant t\}$ be the distribution function of $\|\cdot\|$ with respect to N and $\Phi(t):=(2 \pi)^{-1 / 2} \int_{-\infty}^{t} \exp \left\{-u^{2} / 2\right\} d u$ be the standard normal distribution function. Then we have the relations

$$
\begin{align*}
\int\|x\| N(d x) & \geqslant \int_{1 / 2}^{1} F^{-1}(t) d t \tag{7}\\
\int\|x\|^{p} N(d x) & =\int_{0}^{1}\left|F^{-1}(t)\right|^{p} d t \leqslant 2 \int_{1 / 2}^{1} F^{-1}(t)^{p} d t \tag{8}\\
2 \int_{1 / 2}^{1} \Phi^{-1}(t)^{p} d t & =\int_{0}^{1}\left|\Phi^{-1}(t)\right|^{p} d t=\int_{-\infty}^{\infty}|t|^{p} d \Phi(t) \\
& =(2 \pi)^{-1 / 2} 2^{(p+1) / 2} \Gamma\left(\frac{p+1}{2}\right)=\pi^{-1 / 2} 2^{p / 2} \Gamma\left(\frac{p+1}{2}\right) . \tag{9}\\
& \frac{F^{-1}}{\int_{1 / 2}^{1} F^{-1}(t) d t} \quad \text { and } \quad \frac{\Phi^{-1}}{\int_{1 / 2}^{1} \Phi^{-1}(t) d t}
\end{align*}
$$

are monotone nondecreasing density functions on $\left(\frac{1}{2}, 1\right)$. Below we shall show that Φ^{-1} / F^{-1} is also monotone nondecreasing. Using the lemma we can therefore conclude from (7)-(9),

$$
\begin{align*}
\int\|x\|^{p} N(d x) & \leqslant 2 \int_{1 / 2}^{1} F^{-1}(t)^{p} d t \\
& \leqslant 2 \frac{\left[\int_{1 / 2}^{1} F^{-1}(t) d t\right]^{p}}{\left[\int_{1 / 2}^{1} \Phi^{-1}(t) d t\right]^{p}} \int_{1 / 2}^{1} \Phi^{-1}(t)^{p} d t \tag{10}\\
& \leqslant \frac{\left[\int\|x\| N(d x)\right]^{p}}{\left[\pi^{-1 / 2} 2^{-1 / 2}\right]^{p}} \pi^{-1 / 2} \Gamma\left(\frac{p+1}{2}\right) 2^{p / 2} \\
& =\pi^{(p-1) / 2} \Gamma\left(\frac{p+1}{2}\right) 2^{p}\left|\int\|x\| N(d x)\right|^{p} .
\end{align*}
$$

Thus it remains to prove that Φ^{-1} / F^{-1} is monotone nondecreasing. F is differentiable on $(0, \infty)$, because we have for $t>0$ and $\alpha_{\varepsilon}:=(t+\varepsilon) / t$:

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1}(F(t+\varepsilon)-F(t)) & =\lim _{\varepsilon \rightarrow 0}\left(t\left(\alpha_{\varepsilon}-1\right)\right)^{-1}\left(F\left(\alpha_{\varepsilon} t\right)-F(t)\right) \\
& =t^{-1} u_{t}^{\prime}(1) \tag{11}
\end{align*}
$$

where $u_{t}(\alpha):=F(\alpha t), \alpha>0 . u_{t}$ is differentiable because of

$$
\begin{align*}
(d / d \alpha) u_{t}(\alpha)= & (d / d \alpha) \int_{\{x \mid\|x\| \leqslant \alpha t\}}(2 \pi)^{-k / 2} \exp \left\{-\frac{|x|^{2}}{2}\right\} \lambda^{k}(d x) \\
= & (d / d \alpha) \int_{|v|\|v\| \leqslant t\}} \alpha^{k} \exp \left\{-(1 / 2) \alpha^{2}|v|^{2}\right\}(2 \pi)^{-k / 2} \lambda^{k}(d v) \\
= & (2 \pi)^{-k / 2} \alpha^{k-1} k \int_{|v|\|v\| \leqslant t \mid} \exp \left\{-(1 / 2) \alpha^{2}|v|^{2}\right\} \lambda^{k}(d v) \\
& -(2 \pi)^{-k / 2} \alpha^{k+1} \int_{|v|\|v\| \leqslant t \mid}|v|^{2} \\
& \times \exp \left\{-(1 / 2) \alpha^{2}|v|^{2}\right\} \lambda^{k}(d v) . \tag{12}
\end{align*}
$$

By (11) and (12) we get

$$
\begin{equation*}
F^{\prime}(t)=t^{-1}\left[k F(t)-\int_{|v|\|v\| \leqslant t)}|v|^{2}(2 \pi)^{-k / 2} \exp \left\{-(1 / 2)|v|^{2}\right\} \lambda^{k}(d v)\right] . \tag{13}
\end{equation*}
$$

Similarly it is seen that

$$
\begin{equation*}
\Phi^{\prime}(s)=s^{-1}\left(k \Phi(s)-\int_{\left\{v \mid v_{1} \leqslant s\right\}}|v|^{2}(2 \pi)^{-k / 2} \exp \left\{-\frac{|v|^{2}}{2}\right\} \lambda^{k}(d v)\right. \tag{14}
\end{equation*}
$$

where $v-\left(v_{1}, \ldots, v_{k}\right)$. Now let

$$
\begin{equation*}
r=\Phi(s)=F(t) \text { for some } s, t>0 \text { and } r \in(1 / 2,1) \tag{15}
\end{equation*}
$$

We denote by $\mu_{k, r}$ the normalized surface measure on the sphere $r S^{k-1}$. By a theorem due to Landau and Shepp ([4, p. 373, Lemma 1] (condition (3.8) there is superfluous)), for each half space H containing the origin as an interior point and each closed convex set $C \subset \mathbb{R}^{k}$ the function $r \rightarrow \mu_{k, r}(H)-\mu_{k, r}(C)$ changes its sign at most once, and if it does, it is positive for large r (see also the remark after this proof). If we take
$H=\left\{v \in \mathbb{R}^{k} \mid v_{1} \leqslant s\right\} \quad$ and $\quad C=\left\{v \in \mathbb{R}^{k} \mid\|v\| \leqslant t\right\}$, we obtain for $r_{0}=\inf \left\{r>0 \mid \mu_{k, r}(H)>\mu_{k, r}(C)\right\}:$

$$
\begin{align*}
\int_{\mathbb{R} k}|v|^{2} & e^{-(1 / 2)|v|^{2}}\left(1_{H}(v)-1_{C}(v)\right) \lambda^{k}(d v) \\
& =\frac{2 \pi^{k / 2}}{\Gamma(k / 2)} \int_{0}^{\infty} r^{k+1}\left(\mu_{k, r}(H)-\mu_{k, r}(C)\right) e^{-r^{2 / 2}} d r \\
& =\frac{2 \pi^{k / 2}}{\Gamma(k / 2)} \int_{0}^{\infty}\left(r^{2}-r_{0}^{2}\right) r^{k-1}\left(\mu_{k, r}(H)-\mu_{k, r}(C)\right) e^{-r^{2} / 2} d r \\
& \geqslant 0 \tag{16}
\end{align*}
$$

The first equation follows from introducing polar coordinates and the obvious identity

$$
\begin{aligned}
\mu_{k, r}(E)= & \frac{\Gamma(k / 2)}{2 \pi^{k / 2}} \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} 1_{E}\left(v\left(r, \phi_{1}, \ldots, \phi_{k-1}\right)\right) \sin ^{k-2} \phi_{1} \\
& \times \cdots \times \sin \phi_{k-2} d \phi_{1} \cdots d \phi_{k-1}
\end{aligned}
$$

for $E=C$ or $E=H$ and $v\left(r, \phi_{1}, \ldots, \phi_{k-1}\right)$ the point in \mathbb{R}^{k} having polar coordinates $r, \phi_{1}, \ldots, \phi_{k-1}$. The second equation is derived by the chain of identities

$$
\begin{aligned}
& \frac{2^{(1-k) / 2}}{\Gamma(k / 2)} \int_{0}^{\infty} r^{k-1} \mu_{k, r}(H) e^{-r^{2} / 2} d r=N(H)=\Phi(s)=F(t) \\
& \quad=N\{x\| \| x \| \leqslant t\} \\
& \quad=\frac{2^{(1-k) / 2}}{\Gamma(k / 2)} \int_{0}^{\infty} r^{k-1} \mu_{k, r}(C) e^{-r^{2} / 2} d r .
\end{aligned}
$$

As the last integrand in (16) is nonnegative, (16) is proved. From (13), (14), and (16) one derives immediately

$$
\begin{equation*}
t F^{\prime}(t) \geqslant s \Phi^{\prime}(s)>0 \tag{17}
\end{equation*}
$$

and this yields

$$
\begin{equation*}
F^{-1}(r)(d / d r) \Phi^{-1}(r)=t / \Phi^{\prime}(s) \geqslant s / F^{\prime}(t)=\Phi^{-1}(r)(d / d r) F^{-1}(r) \tag{18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
(d / d r)\left(\Phi^{-1} / F^{-1}\right)(r) \geqslant 0, \quad \forall r \in\left(\frac{1}{2}, 1\right) \tag{19}
\end{equation*}
$$

This concludes the proof of the theorem.

Remark 1. The functions $r \rightarrow \mu_{k, r}(H)$ and $r \rightarrow \mu_{k, r}(C)$ cross at most once even if H does not contain the origin as an interior point (see [5]). However, the general proof is much more difficult than that one given in [4] for the special case used above. An alternative and perhaps somewhat simpler proof of the assertion in the case $0 \in H^{0}$ looks as follows: Suppose $\mu_{k, s}(H)<\mu_{k, s}(C)$ and let $U_{s, \varepsilon}^{\Delta}(B)$ be the closed geodesic ε-neighbourhood for a set $B \subset s S^{k-1}$. If we take $H=\left\{x \in \mathbb{R}^{k} \mid x_{1} \leqslant b\right\}$, we obtain for $0<b<s$ and $r \leqslant s \quad U_{s, \alpha}^{\Delta}\left(H \cap s S^{k-1}\right)=(s / r) H \cap s S^{k-1}$, where $\alpha=s(\arccos (b / s)-$ $\arccos (b / r \wedge 1)$). α is a (strictly) increasing function of b. Therefore, if \tilde{H} is a half space containing $C, U_{s, \alpha}^{\Delta}\left(\tilde{H} \cap s S^{k-1}\right) \subset(s / r) \tilde{H} \cap s S^{k-1}$. Now, if $r \leqslant s$ and $C=\bigcap_{n-1}^{\infty} H_{n}$ with half spaces H_{n}, we get

$$
\begin{aligned}
\mu_{k, r}(H) & =\mu_{k, s}\left(\frac{s}{r} H\right)=\mu_{k, s}\left(U_{s, \alpha}^{\Delta}\left(H \cap s S^{k-1}\right)\right) \\
& \leqslant \mu_{k, s}\left(U_{s, \alpha}^{\Delta}\left(C \cap s S^{k-1}\right)\right) \\
& \leqslant \mu_{k, s}\left(\bigcap_{n=1}^{\infty} U_{s, \alpha}^{\Delta}\left(H_{n} \cap s S^{k-1}\right)\right)
\end{aligned}
$$

The first inequality follows from the Brunn-Minkowski theorem (see [3, p. 92], for an elegant short proof) and the second from inclusion. The last set is contained in $\bigcap_{n=1}^{\infty}\left((s / r) H_{n} \cap s S^{k-1}\right)=(s / r) C \cap s S^{k-1}$, and its $\mu_{k, s^{-}}$ measure thus does not exceed $\mu_{k, r}(C)$. This argument completes the proof.

Remark 2. The existence of a constant c_{p} as in (1') already follows from the fundamental inequality of [2] which states that for a normal random vector X and $s>0$ such that $P(\|X\| \leqslant s)>\frac{1}{2}$ we have

$$
\begin{equation*}
P(\|X\|>u) \leqslant P(\|X\| \leqslant s) \exp \left\{-\frac{u^{2}}{24 s^{2}} \log \frac{P(\|X\| \leqslant s)}{P(\|X\|>s)}\right\}, \quad u \geqslant s \tag{20}
\end{equation*}
$$

From this result an estimate of the form (1') for some \tilde{c}_{p} can be derived in the following way: Without restriction of generality we can assume that $P(\|X\| \leqslant 1)=: q>\frac{1}{2}$. Then it follows from (20) that $\int\|x\| N_{A}(d x) \geqslant 1-q$ and

$$
\begin{align*}
\left(\int\|x\|^{p} N_{A}(d x)\right)^{1 / p} \leqslant & \left(1+q p \int_{1}^{\infty} u^{p-1} \exp \left\{-u^{2}\left(\log \frac{q}{1-q}\right) / 24\right\} d u\right)^{1 / p} \\
\leqslant & \frac{1}{1-q}\left(1+\frac{q p}{2} \Gamma\left(\frac{p}{2}\right) 24^{p / 2}\left(\log \frac{q}{1-q}\right)^{-p / 2}\right)^{1 / p} \\
& \times \int\|x\| N_{A}(d x) \tag{21}
\end{align*}
$$

where $q \in\left(\frac{1}{2}, 1\right)$ is arbitrary. If we define $\tilde{c}_{p, q}$ to be the constant in (21), we obtain

$$
\lim _{p \rightarrow \infty} \frac{\tilde{c}_{p, q}}{c_{p}}=\sqrt{\frac{6}{\pi}} \frac{1}{1-q}\left(\log \frac{q}{1-q}\right)^{-1 / 2}>4.9735
$$

This shows that, for large p, c_{p} is a much smaller constant than $\tilde{c}_{p, q}$. This is also true for small values of p. For example, if $p \approx 1$, $c_{p} \leqslant \frac{1}{5} \inf \left\{\tilde{c}_{p, q} \left\lvert\, q \in\left(\frac{1}{2}, 1\right)\right.\right\}$. By simple examples (e.g., (4) with $k=1$, $\alpha_{1}=p=1$) it is seen that (1^{\prime}) becomes false for $\tilde{c_{p}}<\frac{1}{2} c_{p}$. Perhaps our constant can be improved by a factor $\frac{1}{2}$.

References

1. E. F. Beckenbach and R. Bellman, "Inequalities," Springer-Verlag, Berlin/Heidelberg/ New York, 1965.
2. X. Fernique, Inegrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A 270 (1970), 1698-1699.
3. T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94.
4. H. J. Landau and L. A. Shepp, On the supremum of a gaussian process, Sankhyā Ser. A 32A (1970), 369-378.
5. W. Stadje, "Rotationssymmetrische Verteilungen und Ungleichungen für die mehrdimensionale Normalverteilung," Habilitationsschrift, Göttingen, 1980.
