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A partial converse of Jensen’s inequality for integrals of norms on R* is proved.

Let ||-|] be an arbitrary norm on R*, 4 a positive definite (k X k)-matrix
and N, the normal distribution on R* with mean 0 and covariance matrix 4.
The purpose of this note is the proof of the following:

THEOREM. For p€ [1, o)

U lx? NA(dx))l/p £2r (ﬁ;_l_) v ﬂ(pﬂ)/sz x|l N, (dx). (1)

If we denote the L ,norm of a measurable function f: R¥ » R with respect to
N, by [| fll,.n,» the theorem says that

-1, < € - o (1)

where c, is a constant only depending on p, especially not on the norm
I -]I: e,:=2I((p + 1)/2)"" V7?1t is a simple consequence of Jensen’s
inequality that || f{|; v <I|f]l,, for p> 1. Thus (1’) can be considered as a
partial converse of this inequality for a special family of functions |1, p. 39].
If we take for example ||x|:= (%, a;|x;/")"?, where a,,...,a, >0, (1)
transforms into

i k, 1/p 1

J (L ai|xi|p) NA(dx)>;_ (

i=1

k 1/p
SaflnfNG@) @
p ‘Vi=1

The right-hand side of (2) can be computed directly, and if the variances of
the components x,,..., x, (i.e., the diagonal elements of 4) are denoted by
01y G2, We get

f (;k:l @; |xi|p)l/p N (dx)> (2m)~ "7 (i ai“f) l/pe (3)
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which in the case of the standard normal distribution becomes

k 1/p

[z a,~|x,-|")”pe-'*'“21*(dx)>(2n><"—”/2(ﬁa,.) L@

i=1

The proof of (1) depends on the following lemma whose easy proof is
included for completeness. A function f: (a, b) - [0, o) satisfying /> 0 and
[2f(H)dt=1 is called a density function on (a,b). Further we set

1 llp:= (Jor? oy

LEMMA. Let f and g be two positive functions on the interval (a, b) such
that f,g and g/f are monotone nondecreasing. Then we have for all
pE|l, ]

A1 <1l &ll,- (5)
If equality holds for some p € (1, o), it follows that f==g Lebesgue-almost
everywhere.

Proof. Since the case p€ {1, 00} is trivial, let p &€ (1, o). There are
numbers a<c<d<b satisfying {t € (a,b)|g(t) <f(t)}c(a,c], {t€
(a,b)|g(t) > f(1)} < [d, b), {t € (a, b)|g(1) =f (1)} > (¢, d). For 0L A< 1 and
hy=pf+(1—4)gy~"' we clearly have sup, . hy<supy, k. If
|| fll, = oo, obviously

ng"dt>£jf”dt=oo

implying (5). Thus, without loss of generality we may assume
[.fll, < oo, gll, < 0. Then we obtain using [ (f—g) dt=—[5%(f—g)dr:

(d/dh) 3 j ’ Af+(1—A)g) dr

—p[ W+ (=Dl - g)d
T , (6)
<swp by [ (f=g)di+ inf by [ (F-gya
b
~ (g m- s b) [ U-par<o

Hence 4 - ||Af + (1 — 1) g||, decreases monotonically on {0, 1] and attains its
minimum for A =1 and its maximum for A =0. This proves (5). Now let
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f+#g with respect to Lebesgue measure so that [5(f—g)dt<0<
JS(f—g)dt. A~ ||Af+ (1 —2)g]|, can be a constant function only if for all
A€[0,1] hy =const. on (a,c) and on (d,b). As g/f is monotone non-
decreasing, in that case both f and g have to be constant on (a, ¢) as well as
on (d,b):f|(a,c)=a,>a,=g|@ac), fl(db)=p <B,=g|(db) Since
the derivative in (6) vanishes, we must have inf , ,) h, = sup, ., A, and this
implies Aa; + (1 —4)a, =48, + (1 —1)p, for all A€ [0, 1]. Thus we can
conclude f= g =1 contradicting the assumption f'# g.

Proof of the Theorem. 1t is sufficient to show (1) for the standard normal
distribution N, as is easily seen by the substitution y=dA4"'"2x, for
y—4"?y| is again a norm. Let F(f): = N{x|||x|| <t} be the distribution
function of | -|| with respect to N and @(¢) := (2n) " [" _ exp{—u?/2} du be
the standard normal distribution function. Then we have the relations

[Ixiv@> [ Foa ™
jux”p N(dx) =j01 \F ()P de < 2[11/2 F'Q)P dr, (8)

2jll/z¢’(z)ﬂdz:jol|<p~‘(t)|ﬂdt=j°° 11 do (o)

1 1
@ (23D e (221

F-—l ¢—l

T T and T 5 T~
i FH(e) i @) dt

are monotone nondecreasing density functions on (3, 1). Below we shall
show that @~'/F~' is also monotone nondecreasing. Using the lemma we
can therefore conclude from (7)-(9),

[l M@ <2 Foor

, Ul Fi@arp

Ul/z OLIEY:

U“xHN(dx)]p p-172 p+1 p/2
< (F)

— =02 (p; 1 ) 2P

D () ar
(10)

JIE N(dx)




152 W. STADJE

Thus it remains to prove that @ '/F~! is monotone nondecreasing. F is
differentiable on (0, co), because we have for £ > 0 and a,:= (f + &)/t:

lim ™ (F(t + &) — F(0) = lim (t(a,— 1)) "' (F(e,2) — F())

=t~ ul(l), an

where u,(a):= F(at), a > 0. u, is differentiable because of

- |x|*
@y u(@)= @) | @m e |~ A)
(xtxl<an
= (d/da) j( ak expl — (1/2) o |v]?}(21) ~*2A*(dv)
(olpli<y
= @r) " a* k| exp{—(1/2) a* |v|*} A*(dv)
(ollpl<n
—@n)~? ak+! [ o2
Jolfv<a)
X expl—(1/2) a? |v|?} A%(dv). (12)

By (11) and (12) we get

F(t)y=t"" [kF(t) - w|*(2r) K exp{—(1/2) |v]*} A"(dv)} . (13)

(ol|oll <)
Similarly it is seen that
/ R . ( !1)!2
P'(s)=s5"" \ D(s) — |v|22n) %2 exp | — ! A*(dv), (14)
{lelgs] 2 2 S

where v = (v, ..... v,)}. Now lat

re (v}, v, ). Now let
r=®(s) = F(¢) for some s,¢ >0 and r € (1/2, 1). (15)

We denote by g, , the normalized surface measure on the sphere rS%¥ 1. Bya
theorem due to Landau and Shepp (|4, p.- 373, Lemma 1] (condition (3.8)
there is superfluous)), for each half space H containing the origin as an
interior point and each closed convex set Cc<R* the function
r—u, (H)—u, (C) changes its sign at most once, and if it does, it is
positive for large r (see also the remark after this proof). If we take
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H={vER*v,<s) and C={veR|vl|<t}, we obtain for
=inf{r > O|u, (H) > u; (C)}:

[ ol e M1 0) — 1)) 24(dv)

27tk/2 re k+1 —r22
:WJO r (luk,r(H) ——:uk,r(c))e dr
272

= I'(k/2) j:o (rr = r2yr* Y, (H) — 1, (C)) e dr

>0. (16)

The first equation follows from introducing polar coordinates and the
obvious identity

:uk,r(E) F(kl{/zz)J J J 1 (0(rs @1 5ees By 1))Smk 2¢1

X X Sin¢k-2d¢l d¢k—1

for E=C or E=H and v(r, ¢,,..., §,_,) the point in R* having polar coor-
dinates r, ¢, ,..., #,_,. The second equation is derived by the chain of iden-

tities
2(1~k)/2 0 ,
WJO r* ' u, (H)e " dr = N(H) = ®(s) = F(¢)
= N{x|l|lx|| <t}
2(1Ak)/2

== | F 'y (C)e " dr.
T&/2) ) i, (C)

As the last integrand in (16) is nonnegative, (16) is proved. From (13), (14),
and (16) one derives immediately

tF'(t) > s®'(s) >0 (17)
and this yields
F=\(r)(d/dr) @' (r) =1/ ®'(s) > s/F'(t) = @~ (r)(d/dr) F"'(r). (18)
Thus
@/dry (@ '/F () >0, Yre(, ). (19)

This concludes the proof of the theorem.
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Remark 1. The functions r— u, (H) and r - 4, (C) cross at most once
even if H does not contain the origin as an interior point (see [5]). However,
the general proof is much more difficult than that one given in [4] for the
special case used above. An alternative and perhaps somewhat simpler proof
of the assertion in the case 0€ H° looks as follows: Suppose
Uy (H) <t (C) and let U3 (B) be the closed geodesic ¢-neighbourhood for
a set BcsS* 1. If we take H= {x € R¥|x, < b}, we obtain for 0 < b <s
and r<s U2, (HNsS¥ )= (s/r)HNsS*"!, where a=s(arccos(b/s)—
arccos(b/r A 1)). a is a (strictly) increasing function of 4. Therefore, if H is a
half space containing C, U2 (HNsS* )< (s/r)HNsS*~'. Now, if r<s
and C =, H, with half spaces H,, we get

S
g o) =ty (2 H ) =iy (U2 (H O1554)

Sty,s (Uso(COsS* YY)

hyes ( N U;‘,,,(HmsS*-‘>).

n=1

The first inequality follows from the Brunn—-Minkowski theorem (see
[3, p. 92], for an elegant short proof) and the second from inclusion. The last
set is contained in X, ((s/r) H,NsS* )= (s/r) CNsS*', and its y, -
measure thus does not exceed g, (C). This argument completes the proof.

Remark 2. The existence of a constant ¢, as in (1’) already follows from
the fundamental inequality of [2] which states that for a normal random
vector X and s > 0 such that P(| X|| < s) > 3 we have

P(IX] > u) < P(|X|| <s)exp | — u’ logP(llX!Ks)

, >s (20
2457 B P(X[> 5) uzs. (20)

From this result an estimate of the form (1’) for some ¢, can be derived in
the following way: Without restriction of generality we can assume that
P(|X|| < 1)=:g> 1. Then it follows from (20) that [|x|| N, (dx)>1—gq

and
g 1/p
—u 2% d)
u <log l—q)/ U
1 qp p q —-p/2y 1/p
——- iy 24"”(1 ) )
< (1451 (3) -

X [ 1 %1l N (dx), (21)

(e V@) "< (1+ap v e
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where g € (3, 1) is arbitrary. If we define ¢, , to be the constant in (21), we
obtain

—-1/2

- =
. C /6 1 q
lim S2a = /O | ) 4.9735.
im N s (og : >

pox €,

This shows that, for large p,c, is a much smaller constant than ¢, .
This is also true for small values of p. For example, if px1,
¢, <1inf{é, ,|g € (3,1)}. By simple examples (e.g., (4) with k=1,
a;=p=1) it is seen that (1) becomes false for ¢, < jc,. Perhaps our
constant can be improved by a factor 3.
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