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An Inequality for L,-Norms with Respect to 
the Multivariate Normal Distribution 
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A partial converse of Jensen’s inequality for integrals of norms on Rk is proved. 

Let 11. I( be an arbitrary norm on R k, A a positive definite (k x k)-matrix 
and NA the normal distribution on Rk with mean 0 and covariance matrix A. 
The purpose of this note is the proof of the following: 

THEOREM. ForpE [l, co) 

(, ,,x,,p NA(dx))l’p < 2r (%j 1/P d-y ,,x,, NA(dX). (1) 

If we denote the L,-norm of a measurable functionf: Rk + R with respect to 

NA by Ilfllp,NA, the theorem says that 

Illl~llllP.N~~~p/IlI~lIlII,N,~~ (1’) 

where c, is a constant only depending on p, especially not on the norm 
I, *I/ : cp:= 2T((p + q/2)“” 7r(p-‘)‘2p. It is a simple consequence of Jensen’s 
inequality that llfllI N G Ilfll, N, for p > 1. Thus (1’) can be considered as a 
partial converse of thiRS inequaiity for a special family of functions [ 1, p. 391. 
If we take for example 1(x/I:= (CfzI aiJ~ilP)l’P, where aI,..., ak > 0, (1’) 
transforms into 

The right-hand side of (2) can be computed directly, and if the variances of 
the components x, ,..., x, (i.e., the diagonal elements of A) are denoted by 

2 
0, ,..a, 0,) ’ we get 
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which in the case of the standard normal distribution becomes 

1 (i, ai lxilp)‘” e 
-1XlW pydX) > (27C)‘k-“/2 

i 1 
i, ai “‘* (4) 

The proof of (1) depends on the following lemma whose easy proof is 
included for completeness. A function f: (a, b) -+ [0, co) satisfying f > 0 and 
Ib,f(t) dt = 1 is called a density function on (a, b). Further we set 
Ilfll, := <lif” W”- 

LEMMA. Let f and g be two positive functions on the interval (a, b) such 
that .L g and g/f are monotone nondecreasing. Then we have for all 
PE [L al 

Ilf Ilp Q II gllp. (5) 

If equality holds for some p E (1, a~), it follows that f = g Lebesgue-almost 
everywhere. 

Proox Since the case p E { 1, co } is trivial, let p E (1, co). There are 
numbers a < c < d < b satisfying {t E (a, b)l g(t) <f(t)} c (a, c], {t E 
(a, b)lg(t) >f (t)} c [d, b), {t E (a, b)lg(t) =f (t)} = (c, d). For 0 <I < 1 and 
h, :=p(Af + (1 - A) g)“-’ we clearly have SUP~~,~] h, < supt,,,, h,. If 
II f lip = co, obviously 

implying (5). Thus, without loss of generality we may assume 
Ilf Ilp < a3 II gllp < co. Then we obtain using 1: (f - g) dt = -Ii (f - g) dt: 

(d/dA) 
1 
jb Bf + (1 -n)glP dti 
a 

=~!b” Rf+ (1 -%lp-‘(f-tW 

“C ,b 
(6) 

S;--y$j (f-g)dt+&$h,j dr-g)dt a d = inf h, - sup h, 
(d, b) (f - g) dt S 0. 

(Q,C) 

Hence 1+ IIAf + (1 - L)gll, d ecreases monotonically on [0, 1 ] and attains its 
minimum for 1= 1 and its maximum for J. = 0. This proves (5). Now let 
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f # g with respect to Lebesgue measure so that li (f-g) dt < 0 < 
J-r, (f- g> dt- J -+ Illf+ (1 - A) gllp can be a constant function only if for all 
A E [0, 1 ] h, = const. on (a, c) and on (d, b). As g/f is monotone non- 
decreasing, in that case both f and g have to be constant on (a, c) as well as 
on (d,b):fl(a,c)=a, > a2=gl(a,c), fl(d,b)=p, <&=gJ(d,b). Since 
the derivative in (6) vanishes, we must have inf,,,,, h, = SUP~~,~, h,, and this 
implies kf , + (1 - 2) az = l/Ii + (1 -A)& for all 2 E [0, 11. Thus we can 
conclude f = g = 1 contradicting the assumption f # g. 

Proof of the Theorem. It is sufficient to show (1) for the standard normal 
distribution N, as is easily seen by the substitution y = A -“‘x, for 
y+ ](A”2~]] is again a norm. Let F(t): =N(x] ]]x]] <t} be the distribution 
function of I(. ]j with respect to N and Q(t) := (27~)-“‘(‘+~ exp{-U2/2} du be 
the standard normal distribution function. Then we have the relations 

1’ It4 Wx) >l,i2 F-‘(t) dt, 

!‘lixll”N(dx) =i,’ IF-‘(t)lP dt < 2jl;* F-‘(t)” dt, 

2 (I ~~‘(l)“df=jl/~-‘(f)lpdl=jv Itl”d@(t) 
l/2 0 -cc 

F-l a-’ 

&,F-‘(W 
and 

J-:,2 @-‘@I df 

(7) 

(8) 

(9) 

are monotone nondecreasing density functions on (i, 1). Below we shall 
show that Q-‘/F-’ is also monotone nondecreasing. Using the lemma we 
can therefore conclude from (7~(9), 

j-Ilxll”Wx)< 2f2F-‘Wpdf 

< 2 [1:,2F-l(f) dtlp ’ 
[J”:,2 @-‘(t)dt]” I ,,2 @-l(l)” dt 

< Lf Il4l Wdx)lP 71-,,2 r P + 1 
’ [11-I/22-1/2]P - 

( j 2 
2p,2 

(10) 

=7T ‘p-1)‘2rj9j2p (jIlx~lN(dx)]p. 
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Thus it remains to prove that @-l/F-’ is monotone nondecreasing. F is 
differentiable on (0, co), because we have for t > 0 and aE:= (t + e)/t: 

F% E-l(F(t + E) - F(t)) = ljz (t(ac- 1)))‘(F(a,t) -F(t)) 

= t-l U;(l), (11) 

where ~((a) := F(at), a > 0. U, is differentiable because of 

V/da) u,(a) = W/da) j,x, ,,x,,(al, WY’* exp 1 - !$- 1 lk@x) 

= (d’da)j,t,,“,,<r, akexp{ - (1/2)a* Iu12}(2n)-k’2Ak(dv) 

= (2~)-~” ak-’ k I exp{-(l/2) a2 jvl’} Ak(dv) 
~~lll~ll<tl 

- (zn)-k/* ak+’ 
I lV12 I~lll~ll<tl 

X exp{-(l/2) a2 Ivl’} Ak(dv). (12) 

By (11) and (12) we get 

F’(t) = f-l k/2 exp{-(l/2) Ivi2}Ak(dv) 

Similarly it is seen that 

W(s) = SC’ (k@(s) -!;L,,I:,Ga, (v/2(2n)-k/2 exp 1 -!$I Ak(du). (14) 

where v = (v, ,..., vk). Now let 

r = Q(s) = F(t) for some s, t > 0 and r E (l/2, 1). (15) 

We denote by &r the normalized surface measure on the sphere rSkp ‘. By a 
theorem due to Landau and Shepp (14, p. 373, Lemma l] (condition (3.8) 
there is superfluous)), for each half space H containing the origin as an 
interior point and each closed convex set C c Rk the function 
r + pk,JH) -,D~,~(C) changes its sign at most once, and if it does, it is 
positive for large r (see also the remark after this proof). If we take 
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H={VERklV,<S} and C={vEIRk)\J~J1<t}, we obtain for 

ro = inf{r > oI&,r(H) > pk,r(C)\: 

c;i142 e -(1’2)‘u’*( l&I) - l,(v)) P(dv) 

2@ *cc 
= ___ 

J W2) o 
rk+‘($k,r(H) -pk,r(c)) e-‘2’2 dr 

2zW2 co 
=---.--- 

I W/2) o 
(r2 -I~)~~-'O~~,~(H)-~~,~(C)) epr2'2 dr 

> 0. (16) 

The first equation follows from introducing polar coordinates and the 
obvious identity 

Ilk.,(E)=4j$2j2n/n~**j-r lE(v(r,Q ,,..., dk-,))sink-2#, 
0 0 0 

X .-a x sin dkV2 d@, .a. d4k-l 

for E = C or E = H and v(r, d, ,..., dk- r) the point in Rk having polar coor- 
dinates r, 4, ,..., #k-, . The second equation is derived by the chain of iden- 
tities 

2’1 -k)/2 ,a 

J W2) o 
rk-’ ,kk,,(H) emr212 dr = N(H) = Q(s) = F(f) 

=~~xlIlxll~~l 

2(1-W 00 

= W/2) I 
rk-’ pk,JC) e-‘2’2 dr. 

o 

As the last integrand in (16) is nonnegative, (16) is proved. From (13), (14), 
and (16) one derives immediately 

P’(f) > s@‘(s) > 0 (17) 

and this yields 

F-‘(r)(d/dr) W’(r) = t/@‘(s) > s/F’(t) = @-‘(r)(d/dr) F-‘(r). (18) 

Thus 

(d/dr)(V’/F-‘)(r) > 0, Vr E ($, 1). (19) 

This concludes the proof of the theorem. 
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Remark 1. The functions r--t p,JH) and r + ,u~,(C) cross at most once 
even if H does not contain the origin as an interior point (see [5]). However, 
the general proof is much more difftcult than that one given in [4] for the 
special case used above. An alternative and perhaps somewhat simpler proof 
of the assertion in the case 0 E Ho looks as follows: Suppose 
p&H) < ,u~,JC) and let U:,,(B) be the closed geodesic s-neighbourhood for 
a set BcsSk-‘. If we take H={xEIRklx,<b}, we obtain for O<b<s 
and r < s Uf,,(H n sSk-‘) = (s/r)Hn sSk-‘, where a = s(arccos(b/s) - 
arccos(b/r A 1)). a is a (strictly) increasing function of b. Therefore, if @ is a 
half space containing C, U~,,(B~SS~-~)C (s/r)Z?r‘l~S~-~. Now, if r <s 
and C = nF= r H, with half spaces H,, we get 

Elk,@) = pk.s 

The first inequality follows from the Brunn-Minkowski theorem (see 
[3, p. 921, for an elegant short proof) and the second from inclusion. The last 
set is contained in nz! r ((s/r) H, n sSk-‘) = (s/r) C n sSk-‘, and its ,u,,,- 
measure thus does not exceed pk.(C). This argument completes the proof. 

Remark 2. The existence of a constant cP as in (1’) already follows from 
the fundamental inequality of [2] which states that for a normal random 
vector X and s > 0 such that P(]]X]] Q s) > f we have 

From this result an estimate of the form (1’) for some c’, can be derived in 
the following way: Without restriction of generality we can assume that 
P(]]X]] < l)=: q > 4. Then it follows from (20) that J]]x]] NA(dx) > 1 -q 
and 
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where q E (f, 1) is arbitrary. If we define Ca,, to be the constant in (21), we 
obtain 

This shows that, for large p, c, is a much smaller constant than Cp,,. 
This is also true for small values of p. For example, if p 2 1, 
cp < 3 inf{Zp,,lq E (j, I)}. By simple examples (e.g., (4) with k = 1, 
a, =p = 1) it is seen that (1’) becomes false for Fp < icp. Perhaps our 
constant can be improved by a factor 4. 

REFERENCES 

1. E. F. BECKENBACH AND R. BELLMAN, “Inequalities,” Springer-Verlag, Berlin/Heidelberg/ 
New York, 1965. 

2. X. FERNIQUE, Inegrabilite des vecteurs gaussiens, C. R. Acad. Sci. Paris S&r. A 270 
(1970), 1698-1699. 

3. T. FIGIEL, J. LINDENSTRAUSS, AND V. D. MILMAN, The dimension of almost spherical 
sections of convex bodies, Acta Math. 139 (1977) 53-94. 

4. H. J. LANDAU AND L. A. SHEPP, On the supremum of a gaussian process, Sankhya Ser. A 
32A (1970), 369-378. 

5. W. STADJE, “Rotationssymmetrische Verteilungen und Ungleichungen fur die mehrdimen- 
sionale Normalverteilung,” Habilitationsschrift, Gdttingen, 1980. 


