An Inequality for Permanents of $(0,1)$-Matrices*
Henryk Minc
Department of Mathematics, University of California, Santa Barbara, California
Communicated by H. J. Ryser

Abstract

Let A be an n-square (0,1)-matrix, let r_{i} denote the i-th row sum of $A, i=1, \ldots, n$, and let $\operatorname{per}(A)$ denote the permanent of A. Then $$
\operatorname{per}(A) \leq \prod_{i=1}^{n} \frac{r_{i}+\sqrt{2}}{1+\sqrt{2}}
$$ where equality can occur if and only if there exist permutation matrices P and Q such that $P A Q$ is a direct sum of 1 -square and 2 -square matrices all of whose entries are 1 .

If $A=\left(a_{i j}\right)$ is an n-square matrix then the permanent of A is defined by

$$
\begin{equation*}
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)} . \tag{1}
\end{equation*}
$$

An up-to-date survey of the theory of permanents was given in [2]. Many properties of the permanent function are similar to those of the determinant. In particular, there is the following analog of Laplace expansion by the k-th column

$$
\begin{equation*}
\operatorname{per}(A)=\sum_{i=1}^{n} a_{i k} \operatorname{per}(A(i \mid k)), \tag{2}
\end{equation*}
$$

[^0]where $A(i \mid k)$ denotes the ($n-1$)-square submatrix of A obtained by deleting the i-th row and the k-th column of A.

Permanents and particularly permanents of (0,1)-matrices are of combinatorial significance. Various bounds for permanents have been proved and conjectured [1, 2]. In [3] I have conjectured that

$$
\begin{equation*}
\operatorname{per}(A) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}} \tag{3}
\end{equation*}
$$

where $r_{i}=\sum_{j=1}^{n} a_{i j}$ is the i-th row sum of A. I also proved that

$$
\begin{equation*}
\operatorname{per}(A) \leq \prod_{i=1}^{n} \frac{r_{i}+1}{2} \tag{4}
\end{equation*}
$$

with equality if and only if A is a permutation matrix. In [1] Jurkat and Ryser proved that

$$
\begin{equation*}
\operatorname{per}(A) \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / n}\left(\frac{r_{i}+1}{2}\right)^{\left(n-r_{i}\right) / n} \tag{5}
\end{equation*}
$$

which is better than the bound given by (4). In the present paper I prove the following improvement of (4).

Theorem. If $A=\left(a_{i j}\right)$ is an n-square (0,1)-matrix then

$$
\begin{equation*}
\operatorname{per}(A) \leq \prod_{i=1}^{n} \frac{r_{i}+\sqrt{2}}{1+\sqrt{2}} \tag{6}
\end{equation*}
$$

Equality in (1) occurs if and only if there exist permutation matrices P and Q such that $P A Q$ is a direct sum of 1-square and 2 -square matrices all of whose entries are 1 .

The bounds in (5) and (6) are not comparable. In fact, the inequality (5) becomes equality for matrices all of whose entries are 1 , while (6) is equality in case A is a direct sum of 2 -square matrices all of whose entries are 1.

We first prove two combinatorial lemmas.

Lemma 1. If $A=\left(a_{i j}\right)$ is an n-square $(0,1)$-matrix without a zero row then

$$
\begin{equation*}
\min \sum_{i=1}^{n} a_{i j} / r_{i} \leq 1 \tag{7}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
\sum_{=1}^{n}\left(\sum_{i=1}^{n} a_{i j} / r_{i}\right) & =\sum_{i=1}^{n} \frac{1}{r_{i}} \sum_{j=1}^{n} a_{i j} \\
& =\sum_{i=1}^{n} \frac{1}{r_{i}} r_{i} \\
& =n .
\end{aligned}
$$

Thus

$$
\min _{j} \sum_{i=1}^{n} a_{i j} / r_{i} \leq 1
$$

Clearly, Lemma 1 implies that we can permute the rows and the columns of a (0,1)-matrix without a zero row so that

$$
\begin{equation*}
\sum_{i=1}^{c} \frac{1}{r_{i}} \leq 1 \tag{8}
\end{equation*}
$$

where c is the first column sum and r_{i} the i-th row sum of the permuted matrix. Note that both sides of inequality (6) are invariant under permutations of rows and columns.

Lemma 2. Let $A=\left(a_{i j}\right)$ be an n-square $(0,1)$-matrix without zero rows for which (8) holds. Then

$$
\begin{equation*}
(\sqrt{2}+1) \sum_{i=1}^{c} \frac{1}{r_{i}+\sqrt{2}-1} \leq \prod_{i=1}^{c}\left(1+\frac{1}{r_{i}+\sqrt{2}-1}\right) \tag{9}
\end{equation*}
$$

Equality holds in (9) if and only if either $c=r_{1}=1$, or $c=r_{1}=r_{2}=2$.
Proof: Let $d=\prod_{i=1}^{c}\left(r_{i}+2^{1 / 2}-1\right)$. Then

$$
\begin{align*}
& (\sqrt{2}+1) \sum_{i=1}^{c} \frac{1}{r_{i}+\sqrt{2}-1}=\frac{\sqrt{2}+1}{d} \sum_{i=1}^{c} \prod_{\substack{t=1 \\
t \neq i}}^{c}\left(r_{t}+\sqrt{2}-1\right) \tag{10}\\
& =\frac{1}{d}\left\{(\sqrt{2}+1) E_{c-1}+2 E_{c-2}\right. \\
& \left.\quad+\sum_{t=3}^{c} t(\sqrt{2}-1)^{t-2} E_{c-t}\right\}
\end{align*}
$$

where E_{k} denotes the k-th elementary symmetric function of r_{1}, \ldots, r_{c}; $E_{0}=1$. Thus

$$
\begin{align*}
(\sqrt{2}+1) \sum_{i=1}^{c} \frac{1}{r_{i}+\sqrt{2}-1} & \leq \frac{1}{d}\left\{(\sqrt{2}+1) E_{c-1}+2 E_{c-2}+\sum_{t=3}^{c} \sqrt{\left.2^{t} E_{c-t}\right\}}\right. \\
& =\frac{1}{d}\left(E_{c-1}-E_{c}\right)+\frac{1}{d} \sum_{i=0}^{c} \sqrt{2^{t}} E_{c-t} \tag{11}\\
& =\frac{1}{d}\left(E_{c-1}-E_{c}\right)+\frac{1}{d} \prod_{i=1}^{c}\left(r_{i}+\sqrt{2}\right) \\
& \leq \prod_{i=1}^{c}\left(1+\frac{1}{r_{i}+\sqrt{2}-1}\right)
\end{align*}
$$

since

$$
E_{c-1}-E_{c}=E_{c}\left(\sum_{i=1}^{c} \frac{1}{r_{i}}-1\right)
$$

which is nonpositive, by Lemma 1. If either $c=r_{1}=1$ or $c=r_{1}=r_{2}$ $=2$, then clearly (9) is equality. Conversely, if (9) is equality then (11) is equality which, together with (10), implies $E_{c-3}=0$, i.e., $c \leq 2$. It easily follows, by direct computation, that either $c_{1}=r_{1}=1$ or $c=r_{1}$ $=r_{2}=2$.

Proof of the Theorem: If A has a zero row then (6) is a strict inequality. Suppose now that A has no zero rows. Since both sides of (6) are invariant under permutations of rows and columns of A, we can assume without loss of generality that

$$
a_{11}=\cdots=a_{c 1}=1, \quad a_{c+1,1}=\cdots=a_{n, 1}=0
$$

and that (8) holds. We shall prove (6) by induction on n. Assume therefore that (6) holds for all k-square (0,1)-matrices, $k<n$. Then

$$
\begin{aligned}
\operatorname{per}(A) & =\sum_{i=1}^{c} \operatorname{per}(A(i \mid 1)) \\
& \leq \sum_{i=1}^{c}\left(\prod_{\substack{j=1 \\
j \neq i}}^{c} \frac{r_{j}+\sqrt{2}-1}{1+\sqrt{2}}\right)\left(\prod_{j=c+1}^{n} \frac{r_{j}+\sqrt{2}}{1+\sqrt{2}}\right) \\
& =\sum_{i=1}^{c} \frac{1+\sqrt{2}}{r_{i}+\sqrt{2}-1}\left(\prod_{j=1}^{c} \frac{r_{j}+\sqrt{2}-1}{r_{j}+\sqrt{2}}\right)\left(\prod_{j=1}^{n} \frac{r_{j}+\sqrt{2}}{1+\sqrt{2}}\right)
\end{aligned}
$$

But

$$
\begin{align*}
& \sum_{i=1}^{c} \frac{1+\sqrt{2}}{r_{i}+\sqrt{2}-1}\left(\prod_{j=1}^{c} \frac{r_{j}+\sqrt{2}-1}{r_{j}+\sqrt{2}}\right) \tag{12}\\
& \quad=(1+\sqrt{2}) \sum_{i=1}^{c} \frac{1}{r_{i}+\sqrt{2}-1} / \prod_{j=1}^{n}\left(1+\frac{1}{r_{j}+\sqrt{2}-1}\right) \leq 1
\end{align*}
$$

by Lemma 2. Hence

$$
\operatorname{per}(A) \leq \prod_{j=1}^{n} \frac{r_{j}+\sqrt{2}}{1+\sqrt{2}}
$$

If equality holds in (6), the inequality (12) must be equality and thus, by Lemma 2 , either $c=r_{1}=1$ or $c=r_{1}=r_{2}=2$. In the first case it follows immediately from the induction hypothesis that A is of the form described in the theorem. If $c=r_{1}=r_{2}=2$ then, by the induction hypothesis, both $A(1 \mid 1)$ and $A(2 \mid 1)$ must be of the required form. It is easily seen that in this case $P A Q$ must be a direct sum of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and an ($n-2$)-square (0,1)-matrix and the result again follows from the induction hypothesis. Conversely, if $P A Q$ is the direct sum of $k 2$-square and $n-2 k 1$-square matrices all of whose entries are 1 , then

$$
\operatorname{per}(A)=2^{k}=\left(\frac{2+\sqrt{2}}{1+\sqrt{2}}\right)^{2 k}\left(\frac{1+\sqrt{2}}{1+\sqrt{2}}\right)^{n-2 k}=\prod_{i=1}^{n} \frac{r_{i}+\sqrt{2}}{1+\sqrt{2}} .
$$

This completes the proof of the theorem.
Since $\operatorname{per}\left(A^{T}\right)=\operatorname{per}(A)$ we have

$$
\begin{equation*}
\operatorname{per}(A) \leq \min \left\{\prod_{i=1}^{n} \frac{r_{i}+\sqrt{2}}{1+\sqrt{2}}, \prod_{i=1}^{n} \frac{c_{i}+\sqrt{2}}{1+\sqrt{2}}\right\} \tag{13}
\end{equation*}
$$

where c_{i} denotes the i-th column sum of A. However, the inequality

$$
\operatorname{per}(A) \leq \prod_{i=1}^{n} \frac{s_{i}+\sqrt{2}}{1+\sqrt{2}}
$$

where $s_{i}=\min \left(r_{i}, c_{i}\right), i=1, \ldots, n$, is false. For example, if

$$
A==\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

then $\operatorname{per}(A)=4$, while

$$
\prod_{i=1}^{n} \frac{s_{i}+\sqrt{2}}{1+\sqrt{2}}=\sqrt{2} \frac{3+\sqrt{2}}{1+\sqrt{2}} \sqrt{2}=4 \sqrt{2}-2<4
$$

References

1. W. B. Jurkat and H. J. Ryser, Matrix Factorizations of Determinants and Permanents, J. Algegra 3 (1966), 1-27.
2. M. Marcus and H. Minc, Permanents, Amer. Math. Monthly 72 (1965), 577-591.
3. H. Minc, Upper Bounds for Permanents of (0,1)-matrices, Bull. Amer. Math. Soc. 69 (1963), 789-791.

[^0]: * This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 432-63.

