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1. Introduction

1.1. LetG be a simple algebraic group over an algebraically closed fieldk of characteristic
p > 0. For r � 1, let Gr be the rth Frobenius kernel ofG. It is well known that
the representations forG1 are equivalent to the restricted representations for LiG.
Historically, the cohomology for Frobenius kernels has been best understood for
primes. Friedlander and Parshall [FP] first computed the cohomology ring H•(G1, k) for
p � 3(h− 1) whereh is the Coxeter number of the underlying root system. They pro
that the cohomology ring can be identified with the coordinate algebra of the null
Andersen and Jantzen [AJ] later verified this fact forp � h. Furthermore, they generalize
this calculation by looking at H•(G1,H

0(λ)) whereH 0(λ) = indGB λ for p � h. Their
results had some restrictions on the type of root system involved. Kumar, Lauritze
Thomsen [KLT] removed the restrictions on the root systems through the use of Fro
splittings.

The cohomology ring H•(G1, k) modulo nilpotents can be identified in general w
the coordinate algebra of the restricted nullconeN1 = {x ∈ Lie(G): x[p] = 0}. For good
primes, Nakano, Parshall, and Vella [NPV] proved that this variety is irreducible an
be identified with the closure of some Richardson orbit. Recently, Carlson, Lin, Na
and Parshall [CLNP] have given an explicit description ofN1. These recent results provid
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some indication that one can systematically study extensions of Frobenius kernels fo
primes by using general formulas which exhibit generic behavior for large primes.

1.2. This paper will first focus on the first extension groups (i.e., Ext1) in the category
of Gr -modules for arbitrary primes. The authors have shown that such computatio
highly desirable because they can be used to provide vital information about extens
the category of modules for the finite Chevalley groupG(Fpr ) (see [BNP1,BNP2,BNP3])
Of particular interest in this context are good upper bounds for the weights of Ext1

Gr
in

arbitrary characteristic.
The paper is outlined as follows. In [Jan2], Jantzen provides extensive comput

of the first cohomology groups of the first Frobenius kernelG1 of G. In particular,
he studies both H1(G1,L(λ)) and H1(G1,H

0(λ)) whereL(λ) is the simpleG-module
with highest weightλ. The first goal of the paper is to use Jantzen’s computation
compute H1(Gr,H 0(λ)) for all Frobenius kernelsGr and dominant weightsλ. These
computations were inspired by statements of Andersen [And2]. To begin, in Section
recall Jantzen’s computations of H1(B1, λ) and then use those results to compute H1(Br , λ)

for all r and all weightsλ. In Section 3, theBr -cohomology results are used to comp
H1(Gr,H

0(λ)). As a special case, we determine all fundamental dominant weightsω for
which H1(Gr,H

0(ω)) is non-zero. Donkin conjectured that ifV is a rationalG-module
with good filtration, then Hm(Gr,V )(−r) has a good filtration for everym � 0 (see [Do,
p. 79]). Van der Kallen [vdK] showed that this conjecture was not true in genera
constructing a counterexample. Our results show that whenV =H 0(λ) for λ a dominant
weight that indeed H1(Gr,V )(−r) has a good filtration for all primes. It would be a
interesting question to determine to what extent Donkin’s conjecture still remains va

In Section 4, an observation is made about the cohomology of simple modules
second goal of the paper (discussed in Section 5) is to make use of the cohom
computations of induced modules to prove a general formula for extensions betwe
simpleGr -modules for arbitrary primes (see Theorem 5.4). More specifically, we
relate extensions (i.e., Extm

Gr
) between simpleGr -modules with the extensions betwe

certainG-modules. In particular, form= 1 andλ,µ ∈Xr(T ), we construct the following
isomorphism (as vector spaces)

Ext1Gr
(
L(λ),L(µ)

) ∼=
⊕
ν∈πh

Ext1G
(
L(λ), Ih(ν)

(r) ⊗L(µ)
) ⊗L(ν)(r), (1.2.1)

whereIh(ν) is the injective hull ofL(ν) in the bounded categoryCh, πh = {ν ∈ X(T )+:
〈ν,α0〉 < h}, andCh is the full subcategory of allG-modules whose composition facto
L(λ) have highest weights inπh. For p > h, we can apply the explicit description
H•(G1,H

0(λ)) given in [KLT], to provide sharper results on the necessary bounds fo
truncated categories. From this formula above, we can deduce that forp � 2h− 1,

Ext1Gr
(
L(λ),L(µ)

) ∼=
⊕
ν∈πh

Ext1G
(
L(λ),L(ν)(r) ⊗L(µ)

) ⊗L(ν)(r). (1.2.2)

The preceding formulas significantly improve earlier results by the authors [BNP1
Andersen [And1, Proposition 5.5].
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1.3. Notation. Throughout this paper, letG be a simple simply connected algebraic gro
scheme defined and split over the finite fieldFp with p elements. The fieldk is the algebraic
closure ofFp . For r � 1, letGr be therth Frobenius kernel ofG. The basic definitions
and notation can be found in [Jan1].

LetT be a maximal split torus andΦ be the root system associated to(G,T ). Moreover,
let Φ+ (respectivelyΦ−) be positive (respectively negative) roots and∆ be a base
consisting of simple roots. For a given root system of rankn, the simple roots will be
denoted byα1, α2, . . . , αn. Let α∨ = 2α/〈α,α〉 be the coroot corresponding toα ∈ Φ. In
this case, the fundamental weights (basis dual toα∨

1 , α
∨
2 , . . . , α

∨
n ) will be denoted byω1,

ω2, . . . ,ωn. We use the same ordering of roots as given in [Jan2] (following Bourbak
particular, for typeBn, αn denotes the unique short simple root and for typeCn, αn denotes
the unique long simple root. For a generic simple rootα, ωα will denote the correspondin
fundamental weight. LetB be a Borel subgroup containingT corresponding to the negativ
roots andU be the unipotent radical ofB.

Let E be the Euclidean space associated withΦ and the inner product onE will be
denoted by〈 , 〉. Moreover, letX(T ) be the integral weight lattice obtained fromΦ. The
setX(T ) has a partial ordering defined as follows: ifλ,µ ∈X(T ) thenλ� µ if and only
if λ− µ ∈ ∑

α∈∆Nα. Setα0 to be the highest short root. Moreover, letρ be the half sum
of positive roots andw0 denote the long element of the Weyl group. The Coxeter num
associated toΦ is h= 〈ρ,α∨

0 〉 + 1. The set of dominant integral weights is defined by

X(T )+ = {
λ ∈X(T ): 0 �

〈
λ,α∨〉

for all α ∈∆}
,

and the set ofpr -restricted weights is

Xr(T )=
{
λ ∈X(T ): 0 �

〈
λ,α∨〉

<pr for all α ∈∆}
.

The simple modules forG are indexed by the setX(T )+ and denoted byL(λ), λ ∈X(T )+
with L(λ)= socGH 0(λ)whereH 0(λ)= indGB λ. A complete set of non-isomorphic simp
Gr -modules are easily obtained by taking{L(λ): λ ∈Xr(T )}. Forλ ∈X(T ), we will often
use the notationkλ := λ to be the one-dimensionalB-module obtained by taking the on
dimensionalT -moduleλ and extending it toU -trivially.

2. Br -cohomology

2.1. This section is concerned with computingBr -cohomology. Specifically, we compu
H1(Br , λ) for all λ ∈ X(T ). For an arbitraryλ ∈X(T ), we may writeλ= λ0 + prλ1 for
a unique weightλ0 ∈Xr(T ). Furthermore,

H1(Br , λ)= H1(Br ,λ0 + prλ1
) ∼= H1(Br , λ0)⊗ prλ1.

Hence, it suffices to compute the cohomology for weightsλ ∈Xr(T ).

2.2. Special cohomology modules. We define certain cohomology modules which will
used throughout the rest of the paper. Jantzen’s computations of the cohomology
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H1(B1, λ) in [Jan2] begins with a computation of H1(U1, k) as aB-module. In most cases
H1(U1, k) decomposes as a direct sum of simple modules but not in all cases. In part
certain indecomposable modules arise when the prime is small. This leads to the pr
of certain indecomposableB-modules in the identification of H1(B1, λ). We list these
modules here with our notation:

• TypeBn, n� 3,p = 2. LetMBn denote the 2-dimensional indecomposableB-module
from [Jan2] having a filtration with factorskωn on the top andkωn−1−ωn on the bottom.

• TypeCn, n� 2,p= 2. LetMCn denote then-dimensional indecomposableB-module
from [Jan2] having a filtration with factorskω1, kω2−ω1, kω3−ω2, . . . , and kωn−ωn−1

from top to bottom.
• TypeF4, p = 2. LetMF4 denote the 3-dimensional indecomposableB-module from

[Jan2] having a filtration with factorskω4, kω3−ω4, andkω2−ω3 from top to bottom.
• TypeG2, p = 2,3. Let MG2 denote the 2-dimensional indecomposableB-module

from [Jan2] having a filtration with factorskω1 on the top andkω2−ω1 on the bottom.
Note that there are properly two modules here, one for each prime. As the prim
be clear in context, we abusively use the same notation for both.

2.3. For a simple rootα, whether or not the weightpωα − α is p-restricted affects the
B1-cohomology. For higherr, the question becomes whetherprωα − piα is pr -restricted
for 0 � i � r − 1. More generally, ifω is a weight andprω − piα is pr -restricted, one
would like to know what conditionsω must satisfy. It is not hard to see that in factω is
usuallyωα and in general is uniquely determined byp, r, α, andi.

Lemma. Let λ ∈ Xr(T ). If λ = prω − piα ∈ Xr(T ) for someω ∈ X(T ), α ∈ ∆, and
0 � i � r − 1, thenω= ωα Exceptin the following cases:

(a) p = 2, i = r − 1, and the root system is of typeBn (n � 3) with α = αn−1. Then
ω= ωn−1 −ωn.

(b) p = 2, i = r − 1, and the root system is of typeCn (n � 2) with α = αn. Then
ω= ωn −ωn−1.

(c) p = 2, i = r − 1, and the root system is of typeF4 with α = α2. Thenω = ω2 −ω3.
(d) p = 2 or 3, i = r−1, and the root system is of typeG2 withα = α2. Thenω= ω2−ω1.

Proof. By definition ofXr(T ), we must have 0� 〈λ,β∨〉 � pr − 1 for all simple rootsβ .
Write ω= ∑

β∈∆ nβωβ for integersnβ . First, we have

〈
λ,α∨〉 = pr

〈
ω,α∨〉 − pi

〈
α,α∨〉 = prnα − 2pi.

Hencenα = 1. If the underlying root system is of typeA1, we are done. Now, letβ �= α be
another simple root. Then we have

〈
λ,β∨〉 = pr

〈
ω,β∨〉 − pi

〈
α,β∨〉 = prnβ − pi

〈
α,β∨〉

.
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Now 〈α,β∨〉 = 0,−1,−2, or −3. Hencenβ must be zero unlessp = 2 or 3, i = r − 1,
and〈α,β∨〉 = −2 or−3. Checking the various root systems, one obtains the above l
“exceptional” cases. ✷
2.4. Jantzen computed the cohomology groups H1(B1, λ) in [Jan2, Section 3] for al
λ ∈ X(T ). For the reader’s convenience, we recall these results. For small prime
answer depends on the type of the root system and involves certain indecomp
B-modules which are identified in Section 2.2. Note that there is a “generic” answ
p > 3.

Theorem (A). Letp > 3 andλ ∈X1(T ). Then

H1(B1, λ)∼=
{
k
(1)
ωα if λ= pωα − α for α ∈∆,

0 else.

Theorem (B). Letp = 3 andλ ∈X1(T ).

(a) Assume that the underlying root system ofG is not of typeA2 or G2. Then

H1(B1, λ)∼=
{
k
(1)
ωα if λ= pωα − α for α ∈∆,

0 else.

(b) Assume that the underlying root system ofG is of typeA2. Then

H1(B1, λ)∼=
{
k
(1)
ω1 ⊕ k

(1)
ω2 if λ= ω1 +ω2 = 3ω1 − α1 = 3ω2 − α2,

0 else.

(c) Assume that the underlying root system ofG is of typeG2. Then

H1(B1, λ)∼=



k
(1)
ω1 if λ= ω1 +ω2 = 3ω1 − α1,

M
(1)
G2

if λ= ω2 = 3(ω2 −ω1)− α2,

0 else.

We remark that in this proposition, one sees two phenomena which lead to a
generic answer. Whenpωi − αi = pωj − αj for distinct i, j , there is a “doubling” of the
cohomology (in the sense of a direct sum of modules). The second phenomenon in
the question of whether the weightpωj − αj is p-restricted. Notice that in typeG2

whenp = 3, the weight 3ω2 − α2 = 3ω1 is not p-restricted. And it gets “replaced” b
thep-restricted weight 3(ω2 − ω1) − α2. Furthermore, the cohomology involves a no
simple indecomposableB-module. We refer the reader to Lemma 2.3 which considers
question of whetherpωj − αj is p-restricted and note that one sees the same pheno
for p = 2.
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Theorem (C). Letp = 2 andλ ∈X1(T ).

(a) Assume that the underlying root system ofG is of typeAn with n �= 3, E6, E7, or E8.
Then

H1(B1, λ)∼=
{
k
(1)
ωα if λ= pωα − α for α ∈∆,

0 else.

(b) Assume that the underlying root system ofG is of typeA3. Then

H1(B1, λ)∼=



k
(1)
ω1 ⊕ k

(1)
ω3 if λ= ω2 = 2ω1 − α1 = 2ω3 − α3,

k
(1)
ω2 if λ= ω1 +ω3 = 2ω2 − α2,

0 else.

(c) Assume that the underlying root system ofG is of typeB3. Then

H1(B1, λ)∼=



k
(1)
ω1 ⊕ k

(1)
ω3 if λ= ω2 = 2ω1 − α1 = 2ω3 − α3,

M
(1)
B3

if λ= ω1 = 2(ω2 −ω3)− α2,

0 else.

(d) Assume that the underlying root system ofG is of typeB4. Then

H1(B1, λ)∼=



k
(1)
ω1 ⊕M

(1)
B4

if λ= ω2 = 2ω1 − α1 = 2(ω3 −ω4)− α3,

k
(1)
ωj if λ= 2ωj − αj for j ∈ {2,4},

0 else.

(e) Assume that the underlying root system ofG is of typeBn, n� 5. Then

H1(B1, λ)∼=



k
(1)
ωj if λ= 2ωj − αj for j ∈ {1,2, . . . , n− 2, n},
M
(1)
Bn

if λ= ωn−2 = 2(ωn−1 −ωn)− αn−1,

0 else.

(f ) Assume that the underlying root system ofG is of typeCn, n� 2. Then

H1(B1, λ)∼=



k
(1)
ωj if λ= 2ωj − αj for j ∈ {1,2, . . . , n− 1},
M
(1)
Cn

if λ= 0 = 2(ωn −ωn−1)− αn,

0 else.

(g) Assume that the underlying root system ofG is of typeD4. Then

H1(B1, λ)∼=



k
(1)
ω1 ⊕ k

(1)
ω3 ⊕ k

(1)
ω4 if λ= ω2 = 2ω1 − α1 = 2ω3 − α3 = 2ω4 − α4,

k
(1)
ω2 if λ= ω1 +ω3 = 2ω2 − α2,

0 else.
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(h) Assume that the underlying root system ofG is of typeDn, n� 5. Then

H1(B1, λ)∼=



k
(1)
ωj if λ= 2ωj − αj for j ∈ {1,2, . . . , n− 2},
k
(1)
ωn−1 ⊕ k

(1)
ωn if λ= ωn−2 = 2ωn−1 − αn−1 = 2ωn − αn,

0 else.

(i) Assume that the underlying root system ofG is of typeF4. Then

H1(B1, λ)∼=



k
(1)
ωj if λ= 2ωj − αj for j ∈ {1,3,4},
M
(1)
F4

if λ= ω1 = 2(ω2 −ω3)− α2,

0 else.

( j) Assume that the underlying root system ofG is of typeG2. Then

H1(B1, λ)∼=



k
(1)
ω1 if λ= ω2 = 2ω1 − α1,

M
(1)
G2

if λ= ω1 = 2(ω2 −ω1)− α2,

0 else.

Using these propositions, one can compute H1(B1, λ) for all weightsλ by writing
λ= λ0 + pλ1 and using H1(B1, λ)∼= H1(B1, λ0)⊗ pλ1.

2.5. With the aid of the Lyndon–Hochschild–Serre spectral sequence, we now exte
results of Section 2.4 forB1 to Br for all r. Whenp > 3, the answer fits a “generic” form
that does not depend on the root system. We consider this case first.

Theorem. Supposep > 3 andλ ∈Xr(T ). Then

H1(Br , λ)∼=
{
k
(r)
ωα if λ= prωα − piα for α ∈∆, 0 � i � r − 1,

0 else.

Proof. We proceed by induction onr with ther = 1 case being Theorem 2.4(A). To pr
ceed inductively, consider the LHS spectral sequence

E
i,j

2 = Hi
(
Br/Br−1,Hj (Br−1, λ)

) ⇒ Hi+j (Br , λ)

and the corresponding five-term exact sequence

0 →E1,0 →E1 →E0,1 →E2,0 →E2.

Write λ= λ0 +pr−1λ1. By induction, we have:

E0,1 = HomBr/Br−1

(
k,H1(Br−1, λ)

)
∼= HomBr/Br−1

(
k,H1(Br−1, λ0)⊗ pr−1λ1

)
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ther
∼=




HomBr/Br−1

(
k, k

(r−1)
ωα ⊗ k

(r−1)
λ1

)
if λ0 = pr−1ωα − piα for α ∈∆,

0� i � r − 2,

0 else

∼=
{

HomB1(k, kωα+λ1)
(r−1) if λ0 = pr−1ωα − piα for α ∈∆, 0� i � r − 2,

0 else

∼=




(
k
(1)
ω

)(r−1) if λ0 = pr−1ωα − piα as above andωα + λ1 = pω

for ω ∈X(T ),
0 else

∼=



k
(r)
ω if λ= pr−1(ωα + λ1)− piα = prω− piα for ω ∈X(T ), α ∈∆,

0� i � r − 2,

0 else.

Sinceλ ∈Xr(T ), applying Lemma 2.3, we get

E0,1 ∼=
{
k
(r)
ωα if λ= prωα −piα for α ∈∆, 0� i � r − 2,

0 else.

On the other hand, we have

E1,0 = H1(Br/Br−1,HomBr−1(k, λ)
)

∼=
{

H1
(
Br/Br−1, k

(r−1)
λ′

)
if λ= pr−1λ′ for λ′ ∈X(T ),

0 else

∼=
{

H1(B1, kλ′)(r−1) if λ= pr−1λ′ for λ′ ∈X(T ),
0 else.

Note that sinceλ ∈Xr(T ), the weightλ′ must lie inX1(T ). And so by induction (or simply
Theorem 2.4(A)), we have

E1,0 ∼=
{(
k
(1)
ωα

)(r−1) if λ= pr−1λ′ as above andλ′ = pωα − α for α ∈∆,

0 else

∼=
{
k
(r)
ωα if λ= prωα − pr−1α for α ∈∆,

0 else.

If E0,1 = 0, thenE1 ∼= E1,0 and the above computations confirm the claim. On the o
hand, ifE0,1 �= 0, we must haveλ= prωα − piα for someα ∈∆ and 0� i � r − 2. This
implies thatλ is not divisible bypr−1 and so HomBr−1(k, λ)= 0. HenceE1,0 = 0 = E2,0

and thenE1 ∼=E0,1 and the result follows. ✷
2.6. For p = 3, one has to deal with the fact that H1(B1, λ) may not be of the formk(1)ω
(when it is not zero). However, the same basic inductive argument still works.
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Theorem. Letp = 3 andλ ∈Xr(T ).

(a) Assume that the underlying root system ofG is not of typeA2 or G2. Then

H1(Br , λ)∼=
{
k
(r)
ωα if λ= prωα − piα for α ∈∆, 0� i � r − 1,

0 else.

(b) Assume that the underlying root system ofG is of typeA2. Then

H1(Br , λ)∼=



k
(r)
ω1 ⊕ k(r)ω2 if λ=pr−1(ω1 +ω2)=prω1 −pr−1α1 =prω2 −pr−1α2,

k
(r)
ωj if λ= prωj − piαj for j ∈ {1,2}, 0 � i � r − 2,

0 else.

(c) Assume that the underlying root system ofG is of typeG2. Then

H1(Br , λ)∼=




k
(r)
ω1 if λ= pr−1(ω1 +ω2)= prω1 −pr−1α1,

M
(r)
G2

if λ= pr−1ω2 = pr(ω2 −ω1)−pr−1α2,

k
(r)
ωj if λ= prωj − piαj for j ∈ {1,2}, 0 � i � r − 2,

0 else.

Proof. The proof for part (a) is identical to the proof of Theorem 2.5. For part (b)
follow the same inductive argument. Letλ= λ0 + pr−1λ1. In this case, we get

E0,1 ∼=




HomBr/Br−1

(
k,

(
k
(r−1)
ω1 ⊕ k

(r−1)
ω2

) ⊗ k
(r−1)
λ1

)
if λ0 = pr−2(ω1 +ω2),

HomBr/Br−1

(
k, k

(r−1)
ωj ⊗ k

(r−1)
λ1

)
if λ0 = pr−2ωj − piαj

for j ∈ {1,2}, 0� i � r − 3,

0 else

∼=




HomB1(k, kω1+λ1 ⊕ kω2+λ1)
(r−1) if λ0 = pr−2(ω1 +ω2),

HomB1(k, kωj+λ1)
(r−1) if λ0 = pr−2ωj − piαj for j ∈ {1,2},

0 � i � r − 3,

0 else.

Note that HomB1(k, kω1+λ1 ⊕ kω2+λ1) is at most one-dimensional since it is not possible
have bothω1 + λ1 = pω andω2 + λ1 = pω′ for weightsω,ω′ ∈X(T ). Hence, we have

E0,1 ∼=




k
(r)
ω if λ0 = pr−2(ω1 +ω2) andωj + λ1 = pω for j ∈ {1,2},

ω ∈X(T ),
k
(r)
ω if λ0 = pr−2ωj − piαj andωj + λ1 = pω for j ∈ {1,2},

0� i � r − 3,ω ∈X(T ),

0 else.
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Sincepr−2(ω1 +ω2)= pr−1ω1 −pr−2α1 = pr−1ω2 −pr−2α2, the non-vanishing cond
tions above can be combined. The requirement is that

λ= λ0 + pr−1λ1 = pr−1ωj − piαj + pr−1λ1 = pr−1(ωj + λ1)− piαj

= prω−piαj
for j = 1 or 2, 0� i � r − 2, and someω ∈ X(T ). Applying Lemma 2.3,ω must beωj .
Hence, we get

E0,1 ∼=
{
k
(r)
ωj if λ= prωj − piαj for j ∈ {1,2}, 0� i � r − 2,

0 else.

Next we computeE1,0. Again, we get

E1,0 ∼=
{

H1(B1, kλ′)(r−1) if λ= pr−1λ′ for λ′ ∈X(T ),
0 else.

And by induction,

E1,0 ∼=
{
k
(r)
ω1 ⊕ k

(r)
ω2 if λ= pr−1(ω1 +ω2)= prω1 − pr−1α1 = prω2 − pr−1α2,

0 else.

As in Theorem 2.5, H1(Br , λ) may be identified with eitherE1,0 or E0,1 and the claim
follows.

For part (c), we proceed analogously. Withλ= λ0 + pr−1λ1, we get

E0,1 ∼=




HomBr/Br−1

(
k, k

(r−1)
ω1 ⊗ k

(r−1)
λ1

)
if λ0 = pr−1ω1 − pr−2α1,

HomBr/Br−1

(
k,M

(r−1)
G2

⊗ k
(r−1)
λ1

)
if λ0 = pr−2ω2 = pr−1(ω2 −ω1)− pr−2α2,

HomBr/Br−1

(
k, k

(r−2)
ωj ⊗ k

(r−2)
λ1

)
if λ0 = pr−1ωj − piαj for j ∈ {1,2},

0 � i � r − 3,

0 else,

∼=




k
(r)
ω if λ0 = pr−1ω1 −pr−2α1 andω1 + λ1 = pω for ω ∈X(T ),
k
(r)
ω if λ0 = pr−2ω2 = pr−1(ω2 −ω1)− pr−2α2 andω2 −ω1 + λ1 = pω

for ω ∈X(T ),
k
(r)
ω if λ0 = pr−1ωj − piαj for j ∈ {1,2}, 0� i � r − 3 andω2 + λ1 = pω

for ω ∈X(T ),
0 else.

The condition in the second case above arises because the moduleMG2 ⊗ kλ1 is a two-
dimensional indecomposable module with bottom factor beingkω2−ω1 ⊗ kλ1

∼= kω2−ω1+λ1.
Applying Lemma 2.3, we further get



486 C.P. Bendel et al. / Journal of Algebra 272 (2004) 476–511

for
osable
E0,1 ∼=




k
(r)
ω1 if λ= prω1 − pr−2α1,

k
(r)
ω2 if λ= prω2 − pr−2α2,

k
(r)
ωj if λ= prωj − piαj for j ∈ {1,2}, 0� i � r − 3,

0 else,

∼=
{
k
(r)
ωj if λ= prωj − piαj for j ∈ {1,2}, 0� i � r − 2,

0 else.

Next we computeE1,0. Again, we get

E1,0 ∼=
{

H1(B1, kλ′)(r−1) if λ= pr−1λ′ for λ′ ∈X(T ),
0 else.

And by induction,

E1,0 ∼=



k
(r)
ω1 if λ= pr−1(ω1 +ω2)= prω1 − pr−1α1,

M
(r)
G2

if λ= pr−1ω2 = pr(ω2 −ω1)− pr−1α2,

0 else.

As before, H1(Br , λ)may be identified with eitherE1,0 orE0,1 and the claim follows. ✷
2.7. For p = 2, the computation of H1(Br , λ) involves even more special cases. As
p = 3, one must deal with the presence of direct sums and non-simple indecomp
modules. The arguments are similar to those forp = 3 and left to the interested reader.

Theorem. Letp = 2 andλ ∈Xr(T ).

(a) Assume that the underlying root system ofG is of typeAn with n �= 3, E6, E7, or E8.
Then

H1(Br , λ)∼=
{
k
(r)
ωα if λ= prωα − piα for α ∈∆, 0� i � r − 1,

0 else.

(b) Assume that the underlying root system ofG is of typeA3. Then

H1(Br , λ)∼=




k
(r)
ω1 ⊕ k

(r)
ω3 if λ= pr−1ω2 = prω1 − pr−1α1 = prω3 − pr−1α3,

k
(r)
ω2 if λ= pr−1(ω1 +ω3)= prω2 − pr−1α2,

k
(r)
ωα if λ= prωα − piα for α ∈∆, 0� i � r − 2,

0 else.



C.P. Bendel et al. / Journal of Algebra 272 (2004) 476–511 487
(c) Assume that the underlying root system ofG is of typeB3. Then

H1(Br , λ)∼=




k
(r)
ω1 ⊕ k

(r)
ω3 if λ= pr−1ω2 = prω1 − pr−1α1 = prω3 − pr−1α3,

M
(r)
B3

if λ= pr−1ω1 = pr(ω2 −ω3)− pr−1α2,

k
(r)
ωα if λ= prωα − piα for α ∈∆, 0� i � r − 2,

0 else.

(d) Assume that the underlying root system ofG is of typeB4. Then

H1(Br , λ)∼=




k
(r)
ω1 ⊕M

(r)
B4

if λ= pr−1ω2 = prω1 − pr−1α1

= pr(ω3 −ω4)− pr−1α3,

k
(r)
ωj if λ= prωj − pr−1αj for j ∈ {2,4},
k
(r)
ωα if λ= prωα − piα for α ∈∆, 0� i � r − 2,

0 else.

(e) Assume that the underlying root system ofG is of typeBn, n� 5. Then

H1(Br , λ)∼=




k
(r)
ωj if λ= prωj − pr−1αj for j ∈ {1,2, . . . , n− 2, n},
M
(r)
Bn

if λ= pr−1ωn−2 = pr(ωn−1 −ωn)− pr−1αn−1,

k
(r)
ωα if λ= prωα − piα for α ∈∆, 0 � i � r − 2,

0 else.

(f ) Assume that the underlying root system ofG is of typeCn, n� 2. Then

H1(Br , λ)∼=




k
(r)
ωj if λ= prωj − pr−1αj for j ∈ {1,2, . . . , n− 1},
M
(r)
Cn

if λ= 0 = pr(ωn −ωn−1)− pr−1αn,

k
(r)
ωα if λ= prωα −piα for α ∈∆, 0 � i � r − 2,

0 else.

(g) Assume that the underlying root system ofG is of typeD4. Then

H1(Br , λ)∼=




k
(r)
ω1 ⊕ k

(r)
ω3 ⊕ k

(r)
ω4 if λ= pr−1ω2 = prω1 − pr−1α1

= prω3 − pr−1α3 = prω4 −pr−1α4,

k
(r)
ω2 if λ= pr−1(ω1 +ω3)= prω2 − pr−1α2,

k
(r)
ωα if λ= prωα − piα for α ∈∆,0 � i � r − 2,

0 else.
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(h) Assume that the underlying root system ofG is of typeDn, n� 5. Then

H1(Br , λ)∼=




k
(r)
ωj if λ= prωj − pr−1αj for j ∈ {1,2, . . . , n− 2},
k
(r)
ωn−1 ⊕ k

(r)
ωn if λ= pr−1ωn−2 = prωn−1 − pr−1αn−1

= prωn − pr−1αn,

k
(r)
ωα if λ= prωα − piα for α ∈∆,0 � i � r − 2,

0 else.

(i) Assume that the underlying root system ofG is of typeF4. Then

H1(Br , λ)∼=




k
(r)
ωj if λ= prωj −pr−1αj for j ∈ {1,3,4},
M
(r)
F4

if λ= pr−1ω1 = pr(ω2 −ω3)− pr−1α2,

k
(r)
ωα if λ= prωα − piα for α ∈∆, 0 � i � r − 2,

0 else.

( j) Assume that the underlying root system ofG is of typeG2. Then

H1(Br , λ)∼=




k
(r)
ω1 if λ= pr−1ω2 = prω1 −pr−1α1,

M
(r)
G2

if λ= pr−1ω1 = pr(ω2 −ω1)− pr−1α2,

k
(r)
ωα if λ= prωα − piα for α ∈∆, 0 � i � r − 2,

0 else.

2.8. With the computations of H1(Br , λ) for all λ ∈Xr(T ) above, one can readily compu
H1(Br , λ) for arbitraryλ ∈X(T ). First, we make the following observation.

Corollary. Let λ ∈ X(T ). ThenH1(Br , λ) �= 0 if and only if λ = prω − piα for some
ω ∈ X(T ), α ∈ ∆, and0 � i � r − 1. Moreover, ifλ ∈ Xr(T ), then the weightω is the
weight determined byp, r, α, andi in Lemma2.3.

Proof. Given λ ∈ X(T ), we first show thatλ must have the desired form. Writeλ =
λ0 +prλ1 for (unique)λ0 ∈Xr(T ) andλ1 ∈X(T ). Then H1(Br , λ)∼= H1(Br , λ0)⊗prλ1

and the answer depends onλ0. From Theorems 2.5–2.7, H1(Br , λ0) �= 0 if and only if
λ0 = prω′ − piα for someα ∈∆ whereω′ is the weight (corresponding top, r, α, andi)
determined in Lemma 2.3. Thus,λ= λ0+prλ1 = prω′ −piα+prλ1 = pr (ω′+λ1)−piα
has the formprω− piα.

Conversely, given any weightλ= prω−piα, one can always expressω asω= ω′ +λ1

for the required weightω′ and some weightλ1 ∈ X(T ). And since non-vanishing is in
dependent ofλ1, H1(Br , λ) will be non-zero for all suchλ. Finally, the “moreover” par
follows immediately from Lemma 2.3.✷
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generic

in the
Givenλ= prω− piα, to compute H1(Br , λ), write λ= (prω′ − piα)+ prλ1 for the
specific weightω′ (from Lemma 2.3) and some weightλ1 ∈X(T ). In terms of the given
weightω, λ1 = ω−ω′. Thus we get

H1(Br , λ)∼= H1(Br , λ0)⊗ k
(r)
λ1

= H1(Br,prω′ − piα
) ⊗ k

(r)
λ1

∼= H1(Br,prω′ −piα) ⊗ k
(r)

ω−ω′

and one simply substitutes the answers from Theorem 2.5–2.7. For example, in the
case,ω′ = ωα and H1(Br ,p

rωα − piα)∼= k
(r)
ωα so that

H1(Br ,prω− piα
) ∼= k(r)ωα ⊗ k

(r)
ω−ωα ∼= k(r)ω .

For completeness, we include the answers here omitting the straightforward details
non-generic cases.

Theorem (A). Letp > 3 andλ ∈X(T ). Then

H1(Br , λ)∼=
{
k
(r)
ω if λ= prω− piα for ω ∈X(T ), α ∈∆, 0 � i � r − 1,

0 else.

Theorem (B). Letp = 3 andλ ∈X(T ).

(a) Assume that the underlying root system ofG is not of typeA2 or G2. Then

H1(Br , λ)∼=
{
k
(r)
ω if λ= prω− piα for ω ∈X(T ), α ∈∆, 0� i � r − 1,

0 else.

(b) Assume that the underlying root system ofG is of typeA2. Then

H1(Br , λ)∼=




k
(r)
ω ⊕ k

(r)
ω+ω+−ωj if λ= prω− pr−1αj for ω ∈X(T ),

j, + ∈ {1,2}, j �= +,

k
(r)
ω if λ= prω− piα for ω ∈X(T ),

α ∈∆, 0� i � r − 2,

0 else.

(c) Assume that the underlying root system ofG is of typeG2. Then

H1(Br , λ)∼=




k
(r)
ω if λ= prω− pr−1α1 for ω ∈X(T ),
M
(r)
G2

⊗ k
(r)
ω+ω1−ω2

if λ= prω− pr−1α2 for ω ∈X(T ),
k
(r)
ω if λ= prω− piαj for ω ∈X(T ),

j ∈ {1,2}, 0 � i � r − 2,

0 else.
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Theorem (C). Letp = 2 andλ ∈X(T ).

(a) Assume that the underlying root system ofG is of typeAn with n �= 3, E6, E7, or E8.
Then

H1(Br , λ)∼=
{
k
(r)
ω if λ= prω− piα for ω ∈X(T ), α ∈∆, 0� i � r − 1,

0 else.

(b) Assume that the underlying root system ofG is of typeA3. Then

H1(Br , λ)∼=




k
(r)
ω ⊕ k

(r)
ω+ω+−ωj if λ= prω− pr−1αj for ω ∈X(T ),

j, + ∈ {1,3}, j �= +,

k
(r)
ω if λ= prω− pr−1α2 for ω ∈X(T ),
k
(r)
ω if λ= prω− piα for ω ∈X(T ),

α ∈∆, 0� i � r − 2,

0 else.

(c) Assume that the underlying root system ofG is of typeB3. Then

H1(Br , λ)∼=




k
(r)
ω ⊕ k

(r)
ω+ω+−ωj if λ= prω− pr−1αj for ω ∈X(T ),

j, + ∈ {1,3}, j �= +,

M
(r)
B3

⊗ k
(r)
ω+ω3−ω2

if λ= prω− pr−1α2 for ω ∈X(T ),
k
(r)
ω if λ= prω− piα for ω ∈X(T ),

α ∈∆, 0 � i � r − 2,

0 else.

(d) Assume that the underlying root system ofG is of typeB4. Then

H1(Br , λ)∼=




k
(r)
ω ⊕ (

M
(r)
B4

⊗ k
(r)
ω−ω1

)
if λ= prω− pr−1α1 for ω ∈X(T ),

k
(r)
ω+ω1+ω4−ω3

⊕(
M
(r)
B4

⊗ k
(r)
ω+ω4−ω3

)
if λ= prω− pr−1α3 for ω ∈X(T ),

k
(r)
ω if λ= prω− pr−1αj for ω ∈X(T ),

j ∈ {2,4},
k
(r)
ω if λ= prω− piα for ω ∈X(T ), α ∈∆,

0 � i � r − 2,

0 else.
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(e) Assume that the underlying root system ofG is of typeBn, n� 5. Then

H1(Br , λ)∼=




k
(r)
ω if λ= prω−pr−1αj for ω ∈X(T ),

j ∈ {1,2, . . . , n− 2, n},
M
(r)
Bn

⊗ k
(r)
ω+ωn−ωn−1

if λ= prω−pr−1αn−1 for ω ∈X(T ),
k
(r)
ω if λ= prω−piα for ω ∈X(T ), α ∈∆,

0 � i � r − 2,

0 else.

(f ) Assume that the underlying root system ofG is of typeCn, n� 2. Then

H1(Br , λ)∼=




k
(r)
ω if λ= prω−pr−1αj for ω ∈X(T ),

j ∈ {1,2, . . . , n− 1},
M
(r)
Cn

⊗ k
(r)
ω+ωn−1−ωn if λ= prω−pr−1αn for ω ∈X(T ),

k
(r)
ω if λ= prω−piα for ω ∈X(T ), α ∈∆,

0 � i � r − 2,

0 else.

(g) Assume that the underlying root system ofG is of typeD4. Then

H1(Br , λ)∼=




k
(r)
ω ⊕ k

(r)
ω+ω+−ωj ⊕ k

(r)
ω+ωs−ωj if λ= prω− pr−1αj for ω ∈X(T ),

j, +, s ∈{1,3,4}, j �=+, j �= s, + �= s,
k
(r)
ω if λ= prω− pr−1α2 for ω ∈X(T ),
k
(r)
ω if λ= prω− piα for ω ∈X(T ),

α ∈∆, 0 � i � r − 2,

0 else.

(h) Assume that the underlying root system ofG is of typeDn, n� 5. Then

H1(Br , λ)∼=




k
(r)
ω if λ= prω− pr−1αj for ω ∈X(T ),

j ∈ {1,2, . . . , n− 2},
k
(r)
ω ⊕ k

(r)
ω+ω+−ωj if λ= prω− pr−1αj for ω ∈X(T ),

j, + ∈ {n− 1, n}, j �= +,

k
(r)
ω if λ= prω− piα for ω ∈X(T ),

α ∈∆, 0� i � r − 2,

0 else.
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(i) Assume that the underlying root system ofG is of typeF4. Then

H1(Br , λ)∼=




k
(r)
ω if λ= prω− pr−1αj for ω ∈X(T ),

j ∈ {1,3,4},
M
(r)
F4

⊗ k
(r)
ω+ω3−ω2

if λ= prω− pr−1α2 for ω ∈X(T ),
k
(r)
ω if λ= prω− piα for ω ∈X(T ),

α ∈∆, 0 � i � r − 2,

0 else.

( j) Assume that the underlying root system ofG is of typeG2. Then

H1(Br , λ)∼=




k
(r)
ω if λ= prω− pr−1α1 for ω ∈X(T ),
M
(r)
G2

⊗ k
(r)
ω+ω1−ω2

if λ= prω− pr−1α2 for ω ∈X(T ),
k
(r)
ω if λ= prω− piα for ω ∈X(T ),

α ∈∆, 0� i � r − 2,
0 else.

We have chosen to present the results forλ ∈ Xr(T ) first and then those for gener
λ ∈X(T ). If one prefers, this can be done in the opposite order: one can inductively o
the results for arbitraryλ and then use Lemma 2.3 to deduce the results in Sections 2.
for pr -restricted weights.

3. Gr -cohomology of induced modules

3.1. According to Kempf’s vanishing theorem,H 0(λ)= indGB λ is zero unlessλ ∈X(T )+.
For dominant weightsλ, the preceding computations ofBr -cohomology can now be use
to compute H1(Gr,H 0(λ)) thanks to the isomorphism

H1(Gr,H 0(λ)
)(−r) ∼= indGB

(
H 1(Br , λ)

(−r))
(cf. [Jan1, II.12.2]). Indeed, in the “generic” case, we simply have

indGB
(
H1(Br , λ)

(−r)) ∼= indGB (kω)=H 0(ω).

In general, forpr -restricted weights, the computations follow readily from Th
rems 2.5–2.7. However, some work is required when theBr -cohomology involves a non
simple indecomposable module. Forp � 3(h− 1), the following theorem (in conjunctio
with Lemma 2.3) is stated in [And2, p. 392].

Theorem (A). Letp > 3 andλ ∈Xr(T ). Then

H1(Gr,H 0(λ)
) ∼=

{
H 0(ωα)

(r) if λ= prωα −piα for α ∈∆, 0 � i � r − 1,
0 else.
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Theorem (B). Letp = 3 andλ ∈Xr(T ).

(a) Assume that the underlying root system ofG is not of typeA2 or G2. Then

H1(Gr,H 0(λ)
) ∼=

{
H 0(ωα)

(r) if λ= prωα − piα for α ∈∆, 0 � i � r − 1,
0 else.

(b) Assume that the underlying root system ofG is of typeA2. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ω1)
(r)⊕H 0(ω2)

(r) if λ=pr−1(ω1 +ω2)=prω1 −pr−1α1

= prω2 − pr−1α2,
H 0(ωj )

(r) if λ= prωj − piαj for j ∈ {1,2},
0 � i � r − 2,

0 else.

(c) Assume that the underlying root system ofG is of typeG2. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ω1)
(r) if λ= prω1 − pr−1α1,

H 0(ω1)
(r) if λ= pr−1ω2 = pr(ω2 −ω1)− pr−1α2,

H 0(ωj )
(r) if λ= prωj −piαj for j ∈ {1,2},

0 � i � r − 2,

0 else.

Proof. There is one case where the computation involves inducing a non-simple ind
posableB-module. That is in part (c) whenλ = pr−1ω2 and H1(Br , λ) ∼= M

(r)
G2

. How-

ever, Jantzen shows in [Jan2, Proposition 5.2] that indG
B (MG2)

∼=H 0(ω1) which gives the
claim. ✷
Theorem (C). Letp = 2 andλ ∈Xr(T ).

(a) Assume that the underlying root system is of typeAn with n �= 3, E6, E7, or E8. Then

H1(Gr,H 0(λ)
) ∼=

{
H 0(ωα)

(r) if λ= prωα − piα for α ∈∆, 0 � i � r − 1,

0 else.

(b) Assume that the underlying root system ofG is of typeA3. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ω1)
(r) ⊕H 0(ω3)

(r) if λ= pr−1ω2 = prω1 −pr−1α1

= prω3 − pr−1α3,

H 0(ω2)
(r) if λ= pr−1(ω1 +ω3)

= prω2 − pr−1α2,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆,

0 � i � r − 2,

0 else.
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(c) Assume that the underlying root system ofG is of typeB3. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ω1)
(r) ⊕H 0(ω3)

(r) if λ= pr−1ω2 = prω1 −pr−1α1

= prω3 − pr−1α3,

H 0(ω3)
(r) if λ= pr−1ω1

= pr (ω2 −ω3)− pr−1α2,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆,

0 � i � r − 2,

0 else.

(d) Assume that the underlying root system ofG is of typeB4. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ω1)
(r) ⊕H 0(ω4)

(r) if λ= pr−1ω2 = prω1 − pr−1α1

= pr(ω3 −ω4)− pr−1α3,

H 0(ωj )
(r) if λ= prωj − pr−1αj for j = 2,4,

H 0(ωα)
(r) if λ= prωα −piα for α ∈∆,

0 � i � r − 2,

0 else.

(e) Assume that the underlying root system ofG is of typeBn, n� 5. Then

H1(Gr,H 0(λ)
) ∼=



H 0(ωj )

(r) if λ= prωj − pr−1αj for j ∈ {1,2, . . . , n− 2, n},
H 0(ωn)

(r) if λ= pr−1ωn−2 = pr (ωn−1 −ωn)− pr−1αn−1,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆, 0� i � r − 2,

0 else.

(f ) Assume that the underlying root system ofG is of typeCn, n� 2. Then

H1(Gr,H 0(λ)
) ∼=



H 0(ωj )

(r) if λ= prωj − pr−1αj for j ∈ {1,2, . . . , n− 1},
H 0(ω1)

(r) if λ= 0 = pr (ωn −ωn−1)− pr−1αn,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆, 0 � i � r − 2,

0 else.

(g) Assume that the underlying root system is of typeD4. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ω1)
(r) ⊕H 0(ω3)

(r) if λ= pr−1ω2 = prω1 −pr−1α1

⊕H 0(ω4)
(r) = prω3 − pr−1α3

= prω4 − pr−1α4,

H 0(ω2)
(r) if λ= pr−1(ω1 +ω3)

= prω2 − pr−1α2,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆,

0 � i � r − 2,

0 else.
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(h) Assume that the underlying root system ofG is of typeDn, n� 5. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ωj )
(r) if λ= prωj −pr−1αj

for j ∈ {1,2, . . . , n− 2},
H 0(ωn−1)

(r) ⊕H 0(ωn)
(r) if λ= pr−1ωn−2

= prωn−1 − pr−1αn−1

= prωn − pr−1αn,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆,

0 � i � r − 2,

0 else.

(i) Assume that the underlying root system ofG is of typeF4. Then

H1(Gr,H 0(λ)
) ∼=



H 0(ωj )

(r) if λ= prωj − pr−1αj for j ∈ {1,3,4},
H 0(ω4)

(r) if λ= pr−1ω1 = pr (ω2 −ω3)− pr−1α2,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆, 0 � i � r − 2,

0 else.

( j) Assume that the underlying root system ofG is of typeG2. Then

H1(Gr,H 0(λ)
) ∼=




H 0(ω1)
(r) if λ= pr−1ω2 = prω1 − pr−1α1,

H 0(ω1)
(r) if λ= pr−1ω1 = pr (ω2 −ω1)− pr−1α2,

H 0(ωα)
(r) if λ= prωα − piα for α ∈∆,

0 � i � r − 2,

0 else.

Proof. As in the previous proposition, the only difficulty arises in computing the indu
module for the non-simple indecomposable modules. From [Jan2, 5.1, 5.2], we hav

indGB
(
MBn

) ∼=H 0(ωn), indGB
(
MCn

) ∼=H 0(ω1),

indGB
(
MF4

) ∼=H 0(ω4), indGB
(
MG2

) ∼=H 0(ω1). ✷
3.2. From Corollary 2.8 and Theorem 2.5, one immediately gets the following. Par
and (b) lower the condition onp found in [And2, p. 392].

Corollary. Supposeλ ∈X(T )+.

(a) H1
(
Gr,H

0(λ)
) �= 0 if and only if λ = prω − piα for somew ∈ X(T ), α ∈ ∆, and

0 � i � r − 1.
(b) If p > 3 andλ= prω− piα, thenH1(Gr,H

0(λ))=H 0(ω)(r).
(c) If λ ∈ Xr(T ), then the weightω is the weight determined byp, r, α, and i in

Lemma2.3.
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As done in Section 3.1 forpr -restricted weights, one can use Theorems 2.8(A–C
compute H1(Gr,H 0(λ)) in terms of induced modules for allλ ∈ X(T )+. As most case
simply involve inducing simpleB-modules, for brevity, we do not include these resu
However, some of the answers involve a module of the form indG

B (MXn ⊗ kσ ). Specifi-
cally, the computation of H1(Gr,H 0(λ)) for the following dominant weightsλ involves
inducing the given module:

• p = 3, typeG2, λ= prω− pr−1α2: MG2 ⊗ kω+ω1−ω2.

• p = 2, typeBn, n� 3, λ= prω− pr−1αn−1: MBn ⊗ kω+ωn−ωn−1.

• p = 2, typeB4, λ= prω− pr−1α1: MB4 ⊗ kω−ω1.

• p = 2, typeCn, n� 2,λ= prω− pr−1αn: MCn ⊗ kω+ωn−1−ωn .
• p = 2, typeF4, λ= prω− pr−1α2: MF4 ⊗ kω+ω3−ω2.

• p = 2, typeG2, λ= prω− pr−1α2: MG2 ⊗ kω+ω1−ω2.

3.3. The following homological algebra fact will allow us to identify a filtration of t
modules listed in Section 3.2 byH 0(γ )s. This strategy is based on the proof of [Ja
Proposition 5.1].

Lemma. LetM be a finite-dimensionalB-module with a filtration( from top to bottom)
by kσ1, kσ2, . . . , kσn . Assume further thatRi indGB (σj ) = 0 for all i � 1 and all j . Then
Ri indGB (M)= 0 for all i � 1 andindGB (M) has a filtration by factors( from top to bottom)

H 0(σ1), H 0(σ2), . . . , H 0(σn),

where any weightsσj that are not dominant are omitted.

Proof. We argue by induction onn and are trivially done ifn = 1. Forn > 1, there is
a short exact sequence

0 → kσ1 →M →N → 0

for some moduleN . Associated to such a short exact sequence is a long exact seque

0 → indGB (σ1)→ indGB (M)→ indGB (N)→ R1 indGB (σ1)→ R1 indGB (M)

→ R1 indGB (N)→ ·· · .
By the hypothesis and induction,Ri indGB (σ1) = 0 = Ri indGB (N) for all i � 1. Hence
Ri indGB (M)= 0 for all i � 1 and there is a short exact sequence

0 → indGB (σ1)→ indGB (M)→ indGB (N)→ 0.

Of course, indGB (σ1)= 0 if σ1 is not dominant. And by induction indGB (N) has a filtration
by H 0(σ2),H

0(σ3), . . . ,H
0(σn) for thoseσj which are dominant. Therefore, we get t

desired filtration ofM. ✷
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3.4. Given aB-moduleM and a weightσ ofM, we note that there are two easy conditio
under whichRi indGB (σ) = 0 for all i � 1. First, this holds ifσ is dominant (cf. [Jan1
II.4.5]). Secondly, if〈σ,α∨〉 = −1 for some simple rootα, thenRi indGB (σ) = 0 for all
i � 0 by [Jan1, II.5.4(a)]. (Of course, for the latterσ ,H 0(σ )= 0 and will not appear in the
answer.) For the modules of interest to us, we will see that all weights satisfy one of
two conditions.

Proposition (A). Suppose thatp = 2 or 3 and the underlying root system ofG is of
typeG2. Letω ∈ X(T ) be such thatprω − pr−1α2 lies in X(T )+. Then〈ω,α∨

1 〉 � −1
and〈ω,α∨

2 〉 � 1. Furthermore,

(a) if 〈ω,α∨
1 〉 � 0, then indGB (MG2 ⊗ kω+ω1−ω2) has a filtration with factorsH 0(ω +

2ω1 −ω2) on the top andH 0(ω) on the bottom.
(b) Whereas, if〈ω,α∨

1 〉 = −1, thenindGB (MG2 ⊗ kω+ω1−ω2)
∼=H 0(ω+ 2ω1 −ω2).

Proof. Let ω = m1ω1 + m2ω2 for integersm1, m2. In order for the weightprω −
pr−1α2 = (prm1 + 3pr−1)ω1 + (prm2 − 2pr−1)ω2 to be dominant, it is necessary th
〈ω,α∨

1 〉 = m1 � −1 and 〈ω,α∨
2 〉 = m2 � 1 as claimed. Now, consider theB-module

M =MG2 ⊗ kω+ω1−ω2. This is a two-dimensional indecomposableB-module with a fil-
tration having factorskω1+ω+ω1−ω2 = kω+2ω1−ω2 on the top andkω2−ω1+ω+ω1−ω2 = kω on
the bottom. From the conditions onω, the weightω + 2ω1 − ω2 will be dominant butω
will be dominant only ifm1 � 0. On the other hand, ifm1 = 〈ω,α∨

1 〉 = −1, we are in the
case of [Jan1, II.5.4(a)] mentioned above and haveRi indGB (ω) = 0 for all i. And so the
claims follow from Lemma 3.3. ✷
Proposition (B). Supposep = 2.

(a) Assume the underlying root system ofG is of typeBn with n � 3. Let ω ∈ X(T )
be such thatprω − pr−1αn−1 lies in X(T )+. Then〈ω,α∨

j 〉 � 0 for 1 � j � n − 2,
〈ω,α∨

n−1〉 � 1, and〈ω,α∨
n 〉 � −1. Further,

(i) if 〈ω,α∨
n 〉 � 0, then indGB (MBn ⊗ kω+ωn−ωn−1) has a filtration with factors

H 0(ω+ 2ωn −ωn−1) on the top andH 0(ω) on the bottom.
(ii) Whereas, if〈ω,α∨

n 〉 = −1, then indGB (MBn ⊗ kω+ωn−ωn−1)
∼= H 0(ω + 2ωn −

ωn−1).

(b) Assume that the underlying root system ofG is of typeB4. Let ω ∈ X(T ) be such
thatprω− pr−1α1 lies inX(T )+. Then〈ω,α∨

1 〉 � 1 and〈ω,α∨
j 〉 � 0 for j = 2,3,4.

Further,
(i) if 〈ω,α∨

4 〉 � 1, then indGB (MB4 ⊗ kω−ω1) has a filtration with factorsH 0(ω +
ω4 −ω1) on the top andH 0(ω+ω3 −ω1 −ω4) on the bottom.

(ii) Whereas, if〈ω,α∨
4 〉 = 0, thenindGB (MB4 ⊗ kω−ω1)

∼=H 0(ω+ω4 −ω1).

(c) Assume that the underlying root system ofG is of typeCn, n � 2. Let ω ∈ X(T )
be such thatprω − pr−1αn lies in X(T )+. Then〈ω,α∨

j 〉 � 0 for 1 � j � n − 2,

〈ω,α∨
n−1〉 � −1, and〈ω,α∨

n 〉 � 1. Furthermore, the moduleindGB (MCn ⊗kω+ωn−1−ωn)
has a filtration by factors( from top to bottom):
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H 0(ω+ω1 +ωn−1 −ωn), H 0(ω+ω2 −ω1 +ωn−1 −ωn),

H 0(ω+ω3 −ω2 +ωn−1 −ωn), . . . , H 0(ω+ωn−2 −ωn−3 +ωn−1 −ωn),

H 0(ω+ωn−1 −ωn−2 +ωn−1 −ωn)=H 0(ω+ 2ωn−1 −ωn−2 −ωn),
H 0(ω+ωn −ωn−1 +ωn−1 −ωn)=H 0(ω)

with not necessarily all factors present. Specifically,
• H 0(ω+ω1 +ωn−1 −ωn) is always present.
• For n � 3 and 1 � j � n − 2, H 0(ω + ωj+1 − ωj + ωn−1 − ωn) is present if

〈ω,α∨
j 〉 � 1 and not present if〈ω,α∨

j 〉 = 0.

• H 0(ω) is present if〈ω,α∨
n−1〉 � 0 and is not present if〈ω,α∨

n−2〉 = −1.
(d) Assume that the underlying root system ofG is of typeF4. Letω ∈X(T ) be such that

prω − pr−1α2 lies in X(T )+. Then〈ω,α∨
1 〉 � 0, 〈ω,α∨

2 〉 � 1, 〈ω,α∨
3 〉 � −1, and

〈ω,α∨
4 〉 � 0. Further indGB (MF4 ⊗ kω+ω3−ω2) has a filtration by factors( from top to

bottom):

H 0(ω+ω3 +ω4 −ω2), H 0(ω+ 2ω3 −ω2 −ω4), H 0(ω)

with not necessarily all factors present. Specifically,
• H 0(ω+ω3 +ω4 −ω2) is always present.
• H 0(ω+ 2ω3 −ω2 −ω4) is present if〈ω,α∨

4 〉 � 1 and not present if〈ω,α∨
4 〉 = 0.

• H 0(ω) is present if〈ω,α∨
3 〉 � 0 and not present if〈ω,α∨

3 〉 = −1.

Proof. As in the preceding proof, we simply compute the conditions onω and then apply
Lemma 3.3. For part (a), writeω= ∑n

i=1miωi . In order for

2rω− 2r−1αn−1 = 2rm1ω1 + 2rm2ω2 + · · · + 2rmn−3ωn−3 + (
2rmn−2 + 2r−1)ωn−2

+ (
2rmn−1 − 2r

)
ωn−1 + (

2rmn + 2r
)
ωn

to be dominant, we must havemi � 0 for 1 � i � n − 2, mn−1 � 1, andmn � −1 as
claimed. The moduleMBn ⊗ kω+ωn−ωn−1 has a filtration withkω+2ωn−ωn−1 on the top and
kω on the bottom. From above, the weightω + 2ωn − ωn−1 is necessarily dominant.
mn � 0, thenω is also dominant. Alternatively, we must have〈ω,α∨

n 〉 = mn = −1. In
either case, the filtrations follow from Lemma 3.3.

For part (b), letω= ∑4
i=1miωi . In order for the weight 2rω− 2r−1α1 = 2rω− 2rω1 +

2r−1ω2 to be dominant, we must havem1 � 1 andmi � 0 for i = 2,3,4 as claimed. The
moduleMB4 ⊗ kω−ω1 has a filtration withkω+ω4−ω1 on the top andkω+ω3−ω1−ω4 on the
bottom. The weightω + ω4 − ω1 is dominant. However, the weightω + ω3 − ω1 − ω4
will be dominant only ifm4 = 〈ω,α∨

4 〉 � 1. Alternatively, whenm4 = 0, we will have
〈ω+ω3 −ω1 −ω4, α

∨
4 〉 = −1 which suffices.

For part (c), letω = ∑n
i=1miωi . In order for the weight 2rω − 2r−1αn = 2rω +

2rωn−1 − 2rωn to be dominant, we must havemi � 0 for 1 � i � n − 2, mn−1 � −1,
andmn � 1 as claimed. The moduleMCn ⊗ kωn−1−ωn has a filtration with factors (from to
to bottom):
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kω+ωn−1−ωn, kω+ω2−ω1+ωn−1−ωn, kω+ω3−ω2+ωn−1−ωn, . . . ,

kω+ωn−2−ωn−3+ωn−1−ωn, kω+ωn−1−ωn−2+ωn−1−ωn = kω+2ωn−1−ωn−2−ωn,

kω+ωn−ωn−1+ωn−1−ωn = kω.

The weightω+ωn−1 −ωn is always dominant. On the other hand, the remaining wei
need not be. Indeed, for 1� j � n− 2, the weightσj = ω + ωj+1 − ωj + ωn−1 − ωn is
dominant if and only ifmj = 〈ω,α∨

j 〉 � 1. Moreover, ifmj = 0, then〈σj ,α∨
j 〉 = −1 as

needed. Similarly, the weightω is dominant if and only if〈ω,αn−1〉 � 0. Alternatively, we
have〈ω,αn−1〉 = −1.

For part (d), letω = ∑4
j=1mjωj . In order for the weight 2rω − 2r−1α2 = 2rω +

2r−1ω1 − 2rω2 + 2rω3 to be dominant, we must havem1 � 0, m2 � 1, m3 � −1, and
m4 � 0 as claimed. The moduleMF4 ⊗ kω+ω3−ω2 has a filtration by factors (from to
to bottom):kω+ω3+ω4−ω2, kω+2ω3−ω2−ω4, kω. The weightω + ω3 + ω4 − ω2 is domi-
nant. But the weightσ = ω + 2ω3 − ω2 − ω4 is dominant only ifm4 � 1 whereas if
m4 = 0, then〈σ,α∨

4 〉 = −1. Lastly, ifm3 � 0, thenω is dominant. Alternatively, we hav
〈ω,α∨

3 〉 = −1. ✷
3.5. In this section, we apply our results to provide a complete determination of
H1(Gr,H

0(ωβ)) (or equivalently H1(Br ,ωβ)) is non-zero for a fundamental domina
weightωβ . For a given fundamental weightωβ , by Corollary 3.2, H1(Gr,H 0(ωβ)) �= 0
if and only if ωβ = prω − piα for some simple rootα and 0� i � r − 1 whereω is the
corresponding weight from Lemma 2.3. Supposeωβ = prω−piα. Then

1= 〈
ωβ,β

∨〉 = pr
〈
ω,β∨〉 − pi

〈
α,β∨〉

.

Observe that the right-hand side is divisible byp unlessi = 0. This reduces the assumpti
to ωβ = prω− α. By checking Lemma 2.3, notice that we always have〈ω,α∨〉 = 1. So

〈
ωβ,α

∨〉 = pr
〈
ω,α∨〉 − 〈

α,α∨〉 = pr − 2.

As the left-hand side equals 0 or 1, we must haver = 1 andp = 2 or 3. Therefore, we hav
the following result.

Proposition (A). If r > 1 or p > 3, then

H1(Br ,ωβ)= 0 = H1(Gr,H 0(ωβ)
)

for all fundamental dominant weightsωβ .

The reader will have already observed that there are fundamental weightsωβ of the
form pω− α whenp = 2 or 3. We proceed to precisely identify these.
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Case 1. Assume first that the weightω equalsωα . That is, we lie in the generic case. S
we are assumingωβ = pωα − α. Then we have

〈
ωβ,α

∨〉 = p
〈
ωα,α

∨〉 − 〈
α,α∨〉 = p− 2. (3.5.1)

The left-hand side equals 1 ifβ = α and 0 ifβ �= α.

Case 1.1. Supposeβ = α. Then the left-hand side of (3.5.1) is 1 and we must havep = 3.
In typeA1, one does indeed haveωα = 3ωα − α. On the other hand, in any other type, w
cannot haveωα = 3ωα − α for there exists a simple rootσ �= α with 〈α,σ∨〉 �= 0 while
〈ωα,σ∨〉 = 0.

Case 1.2. Supposeβ �= α. Then the left-hand side of (3.5.1) is zero and we must h
p = 2. Soωβ = 2ωα − α. In other words,α = 2ωα − ωβ . One can readily identify al
simple roots which have this form:

• TypeAn, n � 2: α1 = 2ω1 − ω2 so ω2 = 2ω1 − α1; αn = 2ωn − ωn−1 so ωn−1 =
2ωn − αn.

• Type Bn, n � 3: α1 = 2ω1 − ω2 so ω2 = 2ω1 − α1; αn = 2ωn − ωn−1 so ωn−1 =
2ωn − αn.

• TypeCn, n� 2: α1 = 2ω1 −ω2 soω2 = 2ω1 − α1.
• Type Dn, n � 4: α1 = 2ω1 − ω2 so ω2 = 2ω1 − α1; αn−1 = 2ωn−1 − ωn−2 and
αn = 2ωn −ωn−2 soωn−2 = 2ωn−1 − αn−1 = 2ωn − αn.

• TypeEn, n = 6,7,8: α1 = 2ω1 − ω3 so ω3 = 2ω1 − α1; α2 = 2ω2 − ω4 so ω4 =
2ω2 − α2; αn = 2ωn −ωn−1 soωn−1 = 2ωn − αn.

• TypeF4: α1 = 2ω1 −ω2 soω2 = 2ω1 − α1; α4 = 2ω4 −ω3 soω3 = 2ω4 − α4.
• TypeG2: α1 = 2ω1 −ω2 soω2 = 2ω1 − α1.

Case 2. Suppose thatωβ = pω−α andω from Lemma 2.3 has non-generic form. For t
list of “exceptional” weightsω, we simply check whetherpω−α is a fundamental weight

• TypeBn, n� 3,p = 2: 2(ωn−1 −ωn)− αn−1 = ωn−2.
• TypeCn, n� 2,p = 2: 2(ωn −ωn−1)− αn = 0 (not fundamental).
• TypeF4, p = 2: 2(ω2 −ω3)− α2 = ω1.
• TypeG2, p = 2: 2(ω2 −ω1)− α2 = ω1.
• TypeG2, p = 3: 3(ω2 −ω1)− α2 = ω2.

Thus, we have all the fundamental dominant weights with non-vanishing cohomolog

Proposition (B). Letp = 2 or 3 andωβ be a fundamental dominant weight. Then

H1(B1,ωβ)= 0 = H1(G1,H
0(ωβ)

)
.

Exceptfor the following weights:
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(a) Assumep = 2.

• TypeA2: H1(G1,H
0(ω1))∼=H 0(ω2)

(1), H1(G1,H
0(ω2))∼=H 0(ω1)

(1).

• TypeA3: H1(G1,H
0(ω2))∼=H 0(ω1)

(1) ⊕H 0(ω3)
(1).

• TypeAn, n� 4: H1(G1,H
0(ω2))∼=H 0(ω1)

(1), H1(G1,H
0(ωn−1))∼=H 0(ωn)

(1).

• TypeB3: H1(G1,H
0(ω1))∼=H 0(ω3)

(1), H1(G1,H
0(ω2))∼=H 0(ω1)

(1)⊕H 0(ω3)
(1).

• TypeB4: H1(G1,H
0(ω2))∼=H 0(ω1)

(1)⊕H 0(ω4)
(1), H1(G1,H

0(ω3))∼=H 0(ω4)
(1).

• TypeBn, n � 5: H1(G1,H
0(ω2)) ∼= H 0(ω1)

(1), H1(G1,H
0(ωn−2)) ∼= H 0(ωn)

(1),
H1(G1,H

0(ωn−1))∼=H 0(ωn)
(1).

• TypeCn, n� 2: H1(G1,H
0(ω2))∼=H 0(ω1)

(1).

• TypeD4: H1(G1,H
0(ω2))∼=H 0(ω1)

(1) ⊕H 0(ω3)
(1) ⊕H 0(ω4)

(1).

• TypeDn, n� 5: H1(G1,H
0(ω2))∼=H 0(ω1)

(1), H1(G1,H
0(ωn−2))∼=H 0(ωn−1)

(1)

⊕H 0(ωn)
(1).

• TypeEn, n= 6,7,8: H1(G1,H
0(ω3))∼=H 0(ω1)

(1), H1(G1,H
0(ω4))∼=H 0(ω2)

(1),
H1(G1,H

0(ωn−1))∼=H 0(ωn)
(1).

• TypeF4: H1(G1,H
0(ω1)) ∼= H 0(ω4)

(1), H1(G1,H
0(ω2)) ∼= H 0(ω1)

(1), H1(G1,

H 0(ω3))∼=H 0(ω4)
(1).

• TypeG2: H1(G1,H
0(ω1))∼=H 0(ω1)

(1), H1(G1,H
0(ω2))∼=H 0(ω1)

(1).

(b) Assumep = 3.

• TypeA1: H1(G1,H
0(ω1))∼=H 0(ω1)

(1).

• TypeG2: H1(G1,H
0(ω2))∼=H 0(ω1)

(1).

4. Simple Gr -modules

4.1. The computation of the cohomology groups H1(Gr,L(λ)) for λ ∈ X(T )+ is not as
straightforward. One strategy would be to extend results forG1 to higherGr as done for
induced modules. Here, we simply present an observation based on [Jan2, 4.2, 4
uses the computations for induced modules. Consider the short exact sequence

0→ L(λ)→H 0(λ)→H 0(λ)/L(λ)→ 0

and the long exact sequence in cohomology

0→ L(λ)Gr →H 0(λ)Gr → (
H 0(λ)/L(λ)

)Gr → H1(Gr,L(λ)) → H1(Gr,H 0(λ)
)

→ H1(Gr,H 0(λ)/L(λ)
) → ·· · .

If λ,µ ∈ Xr(T ) then HomGr (L(µ),H
0(λ)) is zero if λ �= µ andk otherwise. It follows

that if λ ∈ Xr(T ) andλ �= 0 thenH 0(λ)Gr = 0, and otherwise it isk. Consequently, fo
anyλ ∈Xr(T ), there is an exact sequence

0 → (
H 0(λ)/L(λ)

)Gr → H1(Gr,L(λ)) → H1(Gr,H 0(λ)
) → H1(Gr,H 0(λ)/L(λ)

)
.

The following is now immediate.
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Proposition. If λ ∈Xr(T ) andH1(Gr,H
0(λ))= 0, then

H1(Gr,L(λ)) ∼= (
H 0(λ)

/
L(λ)

)Gr .
4.2. By combining the previous results with Corollary 3.2, we obtain an identificatio
H1(Gr,L(λ)) for most weights (up to an understanding of the moduleH 0(λ)).

Corollary. Supposeλ ∈Xr(T ). If λ �= prω− piα for α ∈∆, and0 � i � r − 1 whereω
is determined byp, r, α, andi from Lemma2.3, then

H1(Gr,L(λ)) ∼= (
H 0(λ)/L(λ)

)Gr .
We remark that it is still an open problem in terms of what happens to H1(Gr,L(λ))

when H1(Gr,H
0(λ)) �= 0.

5. Ext1-formula between simple modules

5.1. Let k[G] be the coordinate algebra ofG. For eachν ∈X(T )+, let I (ν) be the injective
hull of the simpleG-moduleL(ν). As aG-module,

k[G] ∼=
⊕

ν∈X(T )+
I (ν)dimk L(ν). (5.1.1)

HereI (ν)dimk L(ν) = ⊕m
i=1 I (ν) wherem= dimk L(ν). Therefore,

indGGr k
∼= k[G/Gr ] ∼= k[G](r) ∼=

⊕
ν∈X(T )+

(
I (ν)(r)

)dimk L(ν).

Now letλ,µ ∈Xr(T ). By Frobenius reciprocity and the preceding isomorphism, we h
for m� 0:

ExtmGr
(
L(λ),L(µ)

) ∼= ExtmG
(
L(λ),L(µ)⊗ indGGr k

)
∼=

⊕
ν∈X(T )+

ExtmG
(
L(λ),L(µ)⊗ I (ν)(r)

)dimk L(ν)

∼=
⊕

ν∈X(T )+
ExtmG

(
L(λ),L(µ)⊗ I (ν)(r)

) ⊗L(ν)(r).

Note that the last isomorphism is in general only an isomorphism of vector spaces.

5.2. Let πs = {ν ∈ X(T )+: 〈ν,α∨
0 〉< s} andCs be the full subcategory of allG-modules

whose composition factorsL(ν) have highest weights lying inπs . For L(ν) in Cs , let
Is(ν) be the injective hull ofL(ν) in the categoryCs . We remark thatCs is a highest
weight category as defined in [CPS]. The categoryCs is equivalent to the module catego
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for a finite-dimensional quasi-hereditary algebra. Moreover, the injective moduleIs(ν) is
a finite-dimensionalG-module.

Proposition. Letλ,µ ∈Xr(T ) andp be an arbitrary prime. ThenExtmGr (L(λ),L(µ))
(−r)

is aG-module inCs(m) where

s(m)=
{1 if m= 0,
h if m= 1,
(m− 1)(2h− 3)+ 3 if m> 1.

Proof. Form= 0 the statement is clear. The proof for the casem= 1 is inspired from the
ideas in [And2, Lemma 2.3]. Setλ∗ = −w0λ. Consider the short exact sequence

0 →L(λ∗)⊗L(µ)→H 0(λ∗)⊗H 0(µ)→N → 0.

Sinceλ,µ ∈ Xr(T ), we have HomGr (L(λ),L(µ)) ∼= HomGr (V (λ),H
0(µ)). Therefore,

from the short exact sequence above and the associated long exact sequence in c
ogy, we obtain the following exact sequence

0 →NGr → Ext1Gr
(
L(λ),L(µ)

) → H1(Gr,H 0(λ∗)⊗H 0(µ)
)
.

We first show that ifν is a weight of Ext1Gr (L(λ),L(µ))
(−r) then

pr
〈
ν,α∨

0

〉
�

〈
λ∗ +µ,α∨

0

〉 + 3pr−1. (5.2.1)

All the weights ofN are less thanλ∗ + µ so (5.2.1) is true for the weights of(NGr )(−r).
Consequently it suffices to prove that (5.2.1) holds for all weights of H1(Gr,H

0(λ∗) ⊗
H 0(µ))(−r). Let L(σ) = L(σ0)⊗ L(σ1)

(r) be a composition factor ofH 0(λ∗) ⊗ H 0(µ)

whereσ0 ∈Xr(T ). Then

H1(Gr,L(σ)) ∼= H1(Gr,L(σ0)
) ⊗L(σ1)

(r).

Consider the short exact sequence

0 → L(σ0)→H 0(σ0)→Q→ 0.

As above, this exact sequence induces an exact sequence of the form

0 →QGr →H 1(Gr,L(σ0)
) → H1(Gr,H 0(σ0)

)
.

Let µ be a weight of H1(Gr,H 0(σ0))
(−r). Then one can directly verify using The

rem 3.1(A–C) that

pr
〈
µ,α∨

0

〉
�

〈
σ0, α

∨
0

〉 + 3pr−1. (5.2.2)
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Indeed, in the generic case, H1(Gr,H
0(σ0)) is non-zero only whenσ0 = prωα − piα for

a simple rootα with i < r in which case H1(Gr,H 0(σ0))
(−r) ∼= H 0(ωα). Sinceprωα =

σ0 +piα, (5.2.2) readily holds. Forp > 3 only the generic case occurs. Forp = 2,3, veri-
fication of the non-generic cases is left to the interested reader. Since every weight oQGr

is less thanprσ0, it follows that (5.2.1) holds for all weights of H1(Gr,L(σ0))
(−r).

If ν is a weight of H1(Gr,H
0(λ∗) ⊗ H 0(µ))(−r), then prν � prµ + prσ1 where

L(σ0) ⊗ L(σ1)
(r) is a composition factor ofH 0(λ∗) ⊗ H 0(µ)) andµ is a weight of

H1(Gr,L
0(σ0))

(−r). Using (5.2.2), it follows that

pr
〈
ν,α∨

0

〉
� pr

〈
µ,α∨

0

〉 + pr
〈
σ1, α

∨
0

〉
�

〈
σ0, α

∨
0

〉 + 3pr−1 + pr
〈
σ1, α

∨
0

〉
�

〈
λ∗ +µ,α∨

0

〉 + 3pr−1.

This verifies (5.2.1).
Consider the short exact sequence ofG-modules

0 →L(µ)→ Str ⊗L(µ̂)→ R→ 0

whereµ̂ = (pr − 1)ρ − µ∗. By applying the long exact sequence in cohomology al
with the projectivity of Str overGr , we see that form� 2

ExtmGr
(
L(λ),L(µ)

) ∼= Extm−1
Gr

(
L(λ),R

)
. (5.2.3)

In fact, equation (5.2.3) also holds form = 1. Since Ext1Gr (L(λ),L(µ))
∼= Ext1Gr (L(µ),

L(λ)), we may assume without loss of generality thatλ ≯ µ. Then HomGr (L(λ),Str ⊗
L(µ̂)) is trivial unlessλ= µ in which case it isk. Hence the first map in the long exact s
quence HomGr (L(λ),L(µ))→ HomGr (L(λ),Str ⊗L(µ̂)) is an isomorphism and (5.2.3
also holds form= 1.

The highest weight ofR is less than 2(pr − 1)ρ − µ∗. Thus, any weightν of
Ext1Gr (L(λ),L(µ))

(−r) ∼= HomGr (L(λ),R)
(−r) must satisfy

prν � 2
(
pr − 1

)
ρ −µ∗ − λ.

Applying the inner product withα∨
0 , we get

pr
〈
ν,α∨

0

〉
� 2

(
pr − 1

)
(h− 1)− 〈

µ∗ + λ,α∨
0

〉
. (5.2.4)

Observe that for any weightξ , 〈ξ∗, α∨
0 〉 = 〈ξ,α∨

0 〉. Thus, combining (5.2.1) and (5.2.
together yields

2pr
〈
ν,α∨

0

〉
� 2

(
pr − 1

)
(h− 1)+ 3pr−1.

This implies that

〈
ν,α∨

0

〉
� (h− 1)+ 3

2p
< h,

as required.
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Next, we argue the casem= 2. By (5.2.3) we have

Ext2Gr
(
L(λ),L(µ)

)(−r) ∼= Ext1Gr
(
L(λ),R

)(−r)
.

Let L(σ) ∼= L(σ0)⊗ L(σ1)
(r) be a composition factor ofR. Thenprσ1 � 2(pr − 1)ρ −

µ∗ − σ0 and one obtains

pr
〈
σ1, α

∨
0

〉
� 2

(
pr − 1

)
(h− 1)− 〈

µ∗ + σ0, α
∨
0

〉
.

It follows from (5.2.1) that any weight ofν of Ext1Gr (L(λ),L(σ0))
(−r) satisfies

pr
〈
ν,α∨

0

〉
�

〈
λ∗ + σ0, α

∨
0

〉 + 3pr−1.

Thus, any weightν of

Ext1Gr
(
L(λ),L(σ)

)(−r) ∼= Ext1Gr
(
L(λ),L(σ0)

)(−r) ⊗L(σ1)

satisfies

pr
〈
ν,α∨

0

〉
�

〈
λ∗ + σ0, α

∨
0

〉 + 3pr−1 + 2
(
pr − 1

)
(h− 1)− 〈

µ∗ + σ0, α
∨
0

〉
. (5.2.5)

As noted above,〈ξ∗, α∨
0 〉 = 〈ξ,α∨

0 〉 for any weightξ . Further, we have assumed wit
out loss of generality that〈λ,α∨

0 〉 � 〈µ,α∨
0 〉. Thus, (5.2.5) yields that any weightν of

Ext1Gr (L(λ),R)
(−r) satisfies

pr
〈
ν,α∨

0

〉
� 3pr−1 + 2

(
pr − 1

)
(h− 1),

which implies 〈
ν,α∨

0

〉
< 2h.

Finally, we apply (5.2.3) to the casem > 2. The highest weight ofR is less than
2(pr −1)ρ. Thus, any weightσ = σ0+prσ1 ofR must satisfy〈σ,α∨

0 〉 � 2(pr −1)(h−1),
which implies that〈σ1, α

∨
0 〉 � 2(h− 1)− 1 = 2h− 3. LetL(σ) be a composition factor o

R andm> 1. Then, asG-modules,

Extm−1
Gr

(
L(λ),L(σ)

) ∼= Extm−1
Gr

(
L(λ),L(σ0)

) ⊗L(σ1)
(r).

Inductively we conclude that any weightν of

ExtmGr
(
L(λ),L(µ)

)(−r) ∼= Extm−1
Gr

(
L(λ),R

)(−r)
must satisfy 〈

ν,α∨
0

〉
< s(m− 1)+ 2h− 3. ✷
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5.3. The previous proposition can be refined in the case whenp > h by using the work in
[KLT].

Proposition. Letλ,µ ∈Xr(T ) andp > h. ThenExtmGr (L(λ),L(µ))
(−r) is aG-module in

Cs(m) where

s(m)=
{1 if m= 0,
h if m= 1,
2(h− 1)+mκ if m> 1,

whereκ = 3/2 if G is of typeG2 andκ = 1 otherwise.

Proof. We will first prove the following.

Step 1. Let σ ∈X(T )+, p > h, andm� 0, then any weightpν of Hm(G1,H
0(σ )) sat-

isfies

p
〈
ν,α∨

0

〉
�

〈
σ,α∨

0

〉 + p(m+ 1)κ,

whereκ = 3/2 if G is of typeG2 andκ = 1 otherwise.

We use [KLT, Theorem 8] which says that

Hm
(
G1,H

0(w · 0+ pλ)
) ∼=

{
indGB

(
S(m−l(w))/2u∗ ⊗ λ

)(1) if m= l(w) mod 2,

0 else.

Hereu = LieU . The weights of theith symmetric powersSiu∗ are just sums ofi positive
roots. Therefore, any weightγ of Siu∗ satisfies〈

γ,α∨
0

〉
� i · max

{〈
β,α∨

0

〉
: β ∈Φ+}

� 2iκ.

Now letσ =w · 0+ pλ wherew ∈W andλ ∈X(T )+.
If l(w)= 0 thenσ = pλ and it follows that any weightpν of Hm(G1,H

0(σ )) satisfies
p〈ν,α∨

0 〉 � 〈σ,α∨
0 〉 + pmκ.

If l(w) > 0 thenpλ� σ + 2ρ and it follows that any weightν of Hm(G1,H
0(σ )) sat-

isfiesp〈ν,α∨
0 〉 � 〈σ,α∨

0 〉+ 2(h− 1)+p(m− 1)κ < 〈σ,α∨
0 〉+p(m+ 1)κ. This completes

the proof of Step 1.
Consider the short exact sequence

0 →L(σ)→H 0(σ )→Q→ 0,

which induces exact sequences of the form

Hm−1(G1,Q)→ Hm
(
G1,L(σ)

) → Hm
(
G1,H

0(σ )
)
.

Any highest weight ofQ is strictly less thanσ and by using induction onm, we get the
following.
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Step 2. Forσ ∈X(T )+, p > h andm� 0, any weightpν of Hm(G1,L(σ)) satisfies

p
〈
ν,α∨

0

〉
�

〈
σ,α∨

0

〉 + p(m+ 1)κ.

Next we will use induction onr to show the following.

Step 3. Forσ ∈X(T )+, p > h andm� 1, any weightprν of Hm(Gr,L(σ)) satisfies

pr
〈
ν,α∨

0

〉
�

〈
σ,α∨

0

〉 + pr (m+ 1)κ.

For r = 1 the statement was proved in Step 2. Assume thatr > 1. We will use the
Lyndon–Hochschild–Serre spectral sequence

E
i,j

2 = Hi
(
Gr/Gr−1,Hj

(
Gr−1,L(σ)

)) ⇒ Hi+j
(
Gr,L(σ)

)
.

The differentials in the spectral sequence are G-equivariant. Moreover, the cohomo
a subquotient of Ei,j2 wherei+j =m. Therefore, any composition factor of Hm(Gr,L(σ))
must be a composition factor of some Hi (Gr/Gr−1,Hj (Gr−1,L(σ))) with i+j =m. It is
sufficient to show that any weightprν of Hi (Gr/Gr−1,Hj (Gr−1,L(σ))) with i + j =m

satisfiespr 〈ν,α∨
0 〉 � 〈σ,α∨

0 〉 + pr(m+ 1)κ.
We first discuss the casej = 0. HomGr−1(k,L(σ)) has a composition series with simp

modulesL(γ )(r−1). Clearly, the highest weightsγ of each factor satisfy

pr−1〈γ,α∨
0

〉
�

〈
σ,α∨

0

〉
. (5.3.1)

The composition factors of Hm(Gr/Gr−1,HomGr−1(k,L(σ))) are subquotients of som
Hm(Gr/Gr−1,L(γ )

(r−1)).By Step 2 any weightpν of Hm(Gr/Gr−1,L(γ )
(r−1))(−r+1) ∼=

Hm(G1,L(γ )) satisfies

p
〈
ν,α∨

0

〉
�

〈
γ,α∨

0

〉 + p(m+ 1)κ.

Multiplying the inequality withpr−1 and using (5.3.1) yields

pr
〈
ν,α∨

0

〉
� pr−1〈γ,α∨

0

〉 + pr(m+ 1)κ �
〈
σ,α∨

0

〉 + pr(m+ 1)κ.

We conclude that any weightprν of Hm(Gr/Gr−1,HomGr−1(k,L(σ))) satisfies

pr
〈
ν,α∨

0

〉
�

〈
σ,α∨

0

〉 + pr (m+ 1)κ.

Next assume thatj > 0. By the induction hypothesis we may assume that any we
pr−1γ of Hj (Gr−1,L(σ)) satisfies

pr−1〈γ,α∨
0

〉
�

〈
σ,α∨

0

〉 + pr−1(j + 1)κ. (5.3.2)
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Hj (Gr−1,L(σ)) has a composition series with simple factorsL(γ )(r−1). The composi-
tion factors of Hi (Gr/Gr−1,Hj (Gr−1,L(σ))) are subquotients of some Hi (Gr/Gr−1,

L(γ )(r−1)). By Step 2, any weightpν of Hi (Gr/Gr−1,L(γ )
(r−1))(−r+1) ∼= Hi (G1,L(γ ))

satisfies

p
〈
ν,α∨

0

〉
�

〈
γ,α∨

0

〉 + p(i + 1)κ.

Multiplying the inequality withpr−1 and using (5.3.2) yields

pr
〈
ν,α∨

0

〉
� pr−1〈γ,α∨

0

〉 + pr(i + 1)κ �
〈
σ,α∨

0

〉 + pr−1(j + 1)κ + pr(i + 1)κ.

Now pr−1(j + 1)� pr−12j � prj . Therefore,

pr
〈
ν,α∨

0

〉
�

〈
σ,α∨

0

〉 + pr(j + i + 1)κ = 〈
σ,α∨

0

〉 + pr (m+ 1)κ.

We conclude that any weightprν of Hi (Gr/Gr−1,Hj (Gr−1,L(σ))) satisfies

pr
〈
ν,α∨

0

〉
�

〈
σ,α∨

0

〉 + pr (m+ 1)κ.

Finally, we now prove our claim concerning the size of the weights in Extm
Gr
(L(λ),

L(µ)). Notice that the statement form� 1 follows from Proposition 5.2. We assume th
m> 1. One has the following sequence of isomorphisms:

Hm
(
Gr,L(λ

∗)⊗L(µ)
) ∼= ExtmGr

(
L(λ),L(µ)

) ∼= ExtmGr
(
L(µ),L(λ)

)
∼= Hm

(
Gr,L(µ

∗)⊗L(λ)
)
.

Without a loss of generality we may assume that〈λ,α∨
0 〉 � 〈µ,α∨

0 〉.
Consider the short exact sequence ofG-modules

0→ L(λ∗)⊗L(µ)→L(λ∗)⊗ Str ⊗L(µ̂)→ R→ 0,

whereµ̂ = (pr − 1)ρ − µ∗. By applying the long exact sequence in cohomology al
with the projectivity of Str overGr , we see that

ExtmGr
(
L(λ),L(µ)

) ∼= Hm
(
Gr,L(λ

∗)⊗L(µ)
) ∼= Hm−1(Gr,R).

Notice that for any composition factorL(σ) of R, σ < (pr − 1)ρ+λ∗ + µ̂= (pr − 1)ρ+
λ∗ + (pr − 1)ρ − µ∗ and soσ < 2(pr − 1)ρ + λ∗ − µ∗ � 2(pr − 1)ρ. Hence,〈σ,α∨

0 〉 �
2(pr − 1)(h− 1). It follows that any highest weightprν of Hm−1(Gr,R) satisfies

pr
〈
ν,α∨

0

〉
�

〈
σ,α∨

0

〉 + prmκ � 2
(
pr − 1

)
(h− 1)+ prmκ.

Dividing by pr yields 〈
ν,α∨

0

〉
< 2(h− 1)+mκ.

The assertion follows. ✷



C.P. Bendel et al. / Journal of Algebra 272 (2004) 476–511 509

imple
an

l se-

)

ent of
5.4. We can now prove the following formula which relates extensions between s
modules inGr with certainG-modules. Note that the isomorphism is in general only
isomorphism of vector spaces not necessarily ofG-modules.

Theorem. Letλ,µ ∈Xr(T ) andp be an arbitrary prime. Then form� 0,

ExtmGr
(
L(λ),L(µ)

) ∼=
⊕

ν∈πs(m)
ExtmG

(
L(λ), Is(m)(ν)

(r) ⊗L(µ)
) ⊗L(ν)(r),

where

s(m)=




1 if m= 0,
h if m= 1,
2(h− 1)+m if m> 1, p > h andG is not of typeG2,
2(h− 1)+ 3/2m if m> 1, p > h andG is of typeG2,
(m− 1)(2h− 3)+ 3 otherwise.

Proof. Let N be aG-module. First consider the Lyndon–Hochschild–Serre spectra
quence:

E
i,j

2 = ExtiG/Gr
(
k,ExtjGr

(
L(λ),L(µ)

) ⊗N(r)
) ⇒ Exti+jG

(
L(λ),L(µ)⊗N(r)

)
.

For i > 0 and 0� j �m, let us look at

E
i,j

2 = ExtiG/Gr
(
k,ExtjGr

(
L(λ),L(µ)

) ⊗N(r)
)
.

WhenN = I (ν) we haveEi,j2 = 0 for i > 0 becauseN(r) is an injectiveG/Gr -module.

On the other hand, ifN = Is(m)(ν) thenEi,j2 = 0 for i > 0 and 0� j � m because

M(−r) ≡ (ExtjGr (L(λ),L(µ))
∗)(−r) is aG-module inCs(m) (by Propositions 5.2 and 5.3

andN is injective inCs(m). It follows that ifN = I (ν) or Is(m)(ν) thenE0,m
2

∼= Em. Con-
sequently, ifν /∈ πs(m), then

ExtmG
(
L(λ),L(µ)⊗ I (ν)(r)

) ∼= HomG
(
M(−r), I (ν)

) = 0

since theG-socle ofI (ν) isL(ν) andM(−r) lies inCs(m). On the other hand, forν ∈ πs(m),
we have

ExtmG
(
L(λ),L(µ)⊗ I (ν)(r)

) ∼= HomG/Gr
(
M,I (ν)(r)

) ∼= HomG/Gr
(
M,Is(m)(ν)

(r)
)

∼= ExtmG
(
L(λ),L(µ)⊗ Is(m)(ν)

(r)
)
.

Note that the second isomorphism follows by Propositions 5.2 and 5.3. The statem
the theorem now follows by the isomorphisms given in Section 5.1.✷
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5.5. By specializing to the case whenm= 1, we have the following corollary.

Corollary (A). Letλ,µ ∈Xr(T ) andp be an arbitrary prime. Then

Ext1Gr
(
L(λ),L(µ)

) ∼=
⊕
ν∈πh

Ext1G
(
L(λ), Ih(ν)

(r) ⊗L(µ)
) ⊗L(ν)(r).

Corollary (A) takes on even a nicer formulation whenp� 2(h− 1).

Corollary (B). Let λ,µ ∈ Xr(T ) andp � 2(h− 1). ThenExt1Gr (L(λ),L(µ)) is a semi-
simpleG-module and

Ext1Gr
(
L(λ),L(µ)

) ∼=
⊕
ν∈πh

Ext1G
(
L(λ),L(ν)(r) ⊗L(µ)

) ⊗L(ν)(r).

For higher cohomologies we get the following.

Corollary (C). Letλ,µ ∈Xr(T ),m� 2, andp � 3(h−1)+mκ−1, whereκ = 3/2 if G
is of typeG2 andκ = 1 otherwise. ThenExtmGr (L(λ),L(µ)) is a semisimpleG-module and

ExtmGr
(
L(λ),L(µ)

) ∼=
⊕

ν∈πs(m)
ExtmG

(
L(λ),L(ν)(r) ⊗L(µ)

) ⊗L(ν)(r),

wheres(m)= 2(h− 1)+mκ .

The following proves both Corollaries (B) and (C).

Proof. For m = 1, sets(m) = h. Let CZ = {λ ∈ X(T ): 0 � 〈λ + ρ,α∨
0 〉 � p} denote

the closure of the “bottom alcove” under the action of the affine Weyl group. By
Strong Linkage Principle, ifσ1, σ2 ∈ CZ, then Ext1G(L(σ1),L(σ2)) = 0. Let ν be such
that〈ν,α∨

0 〉< s(m). If p � s(m)+ (h− 2), then〈
ν + ρ,α∨

0

〉
< s(m)+ h− 1� p+ 1,

which implies thatν ∈ CZ. Consequently, the categoryCs(m) is semisimple andIs(m)(ν)=
L(ν) for all ν ∈ Cs(m). The result now holds by Theorem 5.4.✷

As noted, the isomorphism in Theorem 5.4 is only an isomorphism of vector sp
However, one obtains the composition factors of Extm

Gr
(L(λ),L(µ)) via

[
ExtmGr

(
L(λ),L(µ)

)
:L(ν)(r)

]
G

= dimExtmG
(
L(λ), Is(m)(ν)

(r) ⊗L(µ)
)
.

Forp � s(m)+ (h− 2) the categoryCs(m) is semisimple. Therefore, the isomorphism
Corollaries (B) and (C) is actually an isomorphism ofG-modules.

The preceding result improves results by the authors in [BNP1] and sharpens res
Andersen [And1] who proved this form= 1 andp � 3(h− 1).
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