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1. Introduction

1.1. Let G be a simple algebraic group over an algebraically closed&iefccharacteristic

p > 0. Forr > 1, let G, be therth Frobenius kernel ofG. It is well known that

the representations fofG1 are equivalent to the restricted representations forGlie
Historically, the cohomology for Frobenius kernels has been best understood for large
primes. Friedlander and Parshall [FP] first computed the cohomology oG Hik) for

p = 3(h — 1) whereh is the Coxeter number of the underlying root system. They proved
that the cohomology ring can be identified with the coordinate algebra of the nullcone.
Andersen and Jantzen [AJ] later verified this factfoe 4. Furthermore, they generalized

this calculation by looking at HG1, H°(1)) where H%(1) = ind§ A for p > h. Their
results had some restrictions on the type of root system involved. Kumar, Lauritzen, and
Thomsen [KLT] removed the restrictions on the root systems through the use of Frobenius
splittings.

The cohomology ring M(G1, k) modulo nilpotents can be identified in general with
the coordinate algebra of the restricted nullcdvie= {x € Lie(G): x!?! = 0}. For good
primes, Nakano, Parshall, and Vella [NPV] proved that this variety is irreducible and can
be identified with the closure of some Richardson orbit. Recently, Carlson, Lin, Nakano,
and Parshall [CLNP] have given an explicit descriptiot\@f These recent results provide
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some indication that one can systematically study extensions of Frobenius kernels for small
primes by using general formulas which exhibit generic behavior for large primes.

1.2. This paper will first focus on the first extension groups (i.e.,'Eii the category

of G,-modules for arbitrary primes. The authors have shown that such computations are
highly desirable because they can be used to provide vital information about extensions in
the category of modules for the finite Chevalley graeg¥ ,-) (see [BNP1,BNP2,BNP3]).

Of patrticular interest in this context are good upper bounds for the weights éf fxt
arbitrary characteristic.

The paper is outlined as follows. In [Jan2], Jantzen provides extensive computations
of the first cohomology groups of the first Frobenius kergal of G. In particular,
he studies both HG1, L(1)) and H(G1, H(»)) whereL(%) is the simpleG-module
with highest weighti. The first goal of the paper is to use Jantzen’s computations to
compute H(G,, H%(»)) for all Frobenius kernel&s, and dominant weights. These
computations were inspired by statements of Andersen [And2]. To begin, in Section 2, we
recall Jantzen’s computations of {81, 1) and then use those results to computés, 1)
for all » and all weights.. In Section 3, theB,-cohomology results are used to compute
HL(G,, HO(»)). As a special case, we determine all fundamental dominant weigfus
which H'(G,, H(w)) is non-zero. Donkin conjectured thatVf is a rationalG-module
with good filtration, then B (G,, V)" has a good filtration for eveny. > 0 (see [Do,

p. 79]). Van der Kallen [vdK] showed that this conjecture was not true in general by
constructing a counterexample. Our results show that whenH°()) for A a dominant
weight that indeed HG,, V)" has a good filtration for all primes. It would be an
interesting question to determine to what extent Donkin’s conjecture still remains valid.

In Section 4, an observation is made about the cohomology of simple modules. The
second goal of the paper (discussed in Section 5) is to make use of the cohomology
computations of induced modules to prove a general formula for extensions between two
simple G,.-modules for arbitrary primes (see Theorem 5.4). More specifically, we can
relate extensions (i.e., EXt) between simple5,-modules with the extensions between
certainG-modules. In partlcular fom =1 andx, u € X, (T), we construct the following
isomorphism (as vector spaces)

Extg, (L), L(w) = @D EXG (L), )P @ L(w) @ L™, (1.2.1)

vem,

wherel} (v) is the injective hull ofL(v) in the bounded categoty,, m;, = {v € X (T)4:

(v, ag) < h}, andCy, is the full subcategory of al;-modules whose composition factors
L(}) have highest weights irr;,. For p > h, we can apply the explicit description of
H*(G1. HO(%)) given in [KLT], to provide sharper results on the necessary bounds for our
truncated categories. From this formula above, we can deduce thatf@h — 1,

Extg (LW, L(w) = @ Ex (L), L7 @ L(w) @ LT, (1.2.2)

vem),

The preceding formulas significantly improve earlier results by the authors [BNP1] and
Andersen [And1, Proposition 5.5].
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1.3. Notation. Throughout this paper, |€& be a simple simply connected algebraic group
scheme defined and split over the finite figlgwith p elements. The field is the algebraic
closure ofFF,. Forr > 1, let G, be therth Frobenius kernel o&z. The basic definitions
and notation can be found in [Jan1].

Let T be a maximal split torus andl be the root system associated € 7'). Moreover,
let @* (respectively®™) be positive (respectively negative) roots andbe a base
consisting of simple roots. For a given root system of rankthe simple roots will be
denoted by, ap, ..., a,. Leta" = 2a/{a, a) be the coroot corresponding éoc @. In
this case, the fundamental weights (basis dual;tocy, ..., &) will be denoted byws,
w2, ...,w,. We use the same ordering of roots as given in [Jan2] (following Bourbaki). In
particular, for typeB,, «,, denotes the unique short simple root and for t¢pec,, denotes
the unique long simple root. For a generic simple wab, will denote the corresponding
fundamental weight. Lek be a Borel subgroup containiffgcorresponding to the negative
roots andJ be the unipotent radical df.

Let E be the Euclidean space associated wittand the inner product oR will be
denoted by(, ). Moreover, letX (T) be the integral weight lattice obtained frotn The
setX (T) has a partial ordering defined as followsiifi € X (T) theni > u if and only
if A — e ,enNa. Setag to be the highest short root. Moreover, febe the half sum
of positive roots andvg denote the long element of the Weyl group. The Coxeter number
associated t@ is h = (p, ay ) + 1. The set of dominant integral weights is defined by

X(T)y={reX(T):0<(r,a")foralla e A},
and the set op”-restricted weights is
X(T)={reX(T): 0<(ra")<p foralla e A}.
The simple modules fo& are indexed by the sét(7)+ and denoted by. (1), A € X (T)+
with L(1) = sog; H°(.) whereH%(x) = ind§ A. A complete set of non-isomorphic simple
G,-modules are easily obtained by takifig(A): A € X, (T)}. Forx € X(T), we will often

use the notatio; := A to be the one-dimension&-module obtained by taking the one-
dimensionall’-modulex and extending it td/-trivially.

2. B,-cohomology
2.1. This section is concerned with computiBg-cohomology. Specifically, we compute
H1(B,, ») for all » € X(T). For an arbitrary. € X (T), we may writex = Ag + p" A1 for
a unique weight € X, (T). Furthermore,
HY(B,, %) =H'(B;, Ao+ p'*1) ZH(B;, ko) ® p" 1.
Hence, it suffices to compute the cohomology for weigh#sX, (T).

2.2. Special cohomology modules. We define certain cohomology modules which will be
used throughout the rest of the paper. Jantzen’s computations of the cohomology groups
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H(B1, 1) in [Jan2] begins with a computation oftHU;, k) as aB-module. In most cases,
HL(U1, k) decomposes as a direct sum of simple modules but not in all cases. In particular,
certain indecomposable modules arise when the prime is small. This leads to the presence
of certain indecomposablB-modules in the identification of HB1, A). We list these
modules here with our notation:

e TypeB,,n >3, p =2. LetMp, denote the 2-dimensional indecomposa®module
from [Jan2] having a filtration with facto¥s,, on the top and,,,_,—., on the bottom.

o TypeC,,n > 2, p=2. LetMc, denote the:-dimensional indecomposahkmodule
from [Jan2] having a filtration with factork,,, kwy—w; kwz—wys - --» aNd ke, —e, 4
from top to bottom.

e Type F4, p = 2. Let M, denote the 3-dimensional indecomposaBtenodule from
[Jan2] having a filtration with factors,,, ku;—w,, aNdk,,—., from top to bottom.

e Type G2, p = 2,3. Let Mg, denote the 2-dimensional indecomposaBlenodule
from [Jan2] having a filtration with factors,, on the top and,,—., on the bottom.
Note that there are properly two modules here, one for each prime. As the prime will
be clear in context, we abusively use the same notation for both.

2.3. For a simple rootr, whether or not the weightw, — « is p-restricted affects the
Bi1-cohomology. For higher, the question becomes wheth€iw, — p’« is p”-restricted
for 0<i <r — 1. More generally, ifw is a weight andp”w — p'« is p’-restricted, one
would like to know what conditions® must satisfy. It is not hard to see that in facis
usuallyw, and in general is uniquely determined pyr, «, and:.

Lemma. Let » € X,(T). If A = p"w — p'a € X,(T) for somew € X(T), « € A, and
0<i <r —1, thenw = w, Exceptin the following cases

(@ p=2,i =r —1, and the root system is of tyg®, (n > 3) with « = «,,—1. Then
@ =wp-1— Wp.

(b) p=2,i =r — 1, and the root system is of tyg®, (n > 2) with « = «,,. Then
w=w; —W,—1.

(c) p=2,i =r —1, and the root system is of tyg& with @ = a2. Thenw = wy — w3.

(d) p=2or3,i =r—1,andthe root systemis of tyg® with @ = a2. Thenw = w2 — w;.

Proof. By definition of X, (T'), we must have & (A, ) < p" — 1 for all simple roots3.
Write w = } 5 s npwg for integersng. First, we have

i

<k, av) = pr<a), av) — pi(a, av) =p'ng —2p'.

Hencen, = 1. If the underlying root system is of typg;, we are done. Now, le8 # « be
another simple root. Then we have

(0. BY) = o, B) = ol %) = g — p'lec %)
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Now (a, B¥) =0, -1, -2, or —3. Henceng must be zero unlesg=2or 3,i =r — 1,
and(«, BY) = —2 or —3. Checking the various root systems, one obtains the above list of
“exceptional” cases. O

2.4. Jantzen computed the cohomology groupS#, 2) in [Jan2, Section 3] for all

A € X(T). For the reader’'s convenience, we recall these results. For small primes, the
answer depends on the type of the root system and involves certain indecomposable
B-modules which are identified in Section 2.2. Note that there is a “generic” answer for
p>3.

Theorem (A).Letp > 3andi € X1(T). Then

HY(B1, 1) = {k&) if A = pwy —aforac A,
0 else.

Theorem (B).Letp =3 andx € X1(T).

(a) Assume that the underlying root systenGaf not of typeA, or G,. Then

HY(By, 2) = {/8&) iflk = pwy —afora e A,
else.

(b) Assume that the underlying root systenGof of typeA,. Then

HY(By, 2) = { kc(ull) & kc(ulz) if A= w1+ w2 =3w1 — a1 = 3wz — az,
0

else.

(c) Assume that the underlying root systenGaf of typeG,. Then

k((oji) if A =w1+wr=3w1 — oy,

1 ~
H*(B1,}) = Mé;lz) if A =wr=3(w2 —w1) — a2,

0 else.

We remark that in this proposition, one sees two phenomena which lead to a non-
generic answer. Whepw; — o; = pw; — «; for distincti, j, there is a “doubling” of the
cohomology (in the sense of a direct sum of modules). The second phenomenon involves
the question of whether the weightw; — «; is p-restricted. Notice that in typ&»,
when p = 3, the weight 3» — a2 = 3w; is not p-restricted. And it gets “replaced” by
the p-restricted weight @v2 — w1) — a2. Furthermore, the cohomology involves a non-
simple indecomposablB-module. We refer the reader to Lemma 2.3 which considers the
question of whethepw; — «; is p-restricted and note that one sees the same phenomena
for p=2.
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Theorem (C).Letp=2andi € X1(T).

(a) Assume that the underlying root systenGois of typeA, with n # 3, Es, E7, Or Eg.
Then

1 .
Hl(Bl, M E { kcg)a) if A= pwy —aforae A,
else.

(b) Assume that the underlying root systenGo of typeAs. Then

kG @kl if A= wp =201 — o1 =203 — a3,
1 ~
HY (B, 1) = 1 (D if A =w1+ w3 =2wp — ay,

0 else.
(c) Assume that the underlying root systenGof of typeBs. Then

kfull) ® kl(,)lg if A =wy =2w1 — a1 =2w3 — a3,

1 ~
H*(B1,2) = Ml(gl; if A =w1=2(w2 — w3) — a2,

0 else.
(d) Assume that the underlying root systenGoi of typeBs. Then

kl(,)ll) (&) Mgl) if A =wr=2w1 — a1 =2(w3 — ws) — a3,

1 ~
H>(B1, 1) = ké}; if A=2w; —«a; for j €{2,4},
0 else.

(e) Assume that the underlying root systenGof of typeB,,, n > 5. Then

k) ifa=20;—ajfor je{l,2,....n—2n),

1 ~
HY(B1. 1) = Mg;) ifA=w,2=2(wp-1—wy) —ty_1,

0 else.

(f) Assume that the underlying root systentGok of typeC,, n > 2. Then

k) ifa=20;—ajforje(l,2,...,n—1],

1 ~
H*(B1,4) = Mgl ifA=0=2(w, — wy_1) — ay,

0 else.

(g) Assume that the underlying root systenGoik of typeD4. Then

ks @ ki @ kb if A = wp = 201 — a1 = 23 — 03 = 204 — a4,
1 ~
HY(B1, M) =1 &) if A =w1+ w3 =2wp — a2,

0 else.
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(h) Assume that the underlying root systenGoi of typeD,,, n > 5. Then

kS if A\ =2w; —a; for je{1,2,....n—2},
1 ~
HY(B1. 1) = k((o],-,)_l @ k((o],-,) if A =wp_2=2w,_1—ay_1=20, —ap,
0 else.
(i) Assume that the underlying root systento of typeFs. Then
k) ifA=2w; —a;for j € (1,34},
L _ :
H (Bls )\.): M;‘i) ifA=w1=2(w2—w3)—a2,
0 else.
(J) Assume that the underlying root systenGaf of typeG,. Then
kﬁ,ll) if A =wy=2w1 — o1,

1 ~
H*(B1, A) = M(Glz) if A =w1=2(w2 —w1) — a2,

0 else.

Using these propositions, one can computg B4, A) for all weightsx by writing
A = Ao+ pA1 and using H(B1, 1) = HL(B1, A0) ® pi1.

2.5. With the aid of the Lyndon—Hochschild—Serre spectral sequence, we now extend the
results of Section 2.4 foB1 to B, for all ». Whenp > 3, the answer fits a “generic” form
that does not depend on the root system. We consider this case first.

Theorem. Suppose > 3andi € X, (T). Then

Hl(B, )\)g{kg; ifA=pw,—paforaea, 0<i<r—1,
0 else.

Proof. We proceed by induction anwith ther = 1 case being Theorem 2.4(A). To pro-
ceed inductively, consider the LHS spectral sequence

Ey) =H (B,/B,1,H/(B,_1,0) = HT (B2
and the corresponding five-term exact sequence
0— EL0 » g1 g0 5 E20 5 E2,
Write A = Ag + p” ~1A1. By induction, we have:

EOl= Homg, /B, , (k, Hl(Br_l, )\))
= Homg, /5,_, (k. H'(B,—1, 20) ® p"~'11)
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Homg, 5, , (k, kg;l) ® kyl*l)) if \o=p lw, — plaforaec A,

= 0<i<r—2,
0 else
~ | Homg, (k, kwaﬂl)(r’l) if \o=p" lwy — plaforae A, 0<i<r—2,

0 else

(ké)l))(rfl) if 0= p" 1wy — p'a as above andy + A1 = pw
forw e X(T),

0 else

12

k((or) if A=p Hwy +11) — pla=pw—paforoeX(T),acA,
0<ig<r—-2,
0 else.

12

Sincei € X, (T), applying Lemma 2.3, we get

Eo,lz{kg; ifA=pw,—paforaeA 0<i<r—2,
0 else.

On the other hand, we have

EY0 = HY(B,/B,_1. Homg, , (k. 1))
- { Hl(Br/Br—l,kirfl)) if A= p"~1A for A € X(T),

0 else
~ { HY(By, k)Y if x = p™= 1) for X € X(T),
0 else.

Note that since. € X, (T), the weight.’ must lie inX1 (7). And so by induction (or simply
Theorem 2.4(A)), we have

plo~ { (k&f)(r_l) if A= p"~1)" as above andl’ = pw, —a fora € A,
0 else
:{kga) if A= p we — p' taforac A,
~lo else.

If E01 =0, thenE! = EL0 and the above computations confirm the claim. On the other
hand, if E®1 £ 0, we must have = p" w, — p'a for somex € A and 0<i <r — 2. This
implies that is not divisible byp”~* and so Hom, _, (k, 1) = 0. HenceE10 = 0= E?0

and thent® = E%1 and the result follows. O

2.6. For p = 3, one has to deal with the fact that (81, A) may not be of the fornkﬁ)l)
(when it is not zero). However, the same basic inductive argument still works.
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Theorem. Letp =3andi € X, (T).
(a) Assume that the underlying root systenGaf not of typed, or G». Then

KD ifh=prwe — plaforae A 0<i<r—1,

HY(B,, 1) = {
0 else.

(b) Assume that the underlying root systenGof of typeA,. Then

k) @ky) fa=p Yor+w)=p wr—p lar=pwr—p

1 ~ .
HY B 1= 9 k) if A= pw; — pla; for j €{1,2},0<i <r —2,
0 else.

(c) Assume that the underlying root systenGaf of typeG,. Then
k) if a=pHNow+ w2) = p o1 — ptay,

r—la

Mg) i 2= p oz = (@2 —w1) — p e,

HY(B,, 1) = |
kKD ifa=prw; — pla;for je{1,2},0<i <r -2,

0 else.

la2|

Proof. The proof for part (a) is identical to the proof of Theorem 2.5. For part (b), we

follow the same inductive argument. Let= Ao + p”~111. In this case, we get

Homg, /5, , (k. (ki P @k, D) @kIY) if o= p'2(w1 + wp),

g01~ ) Homg, /g, (k. kf,ffl) ®k¥lfl)) if \o=p "2w; — pla;
forje{1,2},0<i<r-3,
0 else
Homg, (k, kuy+ig @ kipa) "™ if ho= p" (01 + w2),
~ | Homg, (k, ko 42,) ™Y if 0= p"2w; — pla; for j € (1,2},
0<i<r-3,
0 else.

Note that Hong, (k, ke 42, @ kwy+2,) iS at most one-dimensional since it is not possible to
have bothwi + A1 = pw andw; + A1 = pe’ for weightsw, ' € X (T). Hence, we have

K if ao = p"2(w1+ w2) andw; + A1 = po for j € {1, 2},
we X(T),

kg) if Ao = pr_za)j — piaj andw; + A1 = po for j e {1, 2},
0<i<r—-3,we X)),

0 else.

E%t=
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Sinceprfz(a)l +wp)=p oy — prfzal =p " lwy — prfzaz, the non-vanishing condi-
tions above can be combined. The requirement is that

A=ro+p = p o —plaj+p = p e+ ) - pla;

:prw—piaj

for j=10r2,0<i <r—2,and some € X(T). Applying Lemma 2.3 must bew;.
Hence, we get

EO,l:{k((Drj) ifk:pra)j—piaj forje{1,2},0<i<r—2,
0 else.

Next we computeE-0. Again, we get

EL0~ { HY(By, k)Y if A = p"= 1) for X € X(T),
0 else.

And by induction,

r—1

FlO~ { kS k) it A= p Hor+w2) = por— p'lar = prwz — p' ey,

0 else.

As in Theorem 2.5, B, 1) may be identified with eithe£-0 or E®1 and the claim
follows.
For part (c), we proceed analogously. With= 1o + p”~1A1, we get

Homg, /B, , (k, kgfl) ® kyl*l)) if xo=p" lwy — p 2y,

_1 Dy _ _ _
Homg, /5, , (k, M(Gr2 )®k§r1 ) if o= p'2wp = p Hwz — w1) — p' 20y,

0,1~ )
Em= HomB,/Br_l(k, k((orj—Z) ® kirl—Z)) if \o= prila)j — plolj for j € {1, 2},
0<i<r-3,
0 else,

kg) if Ao= pr_la)]_ — pr_zoll andw1 + A1 = pw forw € X(T),

kg) if A\og= pr_za)z = p’_l(a)z —w1) — p’_zaz andwy — w1 + A1 = pw
~ forw e X(T),
B kg) if )Lozprfla)j —piaj forje{1,2},0<i<r—3andwz + A1 = pw
forw e X(T),
0 else.

The condition in the second case above arises because the nidgule k,, is a two-
dimensional indecomposable module with bottom factor b&ipg., ® ki, = kwy—wy+i1-
Applying Lemma 2.3, we further get
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kf,fl) if A=p w1 — p 21,

EOl kgz) if A=p ws— prfzozz,

kf,fj) if)»:pra)j—piajforje{l,Z},Oéigr—3,
0 else,

kgj) ifk:prwj—piajforje{l,Z},Ogigr—Z,
0 else.

12

Next we compute£-C. Again, we get

£LO~ { HY(B1, k) if A= p= I\ for M e X(T),
0 else.

And by induction,

k) ifa=p Y14 w2) = prwr — p e,

ME i a=p rwy = p(wa — w1) — p' e,

0 else.

EYO=

As before, H(B,, 1) may be identified with eithet’-° or E®1 and the claim follows. O

2.7. For p = 2, the computation of HB,, 1) involves even more special cases. As for
p = 3, one must deal with the presence of direct sums and non-simple indecomposable
modules. The arguments are similar to thosegfes 3 and left to the interested reader.

Theorem. Letp =2andi € X, (T).

(a) Assume that the underlying root systenGois of typeA, with n # 3, Eg, E7, Or Eg.
Then

kga) ifr=pwy—paforaeA 0<i<r—1,

HY(B,, 1) = {
0 else.

(b) Assume that the underlying root systenGof of typeAs. Then

k) @ k) ifa=p twp=pror—p lar = prwg— p' s,
Hl(Br )\() ~ ng) |f )\, = prfl(wl + 0)3) — prwz _ prflaz,
k(g)ra) |f)\,:pra)a_pzaf0raEA'oglgr_z'

0 else.
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(c) Assume that the underlying root systenGof of typeBs. Then

ko) @ kiyy

if x=p lwp = p w1 — p ey = p'ws — p"la,

if 1= p w1 = p (w2 — w3) — p ez,

ifA=pwy—paforaen 0<i<r—2,
else.

(d) Assume that the underlying root systenGoik of typeBs. Then

HY(By. 2) = { &)
k)
0

kgl) o) M1(3r4) ifA=p " lwp=pw—p oy

= p' (03— ws) — p"la

if A= p'w; — p~la; for j e {24},

3

ifA=pwy—paforaen 0<i<r—2,
else.

(e) Assume that the underlying root systenGof of typeB,,, n > 5. Then

k)
(r)
HY(B, = B
k)
0

if A =p" Loy =p (Wp—1—wn) — p

ifk:prwj—p”laj forje{l,2,...,n—2,n},

-1
a1,

ifA=pw,—paforaeca, 0<i<r—2,
else.

(f) Assume that the underlying root systentGoik of typeC,, n > 2. Then

if)»:pra)j—pr_lotjfOI’jE{l,Z,...,n—l},

if A=0=p"(wy — wp_1) — p" Ly,

ifA=p'wy —plaforaeA, 0<i<r—2,
else.

(g) Assume that the underlying root systenGoik of typeD4. Then

KD kD @ k) i =p lwp=por — p’ e

HY(B, 1) = § 1)
k)
0

r—1

"oz = p w4 — p Lo,

=pw3—p

if A= p w1+ ws) =p w2 — p'

2'
ifA=pw,—paforaecA 0<i<r—2,
else.



488 C.P. Bendel et al. / Journal of Algebra 272 (2004) 476-511

(h) Assume that the underlying root systenGoi of typeD,,, n > 5. Then

k] ifr=p'w —p taforje{l,2,...,n—2),
L N k((orn)_1 &) k((orn) if x=p" twp_2=p wp_1—p " Lo_1
H(Br. 2) = = p o, — p Loy,
k((ora) ifA=pw,—paforaea, 0<i<r—2,

0 else.

(i) Assume that the underlying root systentGos of typeF,. Then

kf,fj) ifA=pw;—p~ta;forje{l,3 4,

rfla

My it a= plwy = p’ (w2 — w3) — p' o,

kc(:a) ifA=pwy,—paforaen, 0<i<r—2,
0 else.

(J) Assume that the underlying root systenGaf of typeG,. Then

kgl) if A= p" twp=p w1 — p Loy,

o) =p Ll =p" — _ =1
HiB,. 0 = | Mo, TTh=p""o1=p (@2 —w1) —p' ez,

KD A= plog— plaforacA 0<i<r—2,
0 else.

2.8. With the computations of HB,, ) for all A € X,(T) above, one can readily compute
H(B,, ») for arbitraryx € X (T). First, we make the following observation.

Corollary. Let A € X(T). ThenH(B,, 1) # 0 if and only if A = p"@ — p'a for some
weX(T),xae A, and0<i <r — 1. Moreover, ifA € X, (T), then the weight» is the
weight determined by, r, «, andi in Lemma2.3.

Proof. Given A € X(T), we first show that. must have the desired form. Write=
Xo+ p" i1 for (unique)ro € X, (T) andry € X(T). Then H(B,, 1) = HY(B,, 10) ® p" A1
and the answer depends ap. From Theorems 2.5-2.7,%B,, A9) # 0 if and only if
*o=p o — p'a for somex € A wherew' is the weight (corresponding te, r, o, andi)
determined in Lemma 2.3. Thus= Ao+ p A1 = p o' — pla+p A1 =p" (0 + A1) — p'a
has the formp”w — p'a.

Conversely, given any weight= p"w — p'«, one can always expressaso = o’ + A1
for the required weight’ and some weight1 € X (7). And since non-vanishing is in-
dependent ok, HL(B,, 1) will be non-zero for all such.. Finally, the “moreover” part
follows immediately from Lemma 2.3.0
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Giveni = p"w — p'a, to compute Hi(B,, 1), write A = (p" o’ — p'a) + p” 11 for the
specific weightw’ (from Lemma 2.3) and some weight € X (7). In terms of the given
weightw, A1 = w — '. Thus we get

HY(B,, %) = H(B;, 20) @ k) = H'(B,, ' — plar) @ k)

1
=HY(B,, p'o — p'a) ®kgiw,
and one simply substitutes the answers from Theorem 2.5-2.7. For example, in the generic

casew’ = w, and H(B,, p oy — pia) k) so that

Hl(Br, po— pia) = kga) ® k"

w—wy

= k1),

For completeness, we include the answers here omitting the straightforward details in the
non-generic cases.

Theorem (A).Letp >3andi € X(T). Then
Hl(Br,)\)g{k‘("r) ifk:prw—piaforweX(T),aGA,OgiSr—l,
0 else.

Theorem (B).Letp =3 andx € X(T).
(a) Assume that the underlying root systenGaf not of typeA, or G,. Then

Hl(Br )\);{kg) ifA=pw—paforoeX(T),aecA 0<i<r—1,
0 else.

(b) Assume that the underlying root systentGof of typeA,. Then

kS ®KS) ) 1T 2= p o — pla; forwe X(T),
J:te{l,2},j#¢,

if A= p'w— plaforwe X(T),
aeA0<i<r—2,

0 else.

HY (B, ) = { 40

(c) Assume that the underlying root systenGafk of typeG,. Then

k((or) ifA=pw—p tagforwe X(T),

ME kYL 0y 1fA=pw—p LasforeeX(T),

1 ~ .
HY(Br, 1) = kg) ifA=p'w—pajforeeX(T),

je{l,2,0<i<r -2
0 else.
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Theorem (C).Letp=2andi e X(T).

(a) Assume that the underlying root systenGois of typeA, with n # 3, Es, E7, Or Eg.
Then

KD ifa=po—paforoe X(T),aecA, 0<i<r—1,

HY(B,, 1) = {
0 else.

(b) Assume that the underlying root systenGoi of typeAs. Then

kS ®KS) s 1T 1=p e — pla; forw e X(T),
J:te{l,3},j#¢,
HL(B,, 1) = kfj) if A= p w—p layforwe X(T),
kg) if A=p'w— plaforwe X(T),
aeA0<i<r—2,
0 else.

(c) Assume that the underlying root systenGof of typeBs. Then

kg) @kglwe_wj ifA=pw-— p’_laj forw e X(T),
J:te{l 3}, j#¢,
HLB, 0 MG @KL i 0y A =p 0 — plapforwe X(T),
kg) if A= p'w— plaforwe X(T),
aeA0<i<r—2,
0 else.

(d) Assume that the underlying root systenGoik of typeBs. Then

K @ (My) @k,)  ifa=po—plarfore e X(T),
)
kg+w1+w4—w3
S(MG) @) pi_u) Th=pw— p TagforweX(T),
HYB,, 2 = { kD if A = p’w— p"La; for w € X(T),
Jje{2,4],
kg) ifA=p'w—paforweX(T), acA,
0<i<r—-2,
0 else.
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(e) Assume that the underlying root systenGof of typeB,,, n > 5. Then

kf,f) ifk:prw—pr_lajfora)eX(T),
je{l,2,...,n—2,n},
HiB, 3 = My @Kk oy (A= p o —p ~ta,_y forwe X(T),
K if A=p'w—paforeweX(T), ac A,
0<i<r—-2,
0 else.

(f) Assume that the underlying root systenGok of typeC,, n > 2. Then

k! if A= p'w— p Lo forwe X(T),
je{l,2,...,n—1},
HL(B,.)) = Mg,,) ®kg}rwn_l_wn if A= p"w— p"La, for w e X(T),
ka(ur) ifA=p'w—paforweX(T),acA,
0<i<r-2,
0 else.

(g) Assume that the underlying root systenGoik of typeD4. Then

kf,f) @ kg_?_we_wj @ kg_?_ws_wj ifA=pw-— pr’laj forw e X(T),
J.l,s€{l,3,4}, j#L, jF£s, LFEs,
HY(B, .\ = kf,f) if A =pw—p ~tayforwe X(T),
kfj) ifA=p'w—paforweX(T),
aeA0Li<r—2,
0 else.

(h) Assume that the underlying root systenGo of typeD,,, n > 5. Then

kfj) ifk:prw—prflajfora)eX(T),
je{l,2,...,n—2},
kf,f)eekg}rwe_wj ifk:prw—prflaj forw e X(T),
HY(B,, 2) = joeetn—1n), j#£L,
kg) if A=p'w— plaforwe X(T),
aeA0<i<r—2,
0 else.
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(i) Assume that the underlying root systentGos of typeF,. Then

iy if A= p'w— p'la; forwe X(T),
J€{1,3,4},
HL(B,, 1) = MP @k s, A=pw—plagformeX(T),
rs =
kS if )= p’w— piaforwe X(T),
aeA0<i<r—2
0 else.

(J) Assume that the underlying root systenGaf of typeG,. Then

kg) if A= p"w— p"Lay forwe X(T),
. ME) QK 0y 1A= p o— p~tasforwe X(T),
H (B, ) = kg) ifA=p'w— paforwe X(T),
aeA0Li<r—2,
0 else.

We have chosen to present the resultsiar X, (T) first and then those for general
A € X(T). If one prefers, this can be done in the opposite order: one can inductively obtain
the results for arbitrary and then use Lemma 2.3 to deduce the results in Sections 2.5-2.7
for p”-restricted weights.

3. G,-cohomology of induced modules

3.1. According to Kempf’s vanishing theoremy,%(x) = ind$ i is zero unlesg € X (7).
For dominant weight&, the preceding computations 8f-cohomology can now be used
to compute H(G,, H%(»)) thanks to the isomorphism

HY(G,, H°()) ™" Zind§ (H(B,, ) ")
(cf. [Jani, 11.12.2]). Indeed, in the “generic” case, we simply have
ind§ (HX(B,, 1)) =ind§ (ko) = Ho(w).

In general, for p”-restricted weights, the computations follow readily from Theo-
rems 2.5-2.7. However, some work is required whenBh&ohomology involves a non-
simple indecomposable module. Foe= 3(h — 1), the following theorem (in conjunction
with Lemma 2.3) is stated in [And2, p. 392].

Theorem (A).Letp >3andx € X,(T). Then

Hl(G,, HO(A)) ~ {glo(a)a)(r) ifIA =pwy —plaforaen 0<i<r—1,
else.



C.P. Bendel et al. / Journal of Algebra 272 (2004) 476-511 493

Theorem (B).Letp =3 andx € X, (T).
(a) Assume that the underlying root systenGaf not of typeA, or G,. Then

Hl(Gr, HO(A)) ~ { glo(wa)(r) iflk =pwy—plaforaeA0<i<r—1,
else.

(b) Assume that the underlying root systenGoi of typeA,. Then

H%w) " ® Ho(wp)”  if A= p" N1+ w2) = p w1 — p Loy

L o =pwr— pf_lotz,
HY(Gr, H°(1) = | HO(w;)® if A= p'w; — pla; for j € {1,2},
0<i<r—-2,

0 else.

(c) Assume that the underlying root systenGafk of typeG,. Then

H%wp)"  if A= p o1 — p o,
H%w)®  if A=p oy =p (w2 —w1) — p" ez,
Hl(Gr, HO()»)) = Ho(a)j)(r) ifr=pw;j— piaj for j € {1, 2},
0<i<r—-2,
0 else.

Proof. There is one case where the computation involves inducing a non-simple indecom-
posableB-module. That is in part (c) wheh = p" 1w, and H(B,, 1) = Mgz) How-

ever, Jantzen shows in [Jan2, Proposition 5.2] th#{MGz) = H%w1) which gives the
claim. O

Theorem (C).Letp=2andi € X,(T).
(a) Assume that the underlying root system is of tpewith n £ 3, Ee, E7, Or Eg. Then

HO%wo)" ifa=p'wy,—paforaeA 0<i<r—1,

HY(G,, HO() ;{
( ) 0 else.
(b) Assume that the underlying root systenGoi of typeAs. Then

HO%w) " & HO(w3)” if A= p " lwp=p'w1— p oy
= p w3 — p" " las,

HO%wp)™ if A= p " Hw1+ w3)
HY(G,, HO() = = p wz — p"lay,
HO%wy)™ ifA=pwy —plaforaeA,
0<i<r—-2,

0 else.
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(c) Assume that the underlying root systenGof of typeBs. Then

H%w1) " @ Hw)" if A =p lwp=p'o1-p~la
=p w3 —p"laz,
HO%w3)™ if A= pr’la)l
HY(Gr. HOM) = = p (@2 — wg) — p" ez,
HO%wy)™ ifA=pwy —plaforaeA,
0<ig<r—-2,
0 else.

(d) Assume that the underlying root systenGoik of typeBs. Then

H%w) " @ Ho%wa)? ifrA=p " lop=p'w1—plu
r—1
(07

=p' (w3 —ws) — p'"Taz,
HY(G,. HOO)) = HO%(wj)™ if A= p'wj — p"a; for j=2.4,
HO%we)™ ifA=pw,—paforaeA,
o0<<i<r—-2,
0 else.

(e) Assume that the underlying root systenGaf of typeB,,, n > 5. Then

Ho(a)j)(’) ifA=pwj— p”laj forje{l,2,...,n—2,n},
HY(G,, HO(W) = Ho ) if 5 = prfl“’"*z.: Pl (@n-1 = on) = p oy,
HOwe) ") ifh=pwy—paforaca 0<i<r—2,

0 else.

(f) Assume that the underlying root systenGok of typeC,, n > 2. Then

Ho(a)j)(r) ifr=pw;— pr_lotj forje{l,2,....,n—1},
Ho%w)®  if A =0=p"(&n — wn-1) — p" e,
H%wo)") ifa=pwy —plaforaen 0<i<r—2,

0 else.

HY(G,, HO(W) =

(g) Assume that the underlying root system is of thpeThen

HO%w)® & Ho(w3)”  if A= p " lwp=p w1 — p oy
® H(wq)") =pwz—p lag
= p ws— p"aa,
HY(G, . HOG) = | HO@" if 2= p'He1+ @)
=p w2 — p"lao,
HO%wy)™ ifA=pwy —plaforaeA,
0<i<r—-2,

0 else.
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(h) Assume that the underlying root systenGoi of typeD,,, n > 5. Then

Ho(a)j)(’) if A =p w; —pr’laj
forje{l,2,...,n—2},
H%w, 1) & Ho(w)"  if A= p oy 2

— _ -1
Hl(Gr, HO()\.)) o~ =p wp-1 p Ap—1
= prwn - pr_lai’ll
HO%wy)™ if A= p wy — plaforac A,
0<ig<r—2,

0 else.

(i) Assume that the underlying root systentGo of typeFs. Then

Ho%wp)" ifr=pw;— p~la;forjei{l, 3,4},

HY(G,, HO) = HO%w)®  if A= p"~log = p" (w2 — w3) — p" e,
HO(we)"” ifA=p we—paforaen 0<i<r—2,
0 else.

(J) Assume that the underlying root systenGaf of typeG,. Then

r—1

HO% o) ifr=p lwp=p wi— p Loy,

. . Ho%w)" i A= p" o1 = p (w2 — 1) — p" " lay,
HY G, H'(V) Z{ HOYwe)™ if A= pwy — plaforac A,
0<i<r—2

0 else.
Proof. As in the previous proposition, the only difficulty arises in computing the induced
module for the non-simple indecomposable modules. From [Jan2, 5.1, 5.2], we have
ind§ (Mg,) = Ho(wy),  ind§(Mc,) = HO(w1),
ind§ (Mr,) = HO(wa), ind§ (Mg,) = H%w1). O

3.2. From Corollary 2.8 and Theorem 2.5, one immediately gets the following. Parts (a)
and (b) lower the condition op found in [And2, p. 392].

Corollary. Suppose. € X(T)+.

(@ HY(G,, H°()) #0if and only if A = p"w — p'a for somew € X(T), « € A, and
o<ig<r—-1

(b) If p>3andi=p'w— p'a, thenHY(G,, HO(1)) = HO(w)".

(c) If » € X, (T), then the weightw is the weight determined by, r, @, andi in
Lemma2.3.
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As done in Section 3.1 fop”-restricted weights, one can use Theorems 2.8(A—C) to
compute H(G,, H°(%)) in terms of induced modules for alle X (7). As most cases
simply involve inducing simpleB-modules, for brevity, we do not include these results.
However, some of the answers involve a module of the forn§ iMly, ® k). Specifi-
cally, the computation of HG,, H%(%)) for the following dominant weights involves
inducing the given module:

e p=3,typeGo, A= p w— p"lay: MG, ® kotwr—ws-
e p=2,typeB,,n>3,A=p w— p la,_1: Mp, @ kotwy—w,_1-
o p=2,typeBs, h=p o — p a1 Mp, @ kiy—q, -
e p=2,typeCy,n 22, =p"w— P Lay: Mc, ® kotw,_1—wp-
e p=2,typeFsy, r=p"w— prflazi ME, ® kit wg—awp-
o p=2,typeGo, A =p w— p" las: MG, ® kotwr—ws-
3.3. The following homological algebra fact will allow us to identify a filtration of the

modules listed in Section 3.2 big%(y)s. This strategy is based on the proof of [Jan2,
Proposition 5.1].

Lemma. Let M be a finite-dimensionaB-module with a filtration(from top to bottom
by ks, koys - - -, ks, . Assume further thar’ indg(aj) =0forall i >1and all j. Then
R'ind§ (M) = 0forall i > 1 andind$ (M) has a filtration by factorg from top to bottom

H%01), H%02). ..., H%ow,
where any weights; that are not dominant are omitted.

Proof. We argue by induction on and are trivially done ifs = 1. Forn > 1, there is
a short exact sequence

0—>ksy>M—->N—-O0
for some moduleV. Associated to such a short exact sequence is a long exact sequence
0— ind$ (1) — ind§ (M) — ind§ (N) — Rind§ (o1) — RYind§ (M)
— RYind§(N) — -+

By the hypothesis and inductioR’ ind$ (o1) = 0 = R'ind$(~) for all i > 1. Hence
R indg(M) =0foralli > 1 and there is a short exact sequence

0— ind§ (o1) — ind$ (M) — ind§ (N) — 0.

Of course, in§ (01) = 0 if o1 is not dominant. And by induction ifi{N) has a filtration
by H%(02), H%(03), ..., H%(0y) for thoses; which are dominant. Therefore, we get the
desired filtration ofM. O
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3.4. Given aB-moduleM and a weightr of M, we note that there are two easy conditions
under whichR? indg(cr) =0 for all i > 1. First, this holds ifoc is dominant (cf. [Jan1,
1.4.5]). Secondly, if(o, «") = —1 for some simple roo#, then R’ indg (o) =0 for all

i > 0 by [Jani, I1.5.4(a)]. (Of course, for the lattey H%(c) = 0 and will not appear in the
answer.) For the modules of interest to us, we will see that all weights satisfy one of these
two conditions.

Proposition (A). Suppose thap = 2 or 3 and the underlying root system ¢f is of
type Go. Letw € X(T) be such thap’» — p" e lies in X(T)4. Then(w, o) > —1
and(w, oy ) > 1. Furthermore,

(@) if (w,a)) >0, thenindf,?(MG2 ® ko+w—wy) has a filtration with factorsH%(w +
2w1 — wp) on the top andd %(w) on the bottom.
(b) Whereas, ifw, o)) = —1, thenind§ (Mg, ® ku-+aw—w,) = H(® + 201 — w2).

Proof. Let w = miw1 + mowy for integersmi, mo. In order for the weightp”"w —

P Yas = (p"m1 + 3p " Hwr + (p"m2 — 2p"Hwy to be dominant, it is necessary that
(w,f) =m1 > -1 and (w, ) = mp > 1 as claimed. Now, consider the-module
M = Mg, @ kot+wi—w,- This is a two-dimensional indecomposa®enodule with a fil-
tration having factors,, + w+w;—wy = kw+2w;—w, 0N the top an@y,—u; +o+w;—wy = ko ON
the bottom. From the conditions a5 the weightw + 2w; — w2 will be dominant butw
will be dominant only ifmy > 0. On the other hand, ifiy = (0, @y) = —1, we are in the
case of [Jan1l, 11.5.4(a)] mentioned above and hﬁ(/mdg (w) =0 for all i. And so the
claims follow from Lemma 3.3. O

Proposition (B). Suppose = 2.

(a) Assume the underlying root system®fis of type B, with n > 3. Letw € X(T)
be such thap’w — p"1a,_1 lies in X (T),. Then(w, af)>0for1<j<n-2
(@, 1) >1,and(w,)) > —1. Further, '

(i) if (@) > 0, thenind§ (Mg, ® kytw,—w, ;) has a filtration with factors
HO%w + 2w, — w,—1) on the top andd °(w) on the bottom.

(i) Whereas, if(w, o)) = —1, thenind$ (Mg, ® kotwp—w, 1) = H(w + 20, —
Wp—1).

(b) Assume that the underlying root systemfs of typeBs. Letw € X(T) be such
that p"w — p"~taq lies in X (T)+. Then(w, o)) > 1and (w,a}) > 0for j =2,3,4.
Further,

() if (w,e)) > 1, thenindf,?(MB4 ® ky—ey) has a filtration with factorsH%(w +
w4 — w1) on the top and?%(w + w3 — w1 — wa) on the bottom.
(i) Whereas, ifw, @) =0, thenind§ (Mp, ® ky—w,) = H(w + wa — 1).

(c) Assume that the underlying root systemfis of typeC,, n > 2. Let w € X(T)
be such thatp’” w — p" 1w, lies in X (7). Then(w,a}) >0for 1< j <n -2,
(w,a_ ;) > —1,and(w, ) > 1. Furthermore, the moduiedg(Mcn ®kwtw, 1—wp)
has a filtration by factorg from top to bottont
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Ho+ w14 op-1—op), H%0+ w2 — w1+ op—1 — wn),
Ho(w+w3_w2+wn—l_wn)’ cee Ho(w+wn—2_a)n—3+wn—l_wn),
HO((U +Wp—1— Wp—2 + Wp—1 — W) = HO((U +2w,-1 — wWp—2 — Wp),

H%w + wp — wy—1+ wp1 — ) = Hw)

with not necessarily all factors present. Specifically,

o HO%w + w1+ wy—1 — wy) is always present.

eForn>3and1<j<n—2 H%w+ 0jt1 — wj + wp1 — o) is present if
(w, oz]Y) > 1 and not present ifw, oz]Y) =0.

o HO%w) is present if(w, a, 1) >0andis not present ifw, ) ,) = —1.

(d) Assume that the underlying root systenGois of typeFs. Letw € X (T') be such that
pro— p"lay lies in X(T)4. Then(w,ay) > 0, (w,ay) > 1, (w,ay) > —1, and
(w,a)) > 0. Furtherindg,?(Mp4 ® ko+ws—wp) has a filtration by factorg from top to
bottom:

H%w+ wg+ws — @p), H%w+ 203 —wp —wa), HOw)

with not necessarily all factors present. Specifically,

o H%w + w3 + ws — wp) is always present.

o HO%w + 2w3 — wp — wy) is present if(w, @, ) > 1and not present ifw, «;) = 0.
o HO%w) is present if(w, ay) > 0and not present ifw, ay ) = —1.

Proof. As in the preceding proof, we simply compute the conditions&and then apply
Lemma 3.3. For part (a), write = ) ;_; m;w;. In order for

2w —2""Ya_1=2"miw1 + 2 mows + - - + 2 my_3wn—_3 + (2rmn,2 + 2’71)0),1,2
+ (Zrmn_l - Zr)a)n_l + (Zrmn + Zr)a)n

to be dominant, we must have; >0 for 1<i<n—-2,m,_1>1, andm, > -1 as
claimed. The modul®/g, ® kew+w,—w,_, has a filtration withk,,4 24, -, _, 0N the top and
k., on the bottom. From above, the weight+ 2w, — w,—1 is necessarily dominant. If
my, > 0, thenw is also dominant. Alternatively, we must haye, &) = m, = —1. In
either case, the filtrations follow from Lemma 3.3.

For part (b), letw = Zj‘zlm,-w,-. In order for the weight2o — 2" 1oy = 270w — 2" w1 +
2'~14, to be dominant, we must hawe; > 1 andm; > 0 fori = 2, 3, 4 as claimed. The
moduleMp, ® ky—w, has a filtration withk,.,—», 0N the top anty+w;—w;—w, ON the
bottom. The weighty + w4 — w1 is dominant. However, the weight + w3 — w1 — w4
will be dominant only ifms = (w, aj) > 1. Alternatively, whernms = 0, we will have
(w + w3 — w1 — wa, aj ) = —1 which suffices.

For part (c), letw = Y7 ;m;w;. In order for the weight 2o — 2o, = 27w +
2"wp—1 — 2"w, to be dominant, we must have; > 0 for 1<i <n — 2, my_1 > —1,
andm, > 1 as claimed. The moduld¢, ® k., ,—«, has a filtration with factors (from top
to bottom):
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kw+wn,17wn ) kw+w27w1+wn,17wn ) kw+w37w2+wn,17wn ) ey
kw+wn727wn73+wnfl*wn ’ kw+wn717wn72+wnfl*wn = kw‘l’zwnflfwan*wn ’

kw+wn —wp_1twp_1—wp = kw'

The weightw + w,—1 — w, is always dominant. On the other hand, the remaining weights
need not be. Indeed, ford j <n — 2, the weightt; =w + w11 — @; + wy—1 — @, IS
dominant if and only ifm; = (a),a,Y) > 1. Moreover, ifm; =0, then(aj,(X;/) =—-1as
needed. Similarly, the weight is dominant if and only ifw, o, _1) > 0. Alternatively, we
have(w, a,_1) = —1.

For part (d), letw = Zj!:lmja)j. In order for the weight 20 — 2"~ Yoy = 27w +
21wy — 2’wp + 2" w3 to be dominant, we must have; >0, m» > 1, m3 > —1, and
m4 >0 as claimed. The modul®fr, ® k,+w;—w, has a filtration by factors (from top
to bottom): ko +wstws—wys kot+2w3—wr—wss ko The weighto + w3 + w4 — wp is domi-
nant. But the weight = @ + 2wz — w2 — w4 is dominant only ifm4 > 1 whereas if
m4 =0, then(o, ;) = —1. Lastly, ifmz > 0, thenw is dominant. Alternatively, we have
(w,a5)=-1. O

3.5. In this section, we apply our results to provide a complete determination of when
HY(G,, HO%wgp)) (or equivalently H(B,, wp)) is non-zero for a fundamental dominant
weightwg. For a given fundamental weightg, by Corollary 3.2, }(G,, H%(wp)) # 0

if and only if wg = p"w — p'a for some simple root and 0< i < r — 1 wherew is the
corresponding weight from Lemma 2.3. Suppege= p"w — pla. Then

1=({op. B¥)= {0, B) = p'le. B7).

Observe that the right-hand side is divisiblefpynless = 0. This reduces the assumption
to wg = p"w — a. By checking Lemma 2.3, notice that we always havex") = 1. So

(a)ﬁ, av> = pr<a), av) — (a, av) =p -2

As the left-hand side equals 0 or 1, we must havel andp = 2 or 3. Therefore, we have
the following result.

Proposition (A).If r > 1 or p > 3, then
HY(B;, wg) = 0=HY(G,, Ho(wp))
for all fundamental dominant weights .

The reader will have already observed that there are fundamental weighis the
form pw — o whenp = 2 or 3. We proceed to precisely identify these.
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Case 1. Assume first that the weiglt equalsw, . That is, we lie in the generic case. So,
we are assumingg = pw, — «. Then we have

<a)/3,06v>=p(a)a,()lv>—(()l,0lv>=p—2. (8.5.1)
The left-hand side equals 1f=« and 0 if 8 £ «.
Case 1.1. Suppose = «. Then the left-hand side of (3.5.1) is 1 and we must have3.
In type A1, one does indeed havg, = 3w, — «. On the other hand, in any other type, we
cannot havev, = 3w, — a for there exists a simple roet # o with («, o) # 0 while
(wou Gv) = O
Case 1.2. Supposes # «. Then the left-hand side of (3.5.1) is zero and we must have
p = 2. S0wg = 2w, — a. In other words = 2w, — wg. One can readily identify all

simple roots which have this form:

e TypeA,, n > 2: a1 =2w1 — w2 SOw2 = 2w1 — a1; oy = 2wy — wp—1 SO Wy—1 =

2w, — oy
e TypeB,,n >3 a1 =2w1 — w2 SOwp = 2w1 — a1; &y = 20, — wp—1 SO Wy—1 =
2w, — oy

e TypeC,,n>2: a1 =2w1 — w2 SOw = 2w1 — o1.

e Type Dy, n 2 4: a1 = 2w1 — w2 SO w2 = 2w1 — a1, op—1 = 2w,—1 — wy—2 and
oy = 2wy — Wy—2 SOWy—2 = 2wp—1 — Ay—1 = 2wy — Ay .

e TypeE,, n =6,7,8: a1 = 2w1 — w3 SO w3 = 2w1 — 1} 02 = 2w2 — w4 SO wq =
2wy — a2 oy = 2wy, — wp—1 SOW,_1 = 2w, — Ay.

o TypeFy: a1 =2w1 — w2 SOw2 = 2w1 — 01} a4 = 2w4 — w3 SOW3 = 2w4 — 4.

e TypeGa: a1 =2w1 — w2 SOw = 2w1 — o1.

Case 2. Suppose thabg = pw —a andw from Lemma 2.3 has non-generic form. For the
list of “exceptional” weightso, we simply check whethegsw — « is a fundamental weight:

Type By, n >3, p=2. 2Awy—1 — wy) — 0py—1 = Wp2.

TypeCy,n =2, p =2: 2w, — w,—1) — o, = 0 (not fundamental).
Type Fa, p = 2: 2wz — w3) — 02 = w1.

TypeGo, p=2: 2(w2 — w1) — a2 = w1.

Type G, p=3: 3(w2 — w1) — a2 = w?.

Thus, we have all the fundamental dominant weights with non-vanishing cohomology.
Proposition (B). Let p =2 or 3 andwg be a fundamental dominant weight. Then
HY(B1, wp) = 0=HY(G1, Ho(wp)).

Exceptfor the following weights
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(a) Assumep = 2.

o TypeAs: HY(G1, H%w1) = H%w2) ™V, HY(G1, HO(w2)) = HO(w1)?D.

e Typeds: HY(G1, HO(w2)) = H%(01)® & HO(w3)®.

o TypeA,,n >4: HY(G1, H(w2)) = H%w1)W, HY(G1, HO(w4-1)) = HO%(w,) V.

e TypeBs: HY(G1, H%(w1)) = HO(w3)®, HY(G 1, HO(w2)) = H%(w1) Y ® HO(w3) .

o TypeBs: HY(G1, HO(w2)) = HO%(w1) P @ HO(wa) ™V, HX(G1, HO(w3)) = HO(wa)P.

e TypeB,, n > 5: HY(G1, H(wp)) = HO%w1) P, HY(G1, Ho(w4—2)) = HO%w,) P,
HY(G1, Ho%(wp-1)) = HO(wn) .

e TypeC,, n > 2: HY(G1, H(w2)) = HO%(w1)D.

e TypeDas: HY(G1, Ho%(w2)) = Ho%(w1)™P @ HOw3)D & HO%(wa) V.

e TypeD,,n >5:H(G1, H%(w2)) = H%(w1) D, HY(G1, HO(wy—2)) = HO(w,—1) P
® H%w,)@.

o TypeE,,n =6,7,8:HY(G1, HO(w3)) = HY%(w1)V, HY(G1, HO(wa)) = HO%(w2) P,
HY(G1, HO(wp—1)) = HO(wn) .

e Type Fs: HY(G1, HO(w1)) = H%wa)V, HY(G1, HO(w2)) = HO%w1)™, HY(Gy,
HO%w3)) = Ho%(wa) .

o TypeGa: HY(G1, HO(w1)) = Ho%(w1) D, HY(G1, HO(w2)) = HO(w1) V.

(b) Assumep = 3.
e TypeA1: HY(G1, H%w1)) = H%(w1)D.
o TypeGy: HY(G1, HO%(wp)) = HO(w1)D.

4. Simple G,-modules
4.1. The computation of the cohomology group$(8,, L(1)) for A € X(T), is not as
straightforward. One strategy would be to extend resultssfoto higherG, as done for
induced modules. Here, we simply present an observation based on [Jan2, 4.2, 4.3] that
uses the computations for induced modules. Consider the short exact sequence
0— L) — H°) — HO(W)/L(\) — 0

and the long exact sequence in cohomology

0— LW — H°W)S — (HO(A)/L(A))G’ — HYG,, L(W) = HY(G,, H°)

— HYG,, HOO)/L()) — -

If X, u e X, (T) then Hong;, (L(w), HO()) is zero if A # n andk otherwise. It follows

that if A € X,(T) andx # 0 then H(1)%" = 0, and otherwise it i&. Consequently, for
anyi € X, (T), there is an exact sequence

0— (HO(A)/L(A))G’ — HYG,, L) = HY(G,, HW) — HY(G,, HO(W) /L ().

The following is now immediate.
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Proposition. If » € X,(T) andHY(G,, H°(»)) =0, then
HY(G,, L(W) = (H°0) /L() .

4.2. By combining the previous results with Corollary 3.2, we obtain an identification of
HY(G,, L(1»)) for most weights (up to an understanding of the modiifir)).

Corollary. Supposeé. € X, (T). If A # p"w — pla fora € A, and0 < i < r — 1 wherew
is determined by, r, «, andi from Lemma2.3, then

HY(G,, L(W) = (HO0) /L)Y

We remark that it is still an open problem in terms of what happenst@H L (1))
when H(G,, HO(»)) # 0.

5. Ext!-formula between simple modules

5.1. Letk[G] be the coordinate algebra 6f For each € X (T), let(v) be the injective
hull of the simpleG-moduleL(v). As aG-module,

KIGI= @ 1)dmLte), (5.1.1)
I)EX(T)+

Herel (v)dML™ — @y | [(v) wherem = dimy L(v). Therefore,
dimg L(v)

indg k=k[G/G,1=kIGI"= @ (Im?)
veX(T)+

Now let A, u € X, (T). By Frobenius reciprocity and the preceding isomorphism, we have
form > 0:

Ext? (L(h), L(w) = EXtg (L), L(w) ® indG k)
P ExtE(LG). L) @ Im)™)

I)EX(T)+

D exrLom. LeweIm?)eLm™”.

veX(T),

dimy L(v)

12

12

Note that the last isomorphism is in general only an isomorphism of vector spaces.

5.2. Letmy ={ve X(T)4: (v,af) < s} andCy be the full subcategory of alli-modules
whose composition factorg (v) have highest weights lying in;. For L(v) in Cs, let
I;(v) be the injective hull ofL(v) in the categonC;. We remark thatC; is a highest
weight category as defined in [CPS]. The cateddris equivalent to the module category
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for a finite-dimensional quasi-hereditary algebra. Moreover, the injective mddwlgis
a finite-dimensionat;-module.

Proposition. Let, u € X, (T) and p be an arbitrary prime. The&xty; (L(%), L))"
is a G-module inCy ) where

1 if m =0,
sm)=13nh if m=1,
m—-—1)2h—-3)+3 ifm>1

Proof. Form = 0 the statement is clear. The proof for the case 1 is inspired from the
ideas in [And2, Lemma 2.3]. Set = —wpi. Consider the short exact sequence

0—> LAV Q L) — H'OWH @ Ho(w) > N — 0.
Sincei, u € X, (T), we have Horg, (L(}), L(n)) = Homg, (V (1), HOp)). Therefore,
from the short exact sequence above and the associated long exact sequence in cohomol-
ogy, we obtain the following exact sequence
0— N9 — Extg (LG, L(w) — HY(Gr, HO*) @ HO(w)).
We first show that ifs is a weight of Ext (L(1), L(1))™" then

pr<v,ag><(k*+,tl,,ag>+3pr71. (5.2.1)
All the weights of N are less than* + u so (5.2.1) is true for the weights 6N 7)),
Consequently it suffices to prove that (5.2.1) holds for all weights YioH, H°(.*) ®
HOu)"). Let L(o) = L(op) ® L(o1)" be a composition factor off°(A*) @ HO%(u)
whereog € X, (T). Then

HY(G,, L(0)) =HY(G,, L(00)) ® L(on)".

Consider the short exact sequence

0— L(og) — Ho(cro) — 0—0.
As above, this exact sequence induces an exact sequence of the form

0— 0% — H(G,, L(00)) = HY(G,, H%(00)).

Let u be a weight of H(G,, H%(00))™"). Then one can directly verify using Theo-
rem 3.1(A-C) that

P, o) < (oo, ay) + 3p L. (5.2.2)
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Indeed, in the generic caseltd,, H%(00)) is non-zero only wheng = p"w, — p'o for
a simple rootr with i < r in which case H(G,, H(00)) ™" = H%wy). Sincep’ w, =
oo+ pla, (5.2.2) readily holds. Fop > 3 only the generic case occurs. Foe 2, 3, veri-
fication of the non-generic cases is left to the interested reader. Since every weiffit of
is less tharp” oy, it follows that (5.2.1) holds for all weights of G, L(a0))".

If v is a weight of H(G,, HO(*) @ Ho%(w))"), then p"v < p"u + p"o1 where
L(og) ® L(01)™ is a composition factor o#H°(1*) ® H%uw)) and 1 is a weight of
HY(G,, L%00))". Using (5.2.2), it follows that

P (v.ag) < Pl ag) + p'{or.eg) < {00, ag) +3p" 7 + p' (o1 ag)
<+ pag)+3p

This verifies (5.2.1).
Consider the short exact sequenc&oemodules

0— L(n) —> St ®L(1)—> R—0

wherejg = (p" — 1)p — u*. By applying the long exact sequence in cohomology along
with the projectivity of St overG,, we see that fom > 2

Exty (L(A), L(w) =Exta (L), R). (5.2.3)

In fact, equation (5.2.3) also holds for = 1. Since E)@r(L()L), L(p)) = Ext%;r (L(w),
L(2)), we may assume without loss of generality thgt 1. Then Hong, (L(%), St ®
L(j1)) is trivial unlessh = n in which case it is. Hence the first map in the long exact se-
quence Hom, (L(1), L()) — Homg, (L (1), St- ® L(f1)) is an isomorphism and (5.2.3)
also holds fom = 1.

The highest weight ofR is less than 2" — 1)p — u*. Thus, any weightv of
Extg, (L(A), L(w) ™" = Homg, (L(1), R)™") must satisfy

pPrv<2(p —1)p—p*—A.
Applying the inner product witk;, we get
priviag)<2(p" —1)(h—1) — (1" + 1,0 ). (5.2.4)

Observe that for any weight, (£*, o) = (£, ). Thus, combining (5.2.1) and (5.2.4)
together yields

2p"(vag)<2(p" —1)(h— 1) +3p" L.

This implies that
(v,ozg)g(h—l)—i—i <h,
2p

as required.
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Next, we argue the caze= 2. By (5.2.3) we have
Ex, (LOV, L) " ZExts, (L), R) .

Let L(o) = L(op) ® L(o1)"”) be a composition factor ak. Thenp’ o1 < 2(p" — 1)p —
uw* — oo and one obtains

plotag) <2(p" —1)(h — 1) — (u* + 00, o).
It follows from (5.2.1) that any weight of of Extgr (L(V), L(0g))™" satisfies
p{v,ag) < (A +00,a8)+3p" L
Thus, any weight of
Exts, (LY, L©@) " ZExts (LO), L(00)) " & L(oy)
satisfies
prvad) <A +o0,08)+3p" 1+ 2(p" —1)(h — 1) — (u* + 00,08 ). (5.2.5)

As noted above(£*, o) = (&, ) for any weighté. Further, we have assumed with-
out loss of generality thatr, «y) < (u, ). Thus, (5.2.5) yields that any weightof
Extg, (L), R)") satisfies

Prv.ag)<3p"t+2(p" = 1)(h - 1),
which implies
(v, oza/) < 2h.

Finally, we apply (5.2.3) to the case > 2. The highest weight oR is less than
2(p" —Dp. Thus, any weight = oo+ p” o1 of R must satisfy(o, o) < 2(p" —1)(h—1),
which implies thatoy, o) < 2(h — 1) — 1= 2h — 3. Let L(o) be a composition factor of
R andm > 1. Then, asG-modules,

Exti (LM, L(0)) = Exty (L), L(00)) ® L(on)".
Inductively we conclude that any weightof
Exts (L), L(w) ™ = Extt -4 (L), R) "
must satisfy

(viag)<sm—1)+2n—3. O
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5.3. The previous proposition can be refined in the case whem: by using the work in
[KLT].

Proposition. Let, u € X,(T) and p > h. ThenExtg, (L(}), L(w))") is aG-module in
Cs(m) Where

1 if m=0,
s(m):{h ifm=1,
20— +mx ifm>1,

wherex = 3/2if G is of typeG, andx = 1 otherwise.
Proof. We will first prove the following.

Step 1. Leto € X(T)4, p > h, andm > 0, then any weighpv of H”(G1, H%(0)) sat-
isfies

p(v, ocg) < (0’, ozg) + p(m + D,
wherex = 3/2 if G is of typeG2 andx = 1 otherwise.

We use [KLT, Theorem 8] which says that

. - o
H"(G1, HOw - 0+ pi)) = { ind§ (s 10025 @2) P if m = 1(w) mod 2,
0 else.

Hereu = Lie U. The weights of théth symmetric powers’u* are just sums of positive
roots. Therefore, any weight of S'u* satisfies

(y, ot5/> <i- max{(ﬁ, ag): Be CD+} < 2ik.

Now lete = w - 0+ pA wherew € W andi € X (T).

If I(w) =0 theno = p and it follows that any weighpv of H” (G1, H%(0)) satisfies
p(v,ay) < (0, ag) + pmk.

If I(w) > 0 thenpi < o + 2p and it follows that any weight of H” (G1, H%(0)) sat-
isfiesp(v, o) < (0, ay) +2(h — 1) + p(m — Dk < (o, &) + p(m + D)k This completes
the proof of Step 1.

Consider the short exact sequence

0— L(o) = H%0)—> 0 — 0,
which induces exact sequences of the form
H"(G1, Q) — H"(G1, L(0)) — H"(G1, H(0)).

Any highest weight ofQ is strictly less tharr and by using induction om, we get the
following.
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Step 2. Foro € X(T)4+, p > h andm > 0, any weightpv of H"(G1, L(0)) satisfies
p(v, ota/) < (a, a&) + p(m + Dx.
Next we will use induction om to show the following.
Step 3. Foro € X(T)4, p> h andm > 1, any weightp”v of H" (G, L(0)) satisfies

pr(v,aa/) < (a, ag>+pr(m + 1k.

For r = 1 the statement was proved in Step 2. Assume thatl. We will use the
Lyndon—Hochschild—Serre spectral sequence

Ey) =H(G,/Gr-1,H (G0, L(@)) = HT/(G,, L(0),

The differentials in the spectral sequence are G-equivariant. Moreover, the cohomology is
a subquotient of E’ wherei + j = m. Therefore, any composition factor of G, L (o))
must be a composition factor of somé&, /G ,_1, H/ (G,_1, L(0))) withi 4+ j =m. Itis
sufficient to show that any weigt v of H (G, /G,_1, H/ (G,_1, L(¢))) with i + j = m
satisfiesp” (v, o) < (0, ag) + p" (m + Dk.
We first discuss the cage= 0. Hom, _, (k, L(0)) has a composition series with simple

modulesL(y)" 1. Clearly, the highest weights of each factor satisfy

pr_l<)/, ay) <o, ag)- (5.3.1)

The composition factors of MG, /G,-1, Homg, ,(k, L(0))) are subquotients of some
H"(G,/G,-1, L(y)" ). By Step 2 any weighpv of H" (G, /G, 1, L(y)" V)7 =
H™(G1, L(y)) satisfies
plv.ag) <y, ag)+ p(m + Dk
Multiplying the inequality withp” 1 and using (5.3.1) yields
pr(v,ay) < pr_1<y, ay)+ p'(m+ Dk < (o, o)+ p' (m + Dk,

We conclude that any weight v of H" (G, /G,—1, Homg, ,(k, L(0))) satisfies

pr(v, ozg) < (o, a&) + p'(m+ k.

Next assume thaj > 0. By the induction hypothesis we may assume that any weight
p" Ly of H/ (G,_1, L(0)) satisfies

P My af) <lo.af)+ p 1 + Dx. (5.3.2)
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H/(G,-1, L(0)) has a composition series with simple factdrg/)"~b. The composi-
tion factors of H(G,/G,_1,H/(G,-1, L(0))) are subquotients of some’tﬂ?,/G,_l,
L(y)"~V). By Step 2, any weighpv of H (G,/G,_1, L(y)" V)Y = H (G1, L(y))
satisfies
plv.ag) <{y.oag)+ pli + Dx.
Multiplying the inequality withp” ! and using (5.3.2) yields
P{vag) < pHy af)+ p' (i + D <o, ag) + p" G + D+ p/ (i + D
Now p"~1(j +1) < p"~12j < p”j. Therefore,
pr(v,aa/)<<a,ag>+pr(j+i + Dk :(cr,ota/)—i-pr(m—i—l)/c.
We conclude that any weight v of H (G, /G,_1, H/ (G ,_1, L(0))) satisfies
pr(v, ozg) < (a, (xg) + p'(m+ Dx.

Finally, we now prove our claim concerning the size of the weights irf;rE(XI(A),
L(w)). Notice that the statement for < 1 follows from Proposition 5.2. We assume that
m > 1. One has the following sequence of isomorphisms:

H" (G, L) @ L(w)) = Bt (LG, L) = EXt: (L(1), L(2)
=H"(Gr, L(1*) ® L(1)).

Without a loss of generality we may assume thaikry) < (i, o ).
Consider the short exact sequenc&oemodules

0— L) ®L(w) — LA ® St ®L() > R— 0,

wherei = (p" — 1)p — u*. By applying the long exact sequence in cohomology along
with the projectivity of St overG,, we see that

EXt (L()., L(w) ZH"(Gr. LOF) ® L(1) ZH" (G, R).

Notice that for any composition facténc) of R, o < (p" —Dp+1*+a=(p" —Dp+
M+ (" —=Dp—p*andsoo <2(p" —Dp+1* —u* <2(p" — Dp. Henceo, ) <
2(p" — 1)(h — 1). It follows that any highest weight’” v of H"~1(G,, R) satisfies

pr(v,ag) < <0’, ozg)+ p'mk < Z(pr — 1)(h —1) + p'mx.
Dividing by p" yields
(v,ag) < 2(h — 1)+ mx.

The assertion follows. O
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5.4. We can now prove the following formula which relates extensions between simple
modules inG, with certainG-modules. Note that the isomorphism is in general only an
isomorphism of vector spaces not necessarilgahodules.

Theorem. Leti, u € X, (T) and p be an arbitrary prime. Then fon > 0,

Ext? (L), L(w) = €D EXE(LM). L) @ L(w) & L™,

VETTg(m)
where
1 if m =0,
h if m=1,
sm)=32h—1)+m if m > 1, p>handG is not of typeGy,

2(h—1)+3/2m if m>1, p>handG is of typeGo,
(m —1)(2h —3)+ 3 otherwise.

Proof. Let N be aG-module. First consider the Lyndon—Hochschild—Serre spectral se-
qguence:

Ey) =Exty g, (k. EXY, (L), L(w) @ ND) = Exty/ (L), L) @ ND).
Fori > 0 and 0< j <m, letus look at
Ey) =Exty g (k,EXY, (LW, L(w) ® ND).

When N = I(v) we haveE5’ =0 fori > 0 becauseV” is an injectiveG /G,-module.
On the other hand, itV = I, (v) then E;/ =0 for i > 0 and 0< j < m because
M = (Ext’Gr (L(A), L(w))*)") is aG-module inCy () (by Propositions 5.2 and 5.3)

andN is injective inCs(m). It follows that if N = I (v) or L;n)(v) thenEg’m = E™, Con-
sequently, ifv ¢ 7s¢yy, then

Ext (L), L(w) ® I(v)T) = Homg (M, 1(v)) =0

since theG-socle ofl (v) is L(v) andM =" lies in Cy (. On the other hand, far € 7y,
we have

Ext(L(L), L(w) ® I(v)) = Homg, g, (M, I(v)") = Homg,g, (M, I;om (»)")
= EXtE (L), L) @ Limy()™).

Note that the second isomorphism follows by Propositions 5.2 and 5.3. The statement of
the theorem now follows by the isomorphisms given in Section 5c1.
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5.5. By specializing to the case when= 1, we have the following corollary.

Corollary (A). Letx, u € X,(T) and p be an arbitrary prime. Then

EXtg, (L), L(w) = @D EXG (L), 1 (1) @ L(1) @ L(v)™.

vem),

Corollary (A) takes on even a nicer formulation whege 2(h — 1).

Corollary (B). LetA, u e X, (T) andp > 2(h — 1). ThenExt};r (L(A), L(w)) is a semi-
simpleG-module and

Extg, (L(W). L(w) = @ ExtG (L), L) @ L(w) @ L™,

vem,

For higher cohomologies we get the following.

Corollary (C).LetA, ue X, (T),m>2,andp > 3(h—1) +mk — 1, wherex = 3/2if G
is of typeG, andx = 1 otherwise. TheExt’gr (L(A), L(w)) is a semisimpl&-module and

Extt (L. L(w) = P Ex@(L(). L) @ L) @ L1,
VETTs(m)
wheres(m) =2(h — 1) + m«.
The following proves both Corollaries (B) and (C).

Proof. Form = 1, sets(m) = h. Let Cz = {» € X(T): 0< (A + p, o) < p} denote

the closure of the “bottom alcove” under the action of the affine Weyl group. By the
Strong Linkage Principle, if1, 02 € Cyz, then Exg(L(al), L(o2)) = 0. Letv be such
that (v, o) < s(m). If p > s(m) + (h — 2), then

(v+p,ag><s(m)+h—1§p+1,

which implies that € C7z. Consequently, the categaty,, is semisimple andy, (v) =
L(v) for all v € Cy(;n). The result now holds by Theorem 5.40

As noted, the isomorphism in Theorem 5.4 is only an isomorphism of vector spaces.
However, one obtains the composition factors of'(ng(A), L(w)) via

[ExtZ (L), L(w): L), = dimEXEE (L), Iyomy ()" @ L(w)).

For p > s(m) + (h — 2) the categoryy, is semisimple. Therefore, the isomorphism in
Corollaries (B) and (C) is actually an isomorphism@®imodules.

The preceding result improves results by the authors in [BNP1] and sharpens results by
Andersen [And1] who proved this fae = 1 andp > 3(k — 1).



C.P. Bendel et al. / Journal of Algebra 272 (2004) 476-511 511

References

[And1] H.H. Andersen, Extensions of modules for algebraic groups, Amer. J. Math. 106 (1984) 498-504.
[And2] H.H. Andersen, Extensions of simple modules for finite Chevalley groups, J. Algebra 111 (1987)

[AJ]

388-403.
H.H. Andersen, J.C. Jantzen, Cohomology of induced representations for algebraic groups, Math.
Ann. 269 (1984) 487-525.

[BNP1] C.P. Bendel, D.K. Nakano, C. Pillen, On comparing the cohomology of algebraic groups, finite

Chevalley groups, and Frobenius kernels, J. Pure Appl. Algebra 163 (2001) 119-146.

[BNP2] C.P. Bendel, D.K. Nakano, C. Pillen, Extensions for finite Chevalley groups |, Adv. Math. 325 (2003)

51-75.

[BNP3] C.P. Bendel, D.K. Nakano, C. Pillen, Extensions for finite Chevalley groups Il, Trans. Amer. Math.

Soc. 354 (2002) 4421-4454.

[CLNP] J.F. Carlson, Z. Lin, D.K. Nakano, B.J. Parshall, The restricted nullcone, Contemp. Math. 325 (2003)

[CPS]
[Do]
[FP]

[Jan1]
[Jan2]

[KLT]
[NPV]

[vdK]

51-75.

E. Cline, B.J. Parshall, L.L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine
Angew. Math. 391 (1988) 85-99.

S. Donkin, Good filtrations of rational modules for reductive groups, Proc. Sympos. Pure Math. 47
(1987) 69-80.

E.M. Friedlander, B.J. Parshall, Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108
(1986) 235-253.

J.C. Jantzen, Representations of Algebraic Groups, Academic Press, Orlando, 1987.

J.C. Jantzen, First Cohomology Groups for Classical Lie Algebras, in: Progr. Math., vol. 95, Birkhauser,
1991, pp. 289-315.

S. Kumar, N. Lauritzen, J. Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent.
Math. 136 (1999) 603—-621.

D.K. Nakano, B.J. Parshall, D.C. Vella, Support varieties for algebraic groups, J. Reine Angew.
Math. 547 (2002) 15-49.

W. van der Kallen, Infinitesimal fixed points in modules with good filtration, Math. Z. 212 (1993)
157-159.



