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Abstract

A standard subspace of O~/l is a space spanned by a subset of the standard basis
{(JI, ('!, ... I ell}' A multiplicative scmigroup /l in .//,,( IT~) is said to be decomposable if its
members have a common nontrivial standard invariant subspace. Necessary and suffi
cient conditions for decomposability or nonnegative semigroups arc given. In particular.
decomposability of nonnegative bands (scmigroups of idcmpotcnts) and their structure
isdiscussed. It is proved that a nonnegative hand with each member having rank greater
than 1 is decomposable. Also. a geometric characterization or maximal, rank-one
nonnegative bands is given. <1) 1999 Elsevier Science Inc. All rights reserved.

I. Introduct ion

In what follows.. /I,,(~) will denote the space of all II x II matrices with
entries from the field of real numbers. A matrix A = (flj;) in .11,,(n~) is called
nonnegative (resp, positive) if ai; ;>, 0 (resp. (Iii > 0) for i,j == 1,2, ... . 11. A
vector x == (x;) "1 [R:" is called nonnegative (resp, positive) ifxj ;;:::: 0 (resp. Xi > 0)
for all i ==- 1,2,. " , II. A nonnegative scmigroup in . //II(~) is a semigroup with
nonnegative matrices. A matrix A in .II,,(IR) is said to be decomposable if there
exists a proper subset {it ! i-2 , ..• ,h} or {1,2, ... ,n} such that

I The results of this paper constitute a portion of the author's dissertation written under the
supervision of Prof . Heydur Radjavi. Dalhousie University.
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v{Ae" ,Aer~ •. . . ,..le'A} < V{~I' ,(": ..... CiA}'

where {el. e~~ .... (',,} is the standard basis for U~". (For any set of vectors
{vJ' l':! •• . . .r.}, V{"1.1'2 .. . . . I',,} denotes the linear span of the vectors
{ ~ 'I • l'~. .. . • l'1I }).

The definition above of decomposability or a single matrix is extended in the
obvious manner to a scmigroup in .1111 (Ol).

Definition 1.1. A band in ./I,,(IR) is a multiplicative scmigroup or idcmpotcnts
i.e.. matrices E such that E == 1~~2.

General bands of matrices have been the subject or study in recent years.
and their structure seems to be quite complicated, Sec. for example, Refs. (2.3].
In this paper. we will be exclusively concerned with nonnegative scmigrcups.
and in particular. nonnegative bands and conditions leading to their UCC0I11

posability, Observe that decomposability of H scmigroup implies reducibility
i.e .• the existence of a C01111110n nontrivial invariant subspace but the co.ivcrse
may not be true. A simple example to illustrate this point is the nonnegative
scmigroup (in fact. a band)

'at jt (P is a semigroup in ,II,,(IR) and I a nonzero functional on
the restriction of f to .'1' is zero, then //' is reducible. The

.~" an easy consequence of Burnside's thcOrCI11 (cf. [6]). We
~ of this result which would imply decomposability of
r"; in .1.1,,( ~).

. ;11 Ref. [5] that it band in .II,,(~) is reducible (in fact,
':drizabJc). In this paper. we wi1l consider nonnegative

we that if in such a band. every member has rank
.posablc. Furthermore, the structure of such bands is

s a gcornet ric charactcrization of maximal. nonncga
I .•nk-onc bands.

It is known'
. II" (IR) sueh 1:
proof of tL'.; ;'
will give ,:'1 "
nonnegative scm.,

H. r adjavi pre
simultaneously tri
bands in .11!t(~) ;
greater than I. it i
described. Sectioi
five, indecomposab.

2. Decomposability of nonnegative semigroups

We start with a simple proposition which will be used throughout the sequel
as an equivalent form of defining decomposability.

Proposition 2.1. ...111 n X n matrix A = (ail) is decomposable if and ()11~1' (t there
exists a pcnnutation matrix P sl:('I1 that
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I (IJ C)P :1[> = .o IJ

u'11(11'(1 B utul Dare squan: matrices.

Proof, The proof is easy and therefore omitted. D

It follows naturally from the proposition above that a scmigroup in .11,,(lR)
is decomposable if and only if there exists a permutation matrix P in .lln([R)
such that

PIsp::.: (S II

o for all S t:' 9',

where Sll and !:h~ arc square matrices of fixed sizcs r and" - r, respectively.
The following lemma gives a necessary and sufficient condition for decem

posability of nonnegative scmigroups in .111t(~) which wilt be used repeatedly.

Lemma 2.2. (I' a 'W/1l1e.f~(I!ii'e scm1gl'oufJ .c/' ill ./1/1 (U~) has a {'OI1lJJlO11 zero entry ..

that is, ~II(n' somejixed i andj. ttu: (i.,j) ('lItry (~I'CI'(,I'y111£'lIIh('I' (~r.cl' is zero, ,I1clI
//' is decomposable.

Proof. Referring to Proposition II I. 8,3 in tel'. [7]. it is clear that the standard
subspace generated by the set {SCi: S E .fj'} is invariant under .cj'~ which gives
the decomposability of .\1', []

Definition 2.3. A subset ,1 of a semigroup .'/' is called an ideal if .IS aud SJ
belong to ,I for all J E ,1 and for all S f~ .r.

It is a well known result that a nonzero ideal of an irreducible scmigroup is
irreducible (cf [6]). We prove its counterpart for indecomposable semigroups
of n x 11 matrices with nonnegative entries.

Lemma 2.4. I] //' is WI indecomposabtc semigrolll' ofn x 11 nonnegatire matrices.
then so is el'c/~r 1101l:el'O ideal oft/',

Proof. Let cf be a nonzero ideal of t/; If M is a nontrivial invariant subspace of
(I, then the standard subspaces generated by the sets {JAJ:.J E ,/} and {x E

IR": Jlxl :::: OIl E rf} are both invariant under .V', Since ,1 is nonzero ideal, at
least one of them is nontrivial. 0



Definition 2.5. By a nonnegative (rcsp, positive) linear functional f on rr~ l1 . we'
mean a linear trunsformution 1"1'0111 Uell into U~ satisfying f(x) ? 0 (rcsp,
f(x) > 0) whenever x ?? 0 (rcsp, 0 /= .\" ~ 0) in u~n.

The next lemma is a fundamental result which \\'C slate without proof.

Lemma 2.6. JAil f lu: 1I nonncg«I ire linear funcI ional oil . /11/ (IfJ: ). Theil then: exists
tI nonncgatin. matrix IJ ill . /II/(U~) sucl: ,!lal/fA) z>: tr(IJA) [or all A E .II,,(a·~).. . .

Proposition 2.7. LeT -r he a seI11;g1'OIlP ill .11" ( P. ~) with nonncga!ire nunriccs und]
(/ nonzcro.nonncgutiv« 1;11£'(/1''/1111('1;01/(// OJI . IIII ( U~ ) whose restriction To .(1 ' is :£'1'0,

71tl'JI .c/' has a l'OIHIIWI1 zero ('1111'''' 1,,11;('/1 makes it "(,(,OIIl/W,W""£'.

Proof. By Lemma 2,6. there exists a nonnegative matrix IJ such that

f (A) .-=:: tr(IJA ) fo r aII A E . II" (LP:),

By our assumption, tr(BA) = 0 J~1r ~111 A E /1 ', Also f nonzero implies that B is
nonzero, Suppose b, is a nonzero entry in B. Since the entries in BA arc
nonnegative and tr(lJ.·l) =: 0 for all A E .r, all the diagonal entries of BA arc
zero for each A E ,f/'; in particular. the (i. i) entry is zero, Thus

Each summand in the above stun being zero. we have

h,/ll II ::..:- 0 .:::> lIlI :.:: 0 as h" I O.

This shows that if the (i.j) entry of B is nonzero, then the (j. i) entry of each
A in /1' is zero, Hence by Lemma 2.2. .c/' is decomposable, 0

We now list a few equivalent conditions tor ,d cc onl po~abj l i t y of nonnegative
scmigroups in .1/" (!I~} .

Theorem 2.8. For (/ sC/l1igl'ol/1' .11" til . 11 11 (IT~) witb nonnega!ire matrices. the
f()lIoH'in,i!. an: cqniralcnt:

(i) //. is decomposable.
(ii) There exist» ({ nonzero, nonncgatircfunctionul 011 ./III(~) whose restriction

I (J // . i.\' .: c. TO.

(iii) .(/ has a ('0""'1011 :('1'0 £'1111'.1'.

(iv) /1' ha: a {'OHmlOl1 nondiagonal ,:(" ' ~ .! entry,
(v) There exist A. B ill .II'I(~). h,,~d' 1I011:CI'O and nonncgatirc such that

A.rIB = [o}.



Proof. (i) --~, (ii) If ,'I" is decomposable, then after a permutation of basis. every
member .)' 01" ,'1 is or the form

(
S I I SI2).
() S~2

where SJ /.•c'h2 are square matrices. Define a linear functional f on ,IIII(~) by
f(A) ::-: (/1/ where 0" is the fixed (i.j) entry in the matrix representation of A
with respect to the permuted basis from the block .421. Clearly f is a nonzero.
nonncga live functional on . till (rt·R) such thutIll :-=-~ O.

(ii) ~~. (iii) This has been proved in Proposition '2.7.
(iii) ~. (tv) If the common zero of.rl ' is a diagonal entry. then by permuting

the basis. we can bring it to the (I. I) slot. Now. if the first row is zero 1'(.1f every
A in Y ". we arc done for then .'1" is decomposable (V {c .> ('.\ ..... <"I} being the
nontrivial standard invariant subspace}. Otherwise. Olio /- 0 for some ill -:/ I
and for some A( :1'. Now for any Il (: .r.

11

n -:-_:"(All) II :;-:" Lald>d
, I

:.:;. (/l,h,l :~.:: 0 for all i and for all B E .11'

.~. h,nl :-~ () 1'0r aII IJ (~ .'I' as a Itll l 0

i.c.. a nondiagonal entry is permanently zero in .'I',

(iv) ;::} (v) Let "'JA = 0 for all S E .<I' for S0111C .i f k, Construct an II x II

matrix II such that a'"i > () for some ill and the remaining entries arc zero.
Similarly, Jet IJ E '//If ( rr~) he such tha1 h~/1I > 0 tor some It) and the remaining
entries arc zero. Then A./J arc nonzero. nonnegative matrices and it can be
easily verified that A.rI'/J t:': {O}.

(v) :=} (i) We have A.'IB == {O} for some nonzero. nonnegative A. B in
'///1 (rr:R). If (llj and bu arc nonzero cntrics in A and lJ respectively, then it is easy
to see that the (j. k) entry in each S (~ .tl ' is zero. This makes use of the fact that
A./J and S arc nonnegative matrices. By l.cmma 2.2. ,II' is decomposable, 0

Rer- 2.9. Clearly. if ,II ' is decomposable. it has a COH1J11011 nondiugonal zero
en.ry but decomposability may not give a common diagonal zero entry.

For example.

() ()

o I / 1
I -- 1/2

() 1/2 1/2
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is a singleton scmigroup which is decomposable hut no permutation of the
basis will produce a zero on the diagonal.

3. Decomposability of nonnegative bands

We now confine our attention to nonnegative bands in .11,,( U~) with non
negative matrices and prove their decomposability under certain conditions.
We start with a singleton nonnegative band. In completeness, we include a
simple proof of the following known lemma.

Lemma 3.1. Let E he a nonncgutin: 11 x 11 idempotent with rank r > I. Then E is
dccamposablv.

Proof. 'Ve first show that if r > I. then the range of H contains a nonzero
(column) vector z with nonnegative entries and at least one zero entry. Pick any
two nonnegative linearly independent dements .Y and)' in the range of E. Then
l...\· == .r and I...)· :::: y. If either .v or y has a zero entry. we arc done. Otherwise. let

1'..,. ~

x==

x"

Hnd \ ' --'-'-"-',

y"

and let y.]», == max {y,ff;: i == 1.2..... n}.
Then the vector z ==-- YIX -- X,)' is nonzero. has nonnegative entries. and its jth

entry is zero. Since E: == z, it is the desired vector. With no loss of generality.
we can assume that z is the vector with a minimal number of nonzero entries.
After a permutation of the basis, we can assume that the entries (=;) of ; satisfy.

:: ~ ... ~:: '>: == ... ==:: ::::: O.
Iii.1 "

Then the equation E: == z, together with the nonnegativity ol entries in E and z,
implies that the (i.j) entry of E is zero whenever i ~ k + I and j' ~ k. Thus
the span of the first k basis vectors is invariant under E. i.e .. E is decompos
able. 0

Remark 3.2. The above result can also be obtained using the Pcrron-Frobcnius
Theorem (Theorem 5.5.1 (1, in Ref. [4]. p. 124) part of which says that an " x n
nonnegative indecomposable matrix IH~S a real positive eigenvalue. say". which
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is a simple root of its characteristic equation. Thus if E is indecomposable, then
since an idempotent has only 0 and 1as eigenvalues, the eigenvalue I will occur
only once in its spectrum and so the trace of E is I. But for an idempotent, its
rank equals its trace and therefore. rank (E) ::=.: J. which is a contradict i, -n.
Thus E must be decomposable.

We denote by .!f)ulfy' the lattice of all standard subspaces which arc in
variant under every member of Y', where .r is a collection of matrices in
.II,,(U~). It can be shown by simple induction that for any scmigroup ,cl'. ifat'/I)
has a maximal chain. This chain may be nontrivial or trivial according as /1'
has a nontrivial standard subspace or not. Each chain in ,!lJatf,c/' gives rise to a
block triangularization for .II' and since the members in the chain arc standard
SUbSP'lCCS, we shall call it it standard block triangularization, Evidently. to say
that .1/' has a standard block triangularization is equivalent to saying that there
exists a permutation matrix P such that for each S in //'. P ISl? has the upper
block triangular form.

Suppose ((, is a chain inY)lIl'.</' and .11.. I' arc two successive clements in ((/
such that ./1 C . t " then. ( . t) ./1 is called a gap in the chain. If P is the or
thogonal projection onto, ( '(, .11, then the restriction of Ps/P to the range of
P is called the compression of /1' to . ( . ( ) ,iI. Note that every compression
corresponds to a diagonal block in the block triangularization of //'.

Theorem 3.3. LeI E he till II X n nonncgativ« idempotent o] rank r > 1. Then
I. lilly maximal stundard bloc]: triangularization (~r E has the lIfO properties

(a) each diagona! block is either zcr I or 1I posiIil,,, iden ipo I('11 I o] rank one.
(b) there are csactlv r 1I011:ero diagotta! blocks.

2. there exists 1I standard block triangularization of E with properties (a) and (b)
such that no two ('OI1.\'{'Cltl ire diagonal blocksore zero (so that the total number
(~l diagonal blocks is ~ 2,. + I).

Proof. By Lemma ll. E is decomposable. Let ((, be a maximal chain in !fJal'E
resulting in a maximal standard block triangularization of E. If ./1 and. , . arc
in f(, such that . t . ( 'j .// is a gap. and ir the compression of E to . ( . (:) ./1 is
nonzero, then it is an indecomposable idempotent, For otherwise. if it has an
.r.. ., iant subspace .~. of the desired kind, then ./1 ITl ,~' is a standard vubspace,
',; ...riant under E which lies strictly between .11 and. ( . and is comparable with
c", cry member of ((" thus contradicting the maximality or rf~. Therefore, every
nonzero compression (or diagonal block) is indecomposable and of rank one
by Lemma 3. J. Since the rank of an idempotent equals its trace. it is apparent
that the number of nonzero diagonal blocks is exactly r, (Observe that in any
block triangularization of an idempotent, the diagonal blocks or the
compressions are idcmpotcnts). It is easy to see that an indecomposable
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rank-one matrix cannot have any zeros in it. A zero entry would lead to a zero
row (or a zero column) which after a permutation of basis can he brought to
the posit ion of the last row (or first coJUI1111). thus rendering: the matrix
decomposable. Therefore. a nonzero diagonal block is a positive idempotent of
rank one.

Lastly. the fact that a 2 x 2 block matrix whose (I. I). (2. I) and (2. 2) blocks
arc all zero is an idempotent if and only if it is zero proves Part 2 of the the
orem, 0

\'\le now study the decomposability or a nonnegative band with more than a
single member.

Theorem 3.4. Suppose ,I/, is a band ill '//11 (U~) with JJO/l11egaIire II1£'JlI!Jcrs such that
rank (S) » J for all S E .r, lYlell .fl' is dccomposahlc,

Proof. Let 111 :--:: Inin{rank(S):S E .fI'}. Select a P in .V' of rank 111. For an
arbitrary S E ,cl'. consider PSP. This is an idempotent whose range is contained
in the range of P and whose null space contains the null space of P. Since rank
(PSP) == rank (P) == JIl. we obtain PSP =: P. Thus fJ// 'P == {P}.

Further. since rank (P) ::: III > 1, by Theorem 3.3. we can ~ ~e that P has the
form

C~ ~J
with respect to some permutation or basis where both PI and P2 are nonzero.

Let

(
81/ S12)
S~I S~2

be the representation of an arbitrary S in .r!, with respect to this permuted basis.
Then PSP::: P implies that P2S~1 PI == O. As in the proof of Theorem 2.8
((v) :==} (i)). we can show the existence of a zero entry :13 )~I' Since S is arbitrary
and P fixed. this zero will occur commonly in each .s-.~I end hence in »: By
Lemma 2.2. ,f/' is decomposable which proves the theorem. 0

Remark 3.5. In the proof of the theorem above. if we consider JI to be the
collection of all rank m clements in ,rl'. then ,1 is H nonzero ideal of '/'. By
Proposition 2.4. //' is decomposable if and only if rJ is decomposable, Thus.
with no Joss of generality. Y' can be assumed to be a nonnegative band of
constant rank Ill.
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Theorem 3.6. LeI //' he a 'lllipe ban.; ill .IIII(~) such that rank(S) > 1for
all S in //1. Then lIll)' 111e',' ,11.1/' stculurd block triangutarization (~l.vJ has the
properly that each nonzerc , ~m1(J1 block is a nonnegative hand with at least one
clement of rank one in it,

Proof. The proof is on the lines of the proof of Thcore:n II ['I

4. Structure of constant-rank nonnegative bands

In the previous section, we saw in Remark 3.3 that the question of de
composability for a nonnegative band reduces to the case of a constant-rank
ideal in it. This fact shows the significance orconstant- rank nonnegative bands
and motivates us to study their structure. Some of the results on single non
nega tive idcmpotents arc similar to, and can be obtained from these in Ref. [I]
(see for c.g. Theorem 11, p, 65) but the treatment given here is more appro
priate to our p»:poses and is included for the sake of completeness.

Lemma 4.1. Le! .(/' he a nonnegatitc band in ,11,,(,jf) (~I'('()nSr{/111 rank one. Then
there exists a permutation matrix P such that [or each S E /1" p- I SP ha« the
block-triangula" forn ,

o

o XE

o
o

XEY

EY
o

where the diagonal block /1'0 == {E: S E /I'} canstitutes II rank-one indecompos
able hand and X and Yare nonnegative matrices ofsuitahle si:e.

Proof. Let .141 consist of the clements of the standard basis .14 which are in ker
//) and Jet :14) consist of those elements of :/4 which are in ker ,VH but not in ker
.C/'. Let i?d2 be the complement of ·$1 U ;3i) in ;!IJ. Then the arrangement
;!4ILJ.Jd2(J;'f4J of the basis .-n gives rise to the permutation matrix P such that for
each S in ,V), p-I SP has the matrix form

o X Z

o E Y

o 0 0

where X, Y, Z are matrices of suitable size.
The equations £2 = E,X = XE, Y :::: EY and Z == XEY are obtained using the

fact that each matrix in .Cf is an idempotent. Lastly, the diagonal block /fo =
{E: S E /l} forms a rank-one band because ,1' is a rank-one band. It is easily
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checked that .'/'0 is decomposable, for otherwise, a zero entry in .'1'0 will lead to
a common zero row or a common zero column (using the fact that the rank of
,1/' is one). which is not possible as all the zero rows and zero columns have
already been taken out. 0

Lemma 4.:~. ~I'Y ' is a 1l' )!l 1Ii'J,;;I1;r e band ill .IIII( G\~) with constant rank r. II1el1 .'/'

hasa standard block triangularfonn with exactly r 1I00~=('r() diagonal blocks. each
constituting all indc.innposubl» hand ofrank one. Furthcnnore, this run he dOI/('

S() that /10 IU'o diugona! blocks are c.msecutirelv zero. 71/('}'e!()/'{'. ilk he lit" (olal
\ .. " ..

number of diagona! blocks, then k :S; 2,. + I,

Proof. We ~,Jlall prove the lemma by induction on r. The casc r = I is dealt with
in Lemma 4.1. Suppose r > I: then we know by Theorem 1.4 that ,(/' is
decomposable. Therefore. after a permutation of basis. every S E Y is of the
form

where S,.o52 are square matrices. Consider the two diagonal blocks. ,1/'1 =
~ SI :S E .e/'} and ,1/'2 = {S~: S E .I/ '} , Clearly, Y'I and .</ '~ form nonzero. non
negative bands. We now prove that .r/ 'J and .'/ '~ arc constant-rank bands,

Let

(
SI

S= o
X)
82

and (
1'

T= I

o

be two clements in //' such that rank (SI) := 1111 and rank (Td == m~. Let us
assume that 111, < 111'2' Then since the rank of Sand T is J'. rank (S:d ::::: r - 1111

and rank (r~) =..: r - 111'2' Consider

o5 l }' + XT~),

S'2T:.

Now

and

rank(S~T2)~ min{rnnk(S:.),rank(Tz)} = min{r-I11!.r-m2} ==1'-"'2-
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But then,

rank(ST) :::: l'i.lnk(SI 1'1) + rank(S.11~) S ni, +,. _.- m2 < r,

which implies that 1111 ;:.;" 1112- Therefore "/1 has constant rank lind by ale same
argument so docs .'/'~. Also since "/'1 and .r/·~ are nonzero bands. their ranks Lire
less than r. Thus induction applies and we obtain the desired result.

Lastly. the fact that it 1 x 2 block matrix all or whose blocks except (I, 2) arc
zero is an idempotent if and only if it is zero justifies the assertion that no two
diauonul blocks are consecutivclv zero. lJ... .

Definition ... .3. A semigroup // in ,11'11 {i)~;) or nOI1lH~g~1 t ivc matrices will be
called a full scmigroup if Y' has no common zero ro\v and no common zero
column.

Lemma 4..... LeI .'/ hi'afull biuu! (JI"nmllU'M(1! ire matrices ill . (I,c (G,q with constant
rank one. Then .<I' is illdcco111/1( -sao!«.

Proof. This follows immediately Iron: the description or l! rank-one nonncg-
alive band in Lemma 4.1. 0

Theorem 4.5. Lei H' he II nonncgativ» hand ill '/(1/( [I~) wiil: constan I rank r.

(i) rl'.'/' is [ull. t'wn there exists {J j.cnnuuuion matrix P such thatfor any
S E .tl', P 1SP has the hlork diagonu! fiJl'I11

SJ

s~

05,.

whrn: etcl: Y', = {S/: S E::: .'/'} is all indcnnnposublc hand o] rank-one matrices.

(ii) hi general, 'here is a pcnnuuuion matrix Q such that [or each S E /1'.
Q ·1 SQ has the uppe: bl-n]: triangular [orin

'0 9'£ J\'EY,'\ ~

0 E EY
0 0 0

where niatrtccs X. Y arc (~r{lPIJ"()fJl'illl(' size lim! H'Il :==: {E: S E //} is (IS ill case (i).

Proof. (i) Jr the runk r of .'J' is one. then the result is true by Lemma 4.4. We
shall prove the theorem by induction on r, Let r > 1. then by LC1l111li.l 4.2. each
S in // can bc assumed to have the form
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(
SI X,).
o s-

where the diugonaI bioc ks ,ij 1 :::.: {Sl: S E .'/ '} a11<.1 Y ~ z.: {S~: S E .rf'} form
nonzero bands of constant rank Ic ~~~ ~L.lIl r. Also then. by the fullness or ,If', Y 'I

has no conun. .n zc: }column and .rl'2 has Ill) C0111m0l1 zero row.
i.et

(
HI

/: '-.. --
, ()

.r "
E.~ )

l~ . ' .' I ' . ,
:..,..... '" I ~ -' ... I ,. 1 .)

( .,
F '

, I)

}",J and
' (I' ,

(; <:'. ( 0

be arbitrary members ;11 .'1', Then

(IF!: ~ C~I :JC;I ;;J C: ,~J
=:: ((i\HtF\ GIFI )' + G\X/'~ -+ ZE:/'~).

() G2E2F2

The fact tha: GEF is an idempotent implies that

(iIE1!'I(G11:'1}' + GIXI'~ + ZE2"~) + (G1/:'1 r + G1XI'~ + lE'!.F'2}G2E2F2

' , , ~ G,HI r + (iIXF~ + ZE:}~ ,

Prcmultiplying the above equation by (J,fIFI and ,')osll11ultiplying by G~£~F~.

we obtain

Cilj~~IFdG!/:' i rl' GIX"~ + 11·.;~/·~)G"!.E;.F2 = 0

:.';' (jIEIFIGI/~'1 }'(J~E~/'~ + (i1/:~IFIGIXI;~G~£~/'~

+ G1EI/'I?/:·~/·~(h/:·~/·~ :::: O.

Since all the matrices arc nonnegative. this gives

(4.1 )

Now (i,. E, F, E v, ~J 11<.1 1"2. G2E2 E ,(1'2 both of which have constant rank.
Therefore.

c.r.r.«, :" ~ (/, all\~ 1~2(hE~/·~ :::. "'2,
Thus Eq. (4.1) reduces to



1/' \' rl .~~. (). I' . ~.- .

But Y I has no common zero column, u.ercforc X!/:! ~.::: () and the fact that .tI'~

- has no common zen' implies that X -- O. 1 hus

(
EIF --.... .-- ()

(SI :.1).
,0 ,,~

where ,1/ I :-; {SI: S (~ .II} and ,1/ ~ ~ - {S,< S C ,c/} are nonnegative lull bands
with constant rank less than r. Hence induction applies and Y is or the desired
form.

(ii) In the general casco we first consider the same nrrangcmcn! ofthe hasi".fA
as in Lemma 4.1, Then with respect to this permutation or basis, every clement
S of .r aSSUlllCS the form

(0 -,'Y l

s= 0 I:; )'

.p () 0, '

Since S'Y. = S. we have

E~ = E. X ::= XF. r .r.; f)' and Z :. = X/:,}'.

These equations imply that Y.'(~ -.::: {E: S E .II'} cannot have it common zero row
or a conunon zero column. Thus .r; is a full nonnegative band of constant
rank r and hence is of the form given in (i) above. [J

'~{cmurk 4.(). I. It is easily verified that the product or any two block matrices of
the form exhibited in Part t ii) of Theorem 4,5 is again of the same form.

2. If in the statement of the theorem above. ':.l is taken to be a maximal
band, then it is readily observed that the bands .rI', must he maximal. In part
(ii), ,(1'0 and the collection of all X. )' arc maximal too.

3. In Theorem 4.9. we show that the converse or Part (i) of Theorem 4.5 is
also true ill case the bands ,1)- " arc maximal. To prove this. we shall need a
couple of lemmas, of which Lemma 4.R may be of independent interest.

Lemma 4.7. LeI ,c/' he till indecotnposahk-, IWltI1eglitil'l' sel11igJ'oufJ ill .IIIl(U~) and
e, he lIIl)' hasis rector. Theil V{H'e:} contains cl posit ire l'(1{'(OJ'.



Proof. Since .'/ is indccorr ,"lllsahle. 110 entry in the members or /I is
permanently zero. Therefore. for each k I.~ .... .n. there exits A1h I C .'1' such
that its ik . i) en1rv i\0 n(1 nzcr() , It is cvideIII I. hat 1h(' Jl (. t I I I I .: , I ~ II . . , -/- :II"! ),:-.'/ is
the de.Ired positive vector. ll

Lemma 4.1t /A'I .eI' hi' 1I dire: sunt (.{r 11(}1IIf('.~· II ire. i/1(leco1llpo.wlh/e .\'('J1I;g1'OIlj1S

.'/ , .. , ...1/'/. so that each I1/('lllbel' (~l.fl has bt. uk diagul/o! /,('!"'cs('J1(a(;ol1

\
11'1/('1'(' ')'1 (Y/,; -- 1.2... , .r. Il'i,IJ rcspcc: If) a./ixed deconipositio« '//1';<" ,f!'l
,/1,. (~r ::~:'i into standard Sllh.,'f/O('('s. 111('11 L'I'Cry ./1 (~: !fuI',</ is o] the [onn
./1 _.- .:.; If /.ll r • 1I-!1l'1'(, each (/ is either () OJ' I.

Proof. II is obvious that each .11, belongs to !fal'.rl'. Also. each Y'; being
indecomposable. . 111 is a minimal standard sub-pace in !I'O/'.l!' in the sense that
.11' has no standard invariant subspace properly contained in it. Now let

1/ - r/) '1/'
. ff (:: J al > •

\Vc define r, -"., I if .1/, n ./1 contains a basis vector and t , -:-= 0 otherwise, To
prove the desired result. it is enough to show that if e, E . /1, n ./1, then
.111 ~ .11. We write ('I with respect to the given decomposition or the space and
suppose the resulting vector is

o

x,

()

where the column vector .v, has I at the appropriate place and zero elsewhere.
Consider .1/'(',. Then

( 0 \

II' .. /.\ i

o

E ,II.
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Since Y, is a nonnegative. indecomposable scmigroup, by Lemma 4.7. we
obtain a positive vcctori; in .111 which is II nonnegative linear combination 01

{.'/ IX, }. Consider

o

\' = ,\',

o
where y is a positive linear combination or all the basis vectors which slxm .11;.
Also y E .11 and. /1 being it standard subspace, jl is spanned by a subset or
basis vectors. Expressing .r as a linear combination of the basis vectors that
span .11. we observe by the linear independence oj' the basis vectors that there
cannot be any basis vector which is in .111 hut not in ./1. Hence we must have
. Iii ~ .11 which proves the lemma. [J

Theorem 4.9. A direct sum o] r maximal. itulccomposab!«. nounega I ire' rank-one
bands is u maxima! bund o] coust.mt runk r.

Proof. For ,.:::: I. the result is obvious. Therefore, let I' > I. Suppose
.yIJ' Y'~, .... .cf',. are r maximal indecomposable, nonnegative rank-one bands
and consider their direct sum. Every member S or y is of the form

.)/'

where S, E //'" i :.::: I.~ ..... r.
If ,fl' is not maximal, then let .c/" :) Y' be a band with constant rank r. Now

observe that /1' is a full band. Therefore, Y" is full ton. By part (i) of Theorem
4.5. //" is a direct sum of'r rank-one indecomposable. nonnegative bands. say.
/J'~. /I'~ ... . . /1':.. Now!l'at'/I' C!I)a(',f/'. By the previous ICI11111i.l. thc cardi..
nality of !i"at'.(1' is the same as that of!l'at',ff' which is 2". Therefore, we must
have 5[(/(''</' ::.:: lP" 1'/1". Thus after permuting the basis if necessary, we obtain
,cf, C /f'~. But since the bands .c!'; arc maximal, we have .r, ~ Y';. Hence /I' is
maximal. 0

Theorem 4.9 and Remark 4.6 can be summed up 1.0 give the following
characterization of maximal nonnegative bands or constant rank.



Theorem 4.10. Let ,'/ ' hc' a nonncgatir« l-and ill .11,,( [; \1:) (~((,(}J1S1(1II1 rank r.
(i) fl' ,r/ isfull. then ,II is 11/(/.\'iIllOI ill/lid onlv ~I

.'/ .. -

t'
.) ,

s,

, (. E f / I" --.- I'" t'• ~ II -. I' ~.., ...... I • t • •

.(/ -; :

whcrv Y I is a 11ia:ill iul rU 1Ik - (}1/(' indcconiposahk: baudfor ('({cit i.
tii) 111 venera]. ;1' .11 ' is nurxinutl. then. .

o xt: X/:"}'

() ..r,· /',' }. . I: .- rl \ ' c: .J' }' - 'I.'• ~ (:. 1I" :~_ . ( . (.:: ' I •

() n ())
11'11('1'(' ·(/'11 is tJ dirccs SUJl1 liS in part (i) and i!' and :11 un: th« cntir« sets ofnun
lIt'ga/il'C' matrices (~r suitubl: si:c.

In the next section, we shall give a g":',li!H:tric characterization of maximal
band- of constant finite rank which in view of Theorem (l.l () gives a geometric
characterization of constant-rank. nonr.cgauvc hands,

~;. A geometric characterization of maximal, Indccnmpnsable, nonnegative rank
one bands

' . A nonzero. nonnegative. rank-one matrix in "111I(fi~) is of the fo rm xy· ~ where
.v..r arc nonzero. nonnegative vectors in rr~ ' I . Further. for xy' to be an idem
potent. ,r.y must satisfy the equation tr(xy') =-:.: y'x ---:: I.

Thus, if ,tj' is a nonnegative band or rank-one matrices in .lln(~). then we
can find sets. '1'. !IJ in the nonnegative cone or U~f1, viz., IR':. so that .t/ ' C .1' !~/ ',
where

.'I'!l1' :::.: {X.l":.\' E .( .Y E :II}

and

,,'x::;:; I for all .r E .t' and for all." E :/f.

(By the nonnegative COIlC of ~~II. we mean the set ~I: == {x E i~l/:x ~ O}).
Further. if .c/ ' is maximal, then we 111USt have .(/' = ,{fifO for some .1'. :/f of the

kind mentioned above, We wish to lind the general form of .r and :/f for a
maximal. nonnegative. indecomposable band //' of rank-one matrices in
./I,,(rR).

We observe that if XI ,.r~ C .1'. then y' (Ix, + (I - I)X~) =:: I for O~;; ,t ~ I and
for all r c :if. Thus for a maximal ,1':I}' ..1' must contain all the convex corn-
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binations or its members too. Thus with 110 foss of generality we can assume
that .1' has a positive vector. say {. ::.:: (ad. a, :> () tor all i.

Any x E .t' satisfies the system 0 ,' equations y',r -'- I.,l' E (il. The vector x = u
is a particular solution 10 this system. Thus. for any .r E .1'.

1' t X zz: r' {/ 1'0r aII \. E: !II. .

:::;. y' (x - CI) :-:: : 0 for ~dl \' E !/I

~;. x - /1 E :/1'

::} X ': a + !it j rn r aII x E .f

,j' c- 11.' I::::;';>, , ( _ : 1I +, ., .

Also. if y' E !Ij : , then for any y E ;il ,y' (([ +y') z : .1" (f' :: I. Thus, by 1he max
imality of .1/', we obtain

(5.1 )

By a similar reasoning applied to {S ': S E // }. we l:111l find a positive vector h E

,:1/ and obtain

:11 == {b +,)' I } n IR': . (5.1)

Next. we show mat if.{ and !If are given as in Eqs. (5,1) and (5.2) respectively,
for S0111C positive a, h and subspace 1/·,.:l. i.c..

.1' == {{/ + il/ ' } n ~?'~ . (5.3)

til ::=. {h + ,j ', } n ~~I: ~ (5.4)

where b+a= 1, W'= {h t .J}1 and ,j ~ {a+ 11 '}', then .if =.r!lJ t is a
maximal band of nonnegative rank-one matrices in .lltI(n~). II is easy to sec thut
/f formsa nonncgntive band of rank-one matrices. Suppose /1' is contained in
a b · , ·~ ,.l (/ ",.' "",,\1., - '-. •~~ u..ices where

"'~ ·lw ,' .' . , ' . ~ . ' . :. ~ ~~.,~' . .. , .~..... : . . l • 1'- .... ~ ~

(fl r' Jr'I/.I ' · _ .. { .I s-, / '':; J'" .' (. JI./1 },.,. () '- ,.( • 'I - , . \ 1 •.\ C ,:.f ,\ . • '/ ,. ' .

for some sets .i", '!IJ' C ~I: and /'.\" == l. Let s =::1' E fl'o. Since // '0 is a semi
group, ;~:l' .zt' 1= /IJ

o fur all .,)" E fl'. Therefore.

I ;-: l"~"', ry· , ::t') ::= y':: ' tr(.\l) = y':: ' t'.x.

With no loss of generality, we can assume that y' z = I
y.z = p( f:. 1), then rx = f,~ we can write s == ~ .pt' :=::'/,.

and v·t = I .rs' = I). Now

"X == 1 for all .\' E .r

=? t' a = I and t' (a + w) = I for all \i' E 1/'

:.::} (a == I and (1I' =. 0 for all II! E 11'

and t' x -::: I (for if,
where ::' =;. l' =.:: /)1

fl'



, (I It)' ((/ f ~ \ l ,0 lor a II 1\' I . 1/'-'

- .." i / ,
11 J... " ':. 1°

,..;. I (: hj, J .'1/ ,

Similarly. we can show that z C .t. Thus ;1' (: ,r"I!, ,II which irnpli.: rh.u
.'/1) c; .'/, IIcncc .fl is mil ximnl.

Next. we would like to ~L'e which suhspaccs '//. and J gin: rise to mol \tJl1al
indccornposa blc bands as in Eq s. (SJ ) and (5,4 t. Suppose Ihere is some \'i" _:

(II') l i-- 1," such that \1', ~ 0 for all i. then since \I ' h'~ L 11',.\', ..- 0 1'0. all
y'" 1.1',) i: :II, a nonzero component (11' It'. "lay \1'/11 will render the ill component
y,,, or each y i ,'II zero. tllll~ yielding a decomposable band .1' -r, For the same
reason. 1/' cannot have a vector \\' (11',) with I\'{" () lor all i. This shows that
evcrv vector or 1/ ' must ncccssu ri Iy he a "mixed" vector, i.c.. a vector having
hoth nCt!a tivc and posi I ivc enI rics (possihly some zeros 1(0). The same ar,'~lI

mcnt also upplic» to J. In other words. 11' and J intersect l!~r~ trivially,
We summarize the discussion above in the following theorem.

Theorem 5.1. Let .'1 he (/ nutximal, nonncgutirc, illdcc'()/lIpo.\'(/h/c band o] ran
kotu: nunriccs ill ,IIII( IT~:). Dcnot« lite I'0Silil'(' ('011(' of ,11,,( H) hy U~'~. Then 1!J"r"
cxis) positi,.!' rectors a. h ill ~:;,'~ with h + 1I -', I and there exist mixed subspaces
tt J 1':rt,1I "/ t -,~ '/ J}' ,~ ,- { ./ "1'1' , ,I I rl' ~- ,1',/." '/ ,.,'. t ~ J"i'\ 1\,I 1 1 .._- ~ J + . .J ," a , I ,\III 1 I III I , -,-,'(.f. u I( Il

'/.' ,. {/,,~ J} 1--1 ;:.1'". I -~- I .~,j -}, "

('OIlI'(,I's('/.l' 100. ~I,1' aiu! :/1 01'(' gil'('11 ill 11/('./;1/'111 above. then ,'I' = ,1':Ij' ',I' u

maximal. I/Olmegal ivc indccotnposablc band of rank-an» I1Wf rirrv,

Nontrivial .cxumplcs of the above theorem arc not easy to construct.
However, an example where 11' is the zero space and .:J can have any di
mension is given below. preceded hy an observation.

Suppose we have il hand as given thc theorem above. The positive vector

u=

\ all

can be replaced with the vector



HI

c' .

~I
if the whole band Y is transformed by an uppropri.uc silllilari!y to L I.'/L.

where l. is given hy

Then instead or working with. r:ll' . we work with Lt' :1/' l. I which is again of
the lorm .t":1/'. where .1" ;:: LJ' and :11' -;:': ((L I)" :11)',

A special case is obtained when 'II . = {O}. i.c .• whcnz is a singleton. In this
case. .t' !Ir is similar (upto a diagonn I similarity with positive diagonal entries)
to

(

References

XI .\~ • . . x"

XI X..! XI/

: X I -I- ... +XII :.-:: I. .r, ~ 0 .

[II A. Berman. R.J. Plemmons. Nonnegative Matrices in Mathematical ~cicnccs, Academic Press,
New York. 1l17Q,

[21 P. Fillmore, G. Macdonald, M. Rudjubalipour, II. Radjuvi, T:~wards ;l classification of
maxima! unicellular hands. Sernigroup Forum, Springer. New York Inc. 49 (I'}94 J. 195 -215.

(J) P. Fillmore. G. Macdonald. M. Radjabalipour, H. Radja\'i. On principal-ideal hands. 1997.
prepnnt.



H] M. Marl'lj" and If. Mine, 1\ survev of nuurix theory and rnamx incqualitic-. /\lIyn and Hal·oll.
19h....

r5] H, Radja'. A If Il:C condition equivalent In suuult.rncou« lriaq!ulari/ilhilil\. ('.llladiilll
Journal or Malhf:lnalk~ JX (~l (19H6) .176 3to:h.

[!II II. Rudjuvi. On rcdlll'ihility of semigroups PI' compact l'pertllol's. Indiana I 'nivcrviry
Mnthcmatics Journal ~i) (~) (19901 ...9') 51~.

I7J lUI. Schueler. Balla.:!l Lattices and Positive Operutor». Springer New York. I(}~(l.




