Decomposability and structure of nonnegative bands in.$\|_{n}(\mathbb{R})$

Alka Marwaha'
 Now Detlii I 10021 I Imdia

Received 30 September 1996; accepted 16 October 1998
Submitted by R. Bhatia

Abstract

A standard subspace of $\mathbb{R}^{\prime \prime}$ is a space spanned by a subset of the standard basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. A multiplicative semigroup,$/{ }^{\prime}$ in.$/ 1 n(\mathbb{D})$ is said to be decomposable if its members have a common nontrivial standard invariant subspace. Necessary and sufficient conditions for decomposability of nonnegative semigroups are given. In particular. decomposability of nonnegative bands (semigroups of idempotents) and their structure is discussed. It is proved that a nonnegative band with each member having rank greater than 1 is decomposable. Also, a geometric characterization of maximad, rank-one nonnegative bands is given. (1) 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

In what follows. . $/ /_{n}(\mathbb{R})$ will denote the space of all $n \times n$ matrices with entries from the field of real numbers. A matrix $A=\left(a_{i j}\right)$ in.$\|_{n}(\mathbb{R})$ is called nonnegative (resp. positive) if $a_{i j} \geqslant 0$ (resp. $a_{i j}>0$) for $i, j=1,2, \ldots, n$. A vector $x=\left(x_{i}\right)$ in $\mathbb{X}^{n \prime}$ is called nonnegative (resp. positive) if $x_{i} \geqslant 0$ (resp. $x_{i}>0$) for all $i=1,2, \ldots, n$. A nonnegative semigroup in.$/_{n}(\mathbb{P})$ is a semigroup with nonnegative matrices. A matrix A in.$/_{n}(\mathbb{R})$ is said to be decomposable if there exists a proper subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$ such that

[^0]$$
\bigvee\left\{A c_{1}, A c_{1}, \ldots, A c_{u_{1}}\right\} \subseteq \bigvee\left\{e_{1}, c_{1}, \ldots, c_{c_{k}}\right\} .
$$
where $\left\{e^{\prime}, c_{2}, \ldots, c_{n}\right\}$ is the standard basis for $\mathbb{P}^{\prime \prime}$. (For any sel of vectors $\left\{v_{1}, v_{2}, \ldots, r_{n}\right\} . V\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ denotes the linear span of the vectors $\left\{n_{1}, r_{2}, \ldots, r_{n}\right\}$).

The definition above of decomposability of a single matrix is extended in the obvious manner to a semigroup in . $/ I_{n}$ (68).

Definition 1.1. A band in . $/ /_{n}(\mathbb{R})$ is a multiplicative semigroup of idempotents i.e., matrices E such that $E=E^{2}$.

General bands of matrices have been the subject of study in recent years, and their structure seems to be quite complicated. See, for example, Refs. $[2,3]$. In this paper, we will be exclusively concerned with nonnegative semigrcups. and in particular, nonnegative bands and conditions leading to their decomposability. Observe that decomposability of a semigroup implies reducibility i.e., the existence of a common nontrivial invariant subspace but the converse may not be true. A simple example to illustrate this point is the nonnegative semigroup (in fact, a band)

$$
\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\right\}
$$

It is known at ${ }^{\circ} \mathscr{T}$ is a semigroup in.$/_{n}(\mathbb{P})$ and f a nonzero functional on .${ }_{n}^{\prime \prime}(\mathbb{R})$ such t the restriction of f to $\mathscr{S}^{\prime \prime}$ is $z e r o$, then $\mathscr{\prime}$ is reducible. The proof of :t.;-: san casy consequence of Burnside's theorem (cf. [6]). We will give an ". ef this result which would imply decomposability of nonnegative sem, $n, i n . H_{n}(\mathbb{R})$.
H. Radjavi pre . in Ref. [5] that a band in . $/ \|_{n}(\mathbb{R})$ is reducible (in fact, simultaneously tri rarizable). In this paper, we will consider nonnegative bands in.$\Pi_{n}(\mathbb{F})$: \quad ve that if in such a band. every member has rank greater than l. it i posable. Furthermore, the structure of such bands is described. Sectior sa geometric characterization of maximal, nonnegafive, indecomposab. $1 . n k$-one bands.

2. Decomposability of nonnegative semigroups

We start with a simple proposition which will be used tirroughout the sequel as an equivalent form of defining decomposability.

Proposition 2.1. An $; \times n$ matrix $A=\left(a_{i j}\right)$ is decomposable if and only if there exists a permutatimi matrix P stach that

$$
P^{\prime} A P=\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)
$$

where B and D are syluare matrices.
Prouf. The proof is casy and therefore omitted.
It follows naturally from the proposition above that a semigroup in.$/ /_{n}(\mathbb{R})$ is decomposable if and only if there exists a permutation matrix P in.$/_{n}(\mathbb{R})$ such that

$$
P^{\prime} S P=\left(\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right) \text { for all } S \in \mathscr{F} .
$$

where S_{11} and S_{22} are square matrices of fixed sizes r and $n-r$, respectively.
The following lemma gives a necessary and sufficient condition for decomposability of nonnegative semigroups in.$/ / n(\mathbb{R})$ which will be used repeatedly.

Lemma 2.2. If a nomncquace semigroup I' in . I/n (W) has a common zero entry, that is, if for some fixed iomd j, the (i, j) entry of erery memher of $\%^{\prime}$ is acro, then , 9 'is decomposable.

Proof. Referrisg to Proposition III. 8.3 in 2ef. [7], it is clear that the standard subspace generated by the set $\left\{\mathrm{Se}_{j}: S \in \mathscr{F}\right\}$ is invariant under \mathscr{F}, which gives the decomposability of t.

Definition 2.3. A subset I of a semigroup $: /$ is called an ideal if JS and SJ belong to \mathscr{I} for all $\mathrm{J} \in \mathscr{I}$ and for all $S E . \%$.

It is a well known result that a nonzero ideal of an irreducible semigroup is irreducible (ef. [6]). We prove its counterpart for indecomposable semigroups of $n \times n$ matrices with nonnegative entries.

Lemma 2.4. If': is an indecomposable semigroup of $n \times n$ nomnegatice matrices, then so is erery nomero ideal of 4 '.

Proof. Let \mathscr{I} be a nonzero ideal of \mathscr{F}. If M is a nontrivial invariant subspace of \mathscr{I} then the standard subspaces generated by the sets $\{J M: J \in \mathscr{I}\}$ and $\{x \in$ $\left.\mathbb{R}^{n}: J|x|=0, J \in \mathscr{Y}\right\}$ are both invariant under 4 . Since, \mathscr{y} is nonzero ideal, at least one of them is nontrivial.

Definition 2.5. By a momegative (resp. positive) linear functional fon $\mathbb{R}^{\prime \prime}$, we mean a linear transformation from $\mathbb{E X}^{n}$ into \mathfrak{B} satisfying $f(x) \geqslant 0$ (resp. $f(x)>0)$ whenever $x \geqslant 0($ resp. $0 \neq x \geqslant 0)$ in $\mathbb{P}^{\prime \prime}$.

The next lemma is a fundamental result which we state without proof.

Proposition 2.7. Le't be a semigroup in . $\|_{n}(\mathbb{H})$ with nonncgatire matrices and f
 Then S' has a common zero entry which makes it decomposable.

Proof. By Lemma 2.6. there exists a nonnegative matrix B such that

$$
f(A)=\operatorname{tr}(B A) \text { for all } A \in \cdot /_{n}(\mathbb{R}) .
$$

By our assumption. $\operatorname{tr}(B A)=0$ for all $A \in \mathscr{F}$. Also f nonzero implies that B is monzero. Suppose $b_{i j}$ is a nonzero contry in B. Since the entries in $B A$ are nonnegative and $\operatorname{tr}(B .4)=0$ for all $A \in \mathscr{F}$, all the diagonal entrics of $B A$ are zero for each $A \in \mathscr{I}$; in particular, the (i, i) entry is zero. Thus

$$
b_{11} a_{11}+b_{12} a_{21}+\cdots+b_{1,} a_{11}+\cdots+b_{11} a_{n n}=0 .
$$

Each summand in the above sum being zero, we have

$$
b_{1 /} a_{\mu}=0 \Rightarrow a_{n}=0 \quad \text { as } b_{11} \neq 0 .
$$

This shows that if the (i, j) entry of B is nonzero, then the (j, i) entry of each A in \mathscr{F} is zero. Hence by Lemmal 2.2, $\mathscr{\prime}$ is decomposable.

We now list a few equivalent conditions for deromposability of nonnegative semigroups in . $/ /_{n}$ (\mathbb{F}).

Theorem 2.8. For a semigroup) if in $\#_{n}(\mathbb{B})$ with nomegatire matrices, the following aite cequicalem:
(i) $\sqrt{9}$ is decomposable.
 fo. 5 is atro.
(iii) 9 hes a commom zoro enrry.
(iv) IT he a common nondiugowal itw ontry.
(v) Therce exist A, B in . $\mathrm{H}_{n}(\mathbb{E})$, insif nomecro and nomegative such that $A \mathscr{\mathscr { C } ^ { \prime }} B=\{0\}$.

Proof. (i) \rightarrow (ii) If $: \%$ is decomposable, then after a permutation of basis, every member S of : $/$ is of the form

$$
\left(\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right) .
$$

where S_{11}, S_{22} are spuare matrices. Define a linear functional f on,$\|_{n}(\mathbb{R})$ by $f(A)=a_{1}$, where $($, , is the fixed ($i, j)$ entry in the matrix representation of A with respect to the permuted basis from the block A_{21}. Clearly f is a nonzero, nonnegative functional on.$\|_{n}(\mathbb{R})$ such that $f \mid, \equiv 0$.
(ii) \Rightarrow (iii) This has been proved in Proposition 2.7.
(iii) \Rightarrow (iv) If the common ero of s is a diagonal entry, then by permuting the basis, we can bring it to the (1, I) stot. Now, if the first row is zero for every
 nontrivial standard invariant subspace). Otherwise. $a_{n_{0}} \neq 0$ for some $i_{0} \neq 1$ and for some $A \in: N$. Now for any $B \in \mathscr{O}$.

$$
\begin{aligned}
& 0=(A B)_{11}=\sum_{1}^{11} a_{1 i} b_{11} \\
& \Rightarrow \quad a_{11} b_{11}=0 \text { for all } i \text { and for all } B \in! \\
& \Rightarrow \quad b_{111}=0 \text { for all } B \in!\text { as } a_{111} \neq 0
\end{aligned}
$$

i.e., a nondiagonal entry is permanently zero in !s.
(iv) \Rightarrow (v) Le $s_{\mu}=0$ for all $S \in!$ for some $j \neq k$. Construct an $n \times n$ matrix A such that $a_{i, i}>0$ for some i_{0} and the remaining entries are zero. Similarly, let $B \in . \|_{1 \prime \prime}(\mathbb{E})$ be such that $b_{k_{1}}>0$ for some $!_{10}$ and the remaining entries are zero. Then $A B$ are nonzero, nonnegative matrices and it can be casily verified that $A \mathscr{I}^{\prime} B=\{0\}$.
(v) \Rightarrow (i) We have $A: Y=\{0\}$ for some nonzero, nonnegative $A . B$ in . $/_{n}\left(\mathbb{R}_{R}\right)$. If $a_{i j}$ and $b_{k \prime}$ are nonzero entries in A and B respectively, then it is easy to see that the (j, k) entry in each $S \in: \mathscr{F}$ is zero. This makes use of the fact that A, B and S are nomegative matrices. By Lemma 2.2. 9 is decomposable.

Rer- 2.9. Clearly, if :s is decomposable, it has a common nondiagonal zero en ry but decomposahility may not give a common dagonal fero entry.

For example.

$$
\mathscr{\prime}=\left\{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right)\right\}
$$

is a singleton semigroup which is decomposable but no permutation of the basis will produce a zero on the diagonal.

3. Decomposability of nonnegative bands

We now confine our attention to nonnegative bands in.$/_{n}(\mathbb{R})$ with nonnegative matrices and prove their decomposability under certain conditions. We start with a singleton nonnegative band. In completeness, we include a simple proof of the following known lemma.

Lemma 3.1. Let E he a nomegatioc $n \times n$ idempotent with rank $r>1$. Then E is decomposahle.

Proof. We first show that if $r>1$, then the range of E contains a nonzero (column) vector z with nonnegative entries and at Icast one zero entry. Pich any two nonnegative lincarly independent elements x and y in the range of E. Then $E x=x$ and $E y=y$. If either x or y has a zero entry, we are done. Otherwise. let

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

and let $y_{j} / x_{j}=\max \left\{y_{i} / x_{i}: i=1,2 \ldots, n\right\}$.
Then the vector $z=y_{1} x-x_{j} y$ is nonzero, has nonnegative entries, and its j th entry is zero. Since $E z=z$, it is the desired vector. With no toss of generality, we can assume that z is the vector with a minimal number of nonzero entries. After a permatation of the basis, we can assume that the entries $\left(z_{i}\right)$ of z satisfy.

$$
z_{1} \geqslant \cdots \geqslant z_{1}>z_{1,1}=\cdots=z_{n}=0 .
$$

Then the equation $E z=z$, together with the nonnegativity of entries in E and z, implies that the ($i . j$) entry of E is zero whenever $i \geqslant k+1$ and $j \leqslant k$. Thus the span of the first k basis vectors is invariant under E, i.e., E is decomposable.

Remark 3.2. The above result can also be obtained using the Perron-Frobenius Theorem (Theorem 5.5.1(i, in Ref. [4], p. 124) part of which says that an $n \times n$ nonnegative indecomposable matrix has a real positive eigenvalue, say r, which
is a simple root of its characteristic equation. Thus if E is indecomposable, then since an idempotent has only () and 1 as eigenvalues, the eigenvalue 1 will occur only once in its spectrum and so the traee of E is 1 . But for an idempotent, its rank equals its trace and therefore, rank $(E)=1$, which is a contradiction. Thus E must be decomposable.

We denote by \mathscr{L}^{\prime} 'r ${ }^{\prime}: \mathscr{Y}$ the lattice of all standard subspaces which are invariant under every member of f^{\prime}. where ${ }^{\prime}$ ' is a collection of matrices in .$/{ }_{n}(\mathbb{R})$. It can be shown by simple induction that for any semigroup $\mathscr{S}^{\prime}, \mathscr{I}^{\prime} a I^{\prime}, \mathscr{\prime}^{\prime}$ has a maximal chain. This chain may be nontrivial or trivial according as \mathscr{F}^{\prime} has a nontrivial standard subspace or not. Each chain in \mathscr{L}^{\prime} at' \boldsymbol{F}^{\prime} gives rise to a block triangularization for \mathscr{F} and since the members in the chain are standard subspaces, we shall call it a standard block triangularization. Evidently, to say that !f has a standard block triangularization is equivalent to saying that there exists a permutation matrix P such that for each S in $5^{\prime}, P{ }^{\prime} S P$ has the upper block triangular form.
 such that . $/ / \subset .1^{\prime}$, then $I^{\circ} O . / /$ is called a gap in the chain. If P is the orthogonal projection onto. $I^{\prime} \cdot / /$, then the restiction of $P: S^{\prime} P$ to the range of P is called the compression of I^{\prime} to 1^{1} (.). I/. Note that every compression corresponds to a diagonal block in the block triangularization of 4 .

Theorem 3.3. Let E be an $n \times n$ nomegegtive idempotemt of rank $r>1$. Then 1. any maximal standard block triangalarization of E has the two properties (a) each diagonal block is cither zerr or a positiox idempotent of ramk ome.
(b) there are exactly r nomzero diagonal hlocks.
2. there exists a standard hlock triangularization of E with properties (a) and (b) such that no no consectutire diagomal blocks are zero (so that the total mumber of diagonal hlocks is $\leq 2 r+1$).

Proof. By Lemma 3.1, E is decomposable. Let $\%$ be a maximat chain in $\mathscr{Y}^{\prime} a t^{\prime} E$ resulting in a maximal standard block triangularization of E. If . I/ and $1 I^{\prime}$ are in 4 , such that, $1^{\circ} \cdot / /$ is a gap, and if the compression of E to $I^{\circ} \Theta . / /$ is monzero, then it is an indecomposable idempotent. For otherwise, if it has an fant subspace \mathscr{K} of the desired kind, then $. / / \Phi . \mathscr{K}$ is a standard ubspace, riant under E which lies strictly between . // and $1 /$ and is comparable with c ery member of $\%$, thus contradicting the maximality of $\%$. Therefore, every nonzere compression (or diagonal block) is indecomposable and of rank one by Lemma 3.1. Since the rank of an idempotent equals its trace, it is apparent that the number of nonzero diagonal blocks is exactly r. (Observe that in any block triangularization of an idempotent. the diagonal blocks or the compressions are idempotents). It is easy to see that an indecomposable
rank-one matrix cannot have any zeros in it. A zero entry would lead to a zero row (or a zero column) which after a permutation of basis can be brought to the position of the last row (or first column), thus rendering the matrix decomposable. Therefore, a nonzero diagonal block is a positive idempotent of rank one.

Lasily, the fact that a 2×2 block matrix whose (1, 1), (2,1) and (2, 2) blocks are all zero is an idempotent if and only if it is zero proves Part 2 of the theorem.

We now study the decomposability of a nonnegative band with more than a single member.
 $\operatorname{rank}(S)>1$ for all $S \in \mathscr{F}$. Then \mathscr{S}^{\prime} is decomposable.

Proof. Let $m=\min \{\operatorname{rank}(S): S \in \mathscr{F}\}$. Select a P in \mathscr{Y}^{\prime} of rank m. For an arbitrary $S \in \mathscr{H}$. consider $P S P$. This is an idempotent whose range is contained in the range of P and whose null space contains the noll space of P. Since rank $(P S P)=\operatorname{rank}(P)=m$, we obtain $P S P=P$. Thus $P \cdot P^{\prime} P=\{P\}$.

Further, since rank $(P)=m>1$, by Theorem 3.3, we can . se that P has the form

$$
\left(\begin{array}{ll}
P_{1} & A \\
0 & P_{2}
\end{array}\right)
$$

with respect to some permutation of basis where both P_{1} and P_{2} are nonzero.
Let

$$
\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{31} & S_{22}
\end{array}\right)
$$

be the representation of an arbitrary S in $\mathscr{\prime}$ with respect to this permuted basis. Then $P S P=P$ implies that $P_{2} S_{21} P_{1}=0$. As in the proof of Theorem 2.8 $\left((v) \Rightarrow\right.$ (i)), we can show the existence of a zero entry ${ }^{\circ} S_{S_{71}}$. Since S is arbitrary and P fixed, this zero will occur commonly in each S_{21} end hence in \mathscr{F}^{\prime}. By Lemma 2.2,,$^{\prime}$ is decomposable which proves the theoreni.

Remark 3.5. In the proof of the theorem above, if we consider g to be the collection of all rank m elements in \mathscr{F}^{\prime}, then \mathscr{y} is a nonzero ideal of \mathscr{F}. By Proposition 2.4, $\mathscr{\prime}$ is decomposable if and only if \mathscr{I} is decomposable. Thus, with no loss of generality. \because can be assumed to be a nonnegative band of constant rank m.

Theorem 3.6. Let ,f' be a 'ative han.' in . $\|_{n}$ (\mathbb{E}) such that $\operatorname{rank}(S)>1$ for
 property that each nonzere . ,onal block is a nomegative band with at least one element of rank one in it.

Proof. The proof is on the lines of the proof of Theorem 3.3. [1

4. Structure of constant-rank nonnegative bands

In the previous section, we salw in Remark 3.5 that the question of decomposability for a nonnegative band reduces to the case of a constant-rank ideal in it. This fact shows the significance of constant- rank nonnegative bands and motivates as to study their structure. Some of the results on single nonnegative idempotents are similar to, and can be obtained from these in Ref. [1] (see for e.g. Theorem 3.1, p. 65) but the treatment given here is more appropriate to our priposes and is included for the sake of completeness.

Lemma 4.1. Lel . Y' be a nonnegative band in . $\|_{n}($ PR) of constant rank one. Then there exists a permutation matrix P swh that for each $S \in \mathscr{F}^{\prime}, P^{-1} S P$ has the block-triangular form

$$
\left(\begin{array}{ccc}
0 & X E & X E Y \\
0 & E & E Y \\
0 & 0 & 0
\end{array}\right)
$$

where the diagonal block $\mathscr{F}_{0}=\left\{E: S \in \mathscr{\mathscr { F } ^ { \prime }}\right\}$ constitutes a rank-one indecomposable band and X and Y are nomnegatice matrices of suitahle size.

Proof. Let $/ \mathscr{B}_{1}$ consist of the elements of the standard basis $: \not 2$ which are in ker \mathscr{F}^{\prime} and let \mathscr{O}_{3} consist of those elements of 沼 which are in ker $\mathscr{F}^{\prime \prime}$ but not in ker \mathscr{F}. Let \mathscr{B}_{2} be the complement of $\mathscr{A}_{1} \cup \mathscr{A}_{3}$ in $: \mathscr{S}^{\prime}$. Then the arrangement $\mathscr{B}_{1} \cup, A_{2} \cup: \mathscr{B}_{3}$ of the basis 汾 gives rise to the permutation matrix P such that for each S in $\mathscr{S}^{\prime}, P^{-1} S P$ has the matrix form

$$
\left(\begin{array}{lll}
0 & X & Z \\
0 & E & Y \\
0 & 0 & 0
\end{array}\right)
$$

where X, Y, Z are matrices of suitable size.
The equations $E^{2}=E, X=X E, Y=E Y$ and $Z=X E Y$ are obtained using the fact that each matrix in \mathscr{P} is an idempotent. Lasily, the diagonal block $\mathscr{F}_{0}=$ $\{E: S \in \mathscr{F}\}$ forms a rank-one band because \mathscr{T} is a rank-one band. It is easily
checked that \mathscr{S}_{0} is deconposable, for otherwise a zero entry in $\%_{1}$ will lead to a common zero row or a common zero column (asing the fact that the rank of IT is one), which is not possible as atl the zero rows and zero columns have already been taken out.
 has a stundard block ariangular form wied exactly r monacro diugomal hocks, cach comstituting an indesompesable band of rank onc: Furthermore, this can be dome so that no tho diagomal hocks are comserwtively zero. Therefores if k be the total number of diugomal blocks, then $k \leqslant 2 r+1$.

Proof. We shall prove the lemma by induction on r. The case $r=1$ is dealt with in Lemma 4.1. Suppose $r>1$: then we know by Theorem 3.4 that 4 is decomposable. Therefore, after a permutation of basis, every $S \in I$ is of the form

$$
\left(\begin{array}{cc}
S_{1} & X \\
0 & S_{2}
\end{array}\right)
$$

where $S_{1} . S_{2}$ are square matrices. Consider the two dagonal blocks. $V_{1}=$ $\left\{S_{1}: S \in \mathscr{\mathscr { F }}\right\}$ and $\mathscr{F}_{2}=\left\{S_{2}: S \in \mathscr{\prime}\right\}$. Clearly, \mathscr{Y}_{1} and \mathscr{Y}_{2} form nonzero, nonnegative bands. We now prove that \mathscr{F}_{1} and \mathscr{F}_{2} are constant-rank bands.

Let

$$
S=\left(\begin{array}{cc}
S_{1} & X \\
0 & S_{2}
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{cc}
T_{1} & Y \\
0 & T_{2}
\end{array}\right)
$$

be two clements in $\%$ such that rank $\left(S_{1}\right)=m_{1}$ and rank $\left(T_{1}\right)=m_{2}$. Let us assume that $m_{1}<m_{2}$. Then since the rank of S and T is r. $\operatorname{rank}\left(S_{2}\right)=r-m_{1}$ and rank $\left(T_{2}\right)=r-m_{2}$. Consider

$$
S T=\left(\begin{array}{cc}
S_{1} & X \\
0 & S_{2}
\end{array}\right)\left(\begin{array}{cc}
T_{1} & Y \\
0 & T_{2}
\end{array}\right)=\left(\begin{array}{cc}
S_{1} T_{1} & S_{1} Y+X T_{2} \\
0 & S_{2} T_{2}
\end{array}\right) .
$$

Now

$$
\operatorname{rank}\left(S_{1} T_{1}\right) \leqslant \min \left\{\operatorname{rank}\left(S_{1}\right) \cdot \operatorname{rank}\left(T_{1}\right)\right\}=\min \left\{m_{1}, m_{2}\right\}=m_{1}
$$

and

$$
\operatorname{rank}\left(S_{2} T_{2}\right) \leqslant \min \left\{\operatorname{rank}\left(S_{2}\right), \operatorname{rank}\left(T_{2}\right)\right\}=\min \left\{r-m_{1}, r-m_{2}\right\}=r-m_{2} .
$$

But then.

$$
\operatorname{rank}(S T)=\operatorname{rank}\left(S_{1} T_{1}\right)+\operatorname{rank}\left(S_{2} T_{2}\right) \leqslant m_{1}+r \cdots m_{2}<r .
$$

which implies that $m_{1}=m_{2}$. Therefore !/, has constant rank and by the same argument so does $\%_{2}$. Also since $\%^{\prime}$ and $\%_{2}$ are nomzero bands. their tanks are less than r. Thus induction applies and we obtain the desired result.

Lastly, the fact that a 2×2 block matrix all of whose blocks except (1, 2) are zero is an idempotent if and only if it is zero justifies the assertion that no two diagonal blocks are consecutively zero.

Definition 4.3. A semigroup 4 in . In $_{n}$ (f) of nonnegative matrices will be called a full semigroup if s has no common zero row and no common zero column.

Lemma 4.4. Let :s be a fill hand of nomagatice matrices in . $\|_{"}$ (\mathbb{R}) with constant ramk one. Then : \boldsymbol{S}^{\prime} is indecompresuise.

Proof. This follows immediately fromi the description of : tank-one nonnegative band in Lemma 4.1.

Theorem 4.5. Let if be a nomnegatice bund in . $/_{n}(\mathbb{R})$ with constant rank r.
(i) If !f is fall, then there exists a permumation mantix P such that for an $S \in S^{\prime}, P^{1} S P$ has the block diagonal form

$$
\left(\begin{array}{cccc}
S_{1} & & & \\
& S_{2} & & \\
& & \ddots & \\
& & & S_{r}
\end{array}\right)
$$

whre esch $\mathscr{S}_{i}=\left\{S_{i}: S \in \mathscr{S}\right\}$ is an inderomposathle bund of rank-ome matrices.
(ii) In general, there is a preminatation matrix Q such that for each $S \in!$. $Q{ }^{\dagger} S Q$ has the upher biock tricangular form

$$
\left(\begin{array}{ccc}
0 & \therefore E & X E Y \\
0 & E & E Y \\
0 & 0 & 0
\end{array}\right) .
$$

where matrices X, Y are of appropriate size and $: \mathscr{F}_{n}=\{E: S \in \mathscr{Y}\}$ is as in case (i).

Prooif. (i) if the rank r of $: s^{\prime \prime}$ is one. then the result is true by Lemma 4.4. We shall prove the theorem by induction on r. Let $r>1$, then by Lemma 4.2, each S in \mathscr{S}^{\prime} can be assumed to have the form

$$
\left(\begin{array}{cc}
S_{1} & x_{1} \\
0 & S_{2}
\end{array}\right)
$$

where the diagonal biocks $:_{1}=\left\{S_{1}: S \in \mathscr{Y}\right\}$ and $\mathscr{F}_{2}:=\left\{S_{2}: S \in \mathscr{S}\right\}$ form noazero bands of constan mank less than r. Also then, by the fullness of : \%. Y has no common zo, column and ${ }^{2}$ has no common zere row.

Let

$$
E=\left(\begin{array}{ll}
E_{1} & E^{2} \\
0 & E_{2}
\end{array}\right)
$$

Buatious but fixed in :
l.et

$$
F=\left(\begin{array}{cc}
i_{1} & \gamma_{1} \\
0 & l_{2}
\end{array}\right) \text { and } \quad\left(i\left(\begin{array}{cc}
G_{1} & Z \\
0 & \sigma_{2}
\end{array}\right)\right.
$$

be arbitary members in \%. Then

$$
\begin{aligned}
G E & =\left(\begin{array}{cc}
G_{1} & \% \\
0 & G_{2}
\end{array}\right)\left(\begin{array}{cc}
E_{1} & \lambda \\
0 & E_{2}
\end{array}\right)\left(\begin{array}{cc}
E_{2} & \gamma \\
0 & E_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
G_{1} E_{1} F_{1} & G_{1} E_{1} Y+G_{1} X F_{2}+Z E_{2} F_{2} \\
0 & G_{2} E_{2} F_{2}
\end{array}\right) .
\end{aligned}
$$

The fact that GLF is an idempotent imples that

$$
\begin{aligned}
& G_{1} E_{1} F_{1}\left(G_{1} L_{1} Y+G_{1} X F_{2}+Z E_{2} F_{2}\right)+\left(G_{1} E_{1} Y+G_{1} X F_{2}+Z E_{2} F_{2}\right) G_{2} E_{2} F_{2} \\
& \quad=\left(G_{1} E_{1}\right)+G_{1} X F_{2}+Z E_{2} F_{2}
\end{aligned}
$$

Premultiplying the above equation by $G_{1} E_{1} F_{1}$ and postmultiplying by $G_{2} E_{2} F_{2}$, we obtain

$$
\begin{aligned}
& G_{1} E_{1} F_{1}\left(G_{1} E_{1} Y+G_{1} X F_{2}+Z E_{2} F_{2}\right) G_{2} E_{2} F_{2}=0 \\
& \Rightarrow G_{1} E_{1} F_{1} G_{1} E_{1} Y_{2} E_{2} F_{2}+G_{1} E_{1} F_{1} G_{1} X F_{2} G_{2} E_{2} F_{2} \\
& \quad+G_{1} E_{1} F_{1} Z E_{2} F_{2} G_{2} E_{2} F_{2}=0 .
\end{aligned}
$$

Since all the matrices atre nomegative, this gives

$$
\begin{equation*}
G_{1} E_{1} F_{1} G_{1} X F_{2} G_{2} E_{2} F_{2}=0 . \tag{4.1}
\end{equation*}
$$

Now $G_{1}, F_{1} F_{1} \in \mathscr{S}_{1}$ and $F_{2}, G_{2} E_{2} \in \mathscr{F}_{2}$ both of which have constant rank. Therefore.

$$
G_{1} E_{1} F_{1} G_{1}=G_{1} \quad \text { an! } \quad F_{2} G_{2} E_{2} F_{2}=F_{3}
$$

Thus Eq. (4.1) reduces to

$$
\begin{equation*}
G_{1} F_{2}=0 . \tag{4.3}
\end{equation*}
$$

Since ($i_{1} \in F_{1}$ and $F_{2} 4_{2}$, are arbitary: (4 . (4.2) reduces to

$$
\because_{1} X_{1}=0=0 .
$$

But \%/ has no common zero column, therefore $\left.\begin{array}{l}\because \% \\ =0 \\ 0\end{array}\right)$ and the fact that $\%_{2}$ has no common zere implies that $\ddot{i}=0$. Thus

$$
E=\left(\begin{array}{cc}
E_{1} & 1 \\
0 & 1
\end{array}\right)
$$

This shows thit iny promal element S in ${ }^{\prime}$ is of the form

$$
\left(\begin{array}{cc}
S_{1} & 0 \\
0 & S
\end{array}\right)
$$

where $\mathscr{V}_{1}=\left\{S_{1}: S \in: S\right.$ and $\mathscr{V}_{2} \quad\left\{S_{: S} S \in \mathscr{Y}\right\}$ are nomegative lull bands with constant rank less than r. Hence induction applies and ${ }^{\prime \prime}$ is of the desired form.
(ii) In the general case, we first consider the same arangement of the basi" . $/$, as in Lemma 4.1 . Then with respect to this permutation of basis, every element S of $: \%$ assumes the form

$$
S=\left(\begin{array}{lll}
0 & X & Z \\
0 & E & Y \\
0 & 0 & 0
\end{array}\right)
$$

Since $S^{2}=S$, we have

$$
E^{2}=E, X=X E, Y=E Y \text { and } Z=\lambda A Y .
$$

These equations imply that $: \mathscr{F}_{n}=\{E: S \in \mathscr{F}\}$ cammot have a common zero row or a common zero column. Thus t^{\prime} is a full nonnegative band of constant rank r and hence is of the form given in (i) above.
anmark 4.6. I. It is easily verified that the product of any two block matrices of the form exhibited in Part (ii) of Theorem 4.5 is again of the same form.
2. If in the statement of the theorem above, $:$ is taken to be a maximal band, then it is readily observed that the bands 9 , must be maximal. In part (ii). \mathscr{F}_{1} and the collection of all X, Y are maximal too.
3. In Theorem 4.9. we show that the converse of Bart (i) of Theorem 4.5 is also true in case the bands $\%$ are maximal. To prove this, we shall need a couple of lemmats, of which Lemma 4.8 may be of independent interest.

Lemma 4.7. Lét :s be an indecomposahle, nomegative semigroup in . $\|_{n}(\mathbb{E})$ and e_{i} be any hasis rector: Then $\bigvee\left\{\mathscr{S}^{\prime} e_{i}\right\}$ contains a positire rector.

Proof. Since at is indecomposable, no entry in the members of is is
 that its (k, i) entry is nonzero. It is evident that then ($\left.A^{\prime \prime \prime}, f^{\prime \prime}+\cdots+A^{\prime n}\right)$ en $^{\prime}$ is the de.ired positive vector. []

$$
\left(\begin{array}{cccc}
S_{1} & & & \\
& S_{2} & & \\
& & \ddots & \\
& & & S
\end{array}\right) .
$$

Proof. It is obvious that each . II, belongs to \mathscr{Y}^{\prime} at'\%. Also, each $\%^{\prime}$, being indecomposable. . $/ 1$, is a minimal standard subspace in \mathscr{F}^{\prime} at's' in the sense that If has no standard invariant subspace propealy contained in it. Now let . $/ \in \mathscr{Y}^{\prime} \boldsymbol{a r}^{\prime}: \%$.
 prove the desired result. it is enough to show that if $e_{,} \in . / /, \cap$./I, then . $/$, $\subseteq . / /$. We write e; with respect to the given decomposition of the space and suppose the resulting vector is

$$
\left(\begin{array}{c}
0 \\
\vdots \\
x_{i} \\
\vdots \\
0
\end{array}\right)
$$

where the column vector x, has I at the appropriate place and zero elsewhere. Consider "'e, Then

$$
\because_{\prime_{\prime}}=\left(\begin{array}{c}
0 \\
\vdots \\
Y_{1} x_{i} \\
\vdots \\
0
\end{array}\right) \in \cdot / 1
$$

Since 5_{1} is a nomegeative, indecomposable semigroup, by Lemana 4.7, we obtain a positive vector $!$, in. II, which is a nomegative linear combination on $\left\{\because, x_{i}\right\}$. Consider

$$
y=\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
\vdots \\
0
\end{array}\right) .
$$

where y is a positive linear combination of all the basis vechers which span. I/ . Also $r \in . / /$ and .// being a standard subspace, it is spanned by a subset of basis vectors. Expressing g^{\prime} as a linear combination of the basis vectors that span. I/. we observe by the linear independence of the basis vectors that there camot be any basis vector which is in . I/, bat not in . I/ Hence we must have $. /{ }_{i} \subseteq . / /$ which proves the lemma. []

Theorem 4.9. A direct sum of 1 maximul, indecomposahle. nomesgatire ranki-ome bunds is a maximal bund of comssumt ramk r.

Proof. For $r=1$, the result is obvious. Therefore, let $r>1$. Suppose $\mathscr{F}^{\prime}, . \mathscr{S}_{2} \ldots \ldots . \mathscr{I}^{\prime}$, are r maximal indecomposable, nonnegative rank-one bands and consider their direet sum. Every member S of :/ is of the form

$$
\left(\begin{array}{cccc}
S_{1} & & & \\
& S_{z} & & \\
& & \ddots & \\
& & & S_{r}
\end{array}\right)
$$

where $S_{i} \in \mathscr{F}_{,}, i=1.2, \cdots, r$.
If. \mathscr{S}^{\prime} is not maximal, then let $\mathscr{V}^{\prime} \supseteq 9^{\prime}$ be a band with constant rank r. Now observe that ${ }^{\prime}$ ' is a full band. Therefore, $5^{\prime \prime}$ is full too. By part (i) of Theorem 4.5. $\mathscr{\prime}^{\prime \prime}$ is a direct sum of r rank-one indecomposable, nonnegative bands, say, $\mathscr{J}_{1}^{\prime \prime}, \mathscr{S}_{2}^{\prime}, \ldots . \mathscr{Y}^{\prime}$. Now $\mathscr{Y}^{\prime} a t^{\prime} \mathscr{Y}^{\prime} \subseteq \mathscr{Y}^{\prime} a t^{\prime} \mathscr{Y}^{\prime}$. By the previous lemma, the cardinality of $\mathscr{S}^{\prime \prime} \mathscr{A}^{\prime} \mathscr{S}^{\prime} \mathscr{S}^{\prime}$ is the same as that of $\mathscr{Y}^{\prime} a t^{\prime} \cdot \mathscr{S}^{\prime \prime}$ which is $2^{\prime \prime}$. Therefore, we must have \mathscr{T}^{\prime} at' $\mathscr{Y}^{\prime}=\mathscr{Y}^{\prime}{ }^{\prime} 1^{\prime} \mathscr{S}^{\prime}$. Thus after permuting the basis if necessary, we obtain
 maximal.

Theorem 4.9 and Remark 4.6 can be summed up to give the following characterization of maximal nonnegative bands of constant rank.

(i) If:s is full. them :\% is maximal if and omly if

$$
\because=\left\{\left(\begin{array}{cccc}
S_{1} & & & \\
& S_{2} & & \\
& & \ddots & \\
& & & S_{1}
\end{array}\right): S_{1} \in I_{1}, i=1.2 \ldots ., r\right\}
$$

(ii) In gemoral, if:s is maximal. the"

$$
\because \because\left\{\left(\begin{array}{ccc}
0 & X E & X X Y \\
0 & \because & E Y \\
0 & 0 & 0
\end{array}\right): E \in . \Vdash_{1} \cdot X \in X . Y \in: / 7\right\}
$$

 negatioe matrices of suitahla size.

In the next section, we shall give a genmetric characterization of maximal baincs of constant finite rank which in view of Theorem 4.10 gives a geometric charaterization of constant-rank, none egative bands.

S. A geometric characterization of maximal, indecomposable, nonanegative rankone bands

A nonzero, nonnegative, rank-one matrix in . $/ /_{n}$ (\mathbb{R}) is of the form.y^{*}, where $x . y$ are nonzero, nonnegative vectors in $\mathbb{R N}^{\prime \prime}$. Further, for x, to be an idempotent. $x . y^{\prime}$ must satisfy the equation $\operatorname{tr}\left(x y^{*}\right)=x, x=1$.

Thus, if $!/$ is a nonnegative band of rank-one matrices in.$/_{n}(\mathbb{R})$, then we can find sets. x. 4 in the nonnegative cone of $\mathbb{R}^{\prime \prime}$, viz., \mathbb{R}_{4}^{n}, so that $\mathscr{I}^{\prime} \subseteq x^{\prime \prime \prime}$, where

$$
x: y^{\prime}=\left\{y^{*}: x \in x, y \in!\right\}
$$

and

$$
y^{\prime} x=1 \text { for all } x \in\left\{\text { and for all } y^{\prime} \in!\right.
$$

(By the nonnegative cone of $\mathbb{R}_{\mathbb{R}}$. we mean the set \mathbb{X}^{n}, $=\left\{x \in \mathbb{Q}^{\prime \prime}: x \geqslant 0\right\}$).
Further, if $!$ is maximal then we must have $\mathscr{F}^{\prime}=x^{\prime \prime \prime \prime}$ for some x^{\prime}, I' of the kind mentioned above. We wish to find the general form of x and 3 for a maximai, nonnegative, indecomposable band $: 5$ of rank-one matrices in . $/ H_{n}(\mathbb{R})$.

We observe that if $x_{1}, x_{2} \in\left\{\right.$, then $y^{\prime}\left(x_{1}+(1-t) x_{2}\right)=1$ for $0 \leqslant t \leqslant 1$ and

binations of its members too. Thus with no loss of generality we can assume that x has a positive vector. saly $a=\left(a_{i}\right) . a_{2}>0$ for all i.
 is a particular solution to this system. Theus, for any $x \in \mathcal{X}$.

$$
\begin{aligned}
y^{\prime} x & =y^{*} a \text { for all } y \in! \\
& \Rightarrow y^{\prime}(x-a)=0 \text { for } a l l y! \\
& \Rightarrow x-a \in y^{\prime} \\
& \Rightarrow x \in a+y^{\prime} \quad \text { for all } x \in\{ \\
& \Rightarrow r \subseteq a+y^{\prime} .
\end{aligned}
$$

Also, if $y^{\prime} \in!^{\prime}$, then for any $y \in!^{\prime \prime}, y^{\prime}\left(a+y^{\prime}\right)=y^{\prime} a=1$. Thus, by the maximality of : $\%$. we obtain

$$
\begin{equation*}
\mathscr{X}=\left\{a+w^{\prime}\right\} \cap \mathbb{R}^{\prime \prime} . \tag{5.1}
\end{equation*}
$$

By a similar reasoning applied to $\{S: S \in\{ \}$, we can find a positive vector $b \in$ $4 y$ and obtain

$$
\begin{equation*}
!\prime=\{b+f\} \cap \mathbb{R}_{1}^{\prime \prime} . \tag{5.2}
\end{equation*}
$$

Next, we show that if x and !/ are given as in Eqs. (5.1) and (5.2) respertively, for sone positive a, b and subspates $/ /{ }^{\circ}$. 7 , i.e.,

$$
\begin{align*}
& x=\{a+:\} \cap \mathbb{R}_{1}^{\prime \prime} . \tag{5.3}\\
& \prime \prime \prime=\{b+\neq\} \cap \mathbb{R}_{n}^{\prime \prime} . \tag{5.4}
\end{align*}
$$

where $b^{\prime} a=1, w^{*}=\{b+y\}^{\prime}$ and $\neq\{a+w\}^{\prime}$, then $: /=x^{\prime \prime}$ is a maximal band of ronnegative rank-one matrices in.$/_{n}(\mathbb{P})$. It is casy to see that $I^{\prime \prime}$ forms : nomegative band of rank-one matrices. Suppose \mathscr{I}^{\prime} is containes in a band ", aroun watices, where

$$
\mathscr{F}_{0}^{\prime} \subset \cdot x^{\prime}: y^{\prime \prime}=\left\{x^{\prime} y^{\prime \prime}: x^{\prime} \in X^{\prime \prime}, y^{\prime} \in, y^{\prime}\right\} .
$$

for some sets $x^{\prime}, \prime^{\prime} \subseteq \mathbb{R}_{+}^{\prime \prime}$ and $y^{\prime \prime} x^{\prime}=1$. Let $s=z t^{\prime} \in \mathscr{F}_{1}$. Since \mathscr{F}_{10} is a semigroup, $\dot{V}^{\prime \prime} \cdot z z^{\prime} \in \mathscr{F}_{\prime \prime}$ for all $x \in y^{\prime}$. Therefore,

$$
1=\pi x^{\prime}\left(y^{\prime} \cdot z t^{\prime}\right)=y^{\prime} z \cdot \operatorname{tr}\left(x x^{\prime}\right)=y^{\prime} z \cdot t^{\prime} x .
$$

With no loss of generality, we can assume that $y^{\prime} z=1$ and $t^{\prime} x=1$ (for if, $y^{\prime} z=p(\neq 1)$, then $t^{\prime} x=\frac{1}{p}$; we can write $s=\bar{亏}_{p}^{\prime} \cdot p t^{\prime}=z^{\prime} t^{\prime \prime}$ where $z^{\prime}=\frac{\bar{p}}{p}, t^{\prime}=p t$ and $y^{*} z^{\prime}=1, t^{*} x^{\prime}=1$). Now

$$
\begin{aligned}
& t^{*} x=1 \text { for all } x \in \mathscr{X} \\
& \Rightarrow t^{\prime} a=1 \text { and } t^{\prime}(a+w)=1 \text { for } \text { all } w \in \mathscr{F}^{\prime} \\
& \Rightarrow t^{\prime} a=1 \text { and } t^{+} w=0 \text { for all } w \in \mathbb{W}^{.}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore(1 \quad b)(a+w): 0 \text { lorall } 11: \% \\
& \cdots i \cdot b:\{a+\|\} \quad y \\
& \therefore 1 \in b+y=a
\end{aligned}
$$

 $\therefore \%_{1} G$. Hence ${ }^{\prime}$ is maximal.

Next, we would like to see which subspates of and y give rise to masmal indecomposable bands as in Eqs. (5.3) and (5.4). Suppose there is some $\because=$ ($w, 1, y_{i}$ such that $w \geqslant 0$ for all i, then since $w h, \sum m, 1 ; 0$ fo, all

 raton. If camot have a sctor n (w, with $w_{i} \therefore$ O lor all i. This shows that every vector of $/ /$ must necessarily be a "mixed" vector, i.e.. a vector hating both negative and positive entries (possibly some zeros too). The same argument also applies to y. In other words. $/ /$ and z intersee $\mathbb{R}^{\prime \prime}$, trivally.

We summarize the discussion abowe in the following theorem.

Theorem 5.1. Let if he a maximal. nomesatire, indecomposahle hand of ran-

$$
\begin{aligned}
& y=\{a+y\} \cap x^{\prime \prime}: \\
& y=\{b+y\} \cap B^{\prime \prime} .
\end{aligned}
$$

 maximal, nomegatire indecomposable band of ronk-onc matrice's.

Nontrivia! examples of the above theorem are not easy to constract. However, an example where $/ f$ is the zero space and y ciln have any dimension is given below, preceded by an observation.

Suppose we have a band as given the theorem above. The positive vector

$$
a=\left(\begin{array}{c}
a_{i} \\
\vdots \\
\\
a_{n}
\end{array}\right)
$$

can be replaced with the vector

if the whole band f is transformed by an appropriate simitarity to L if L, where l is given by

$$
\left(\begin{array}{llll}
a_{1} & & & \\
& & & \\
& a_{2} & & \\
& & & \\
& & \ddots & \\
& & & \\
& & & a_{n}
\end{array}\right)
$$

Then instead of working with . $y^{\prime \prime \prime}$. we work with $L Y^{\prime}!I^{\prime} L^{\prime}$ which is again of

A special case is obtained when $\#^{\prime}=\{0\}$, i.e., when X^{\prime} is a singleton. In this case, x "I" is similar (upto a diagonal similarity with positive diagonal entries) to

$$
\left\{\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
& & & \\
\vdots & \vdots & & \vdots \\
& & & \\
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right\}: x_{1}+\cdots+x_{n}=1, x_{1} \geqslant 0\right\}
$$

References

[1] A. Berman, R.J. Memmons, Nonneqative Matrices in Mathematical Sciences. Academic Press. New Yiork 1079
$[2]$ P. Fillmore, G. Macdonald, M. Radjabalipour. II. Kadjavi, Towards a classification of maximal unicellular bands. Semigroup Forum. Springer. New York Inc. 49 (1994), 195-215.
[3] P. Filtmore, G. Macdonald, M. Radjabalipour, H. Radjavi, On principal -deal bands, 1997. prepromt.
[4] M. Marcus and II. Minc. A survey of marix theory and matrix incqualitios. Ally and Bacon, 1964.
 Journal of Matlematios 38 (2) (1986) 376 386.
[6] II. Radjasi. On reducibility of semigroups of eompact merators. Indiana Imiversity Mathematics Journal 39 (2) (1990) 499515.
[7] H. H. Schater, Banath Latices and Positive Operators. Springer New Yorh. 19xa.

[^0]: 'The results of this paper constitute a portion of the athor's dissertation written under the supervision of Prol. Heydar Radjavi. Dathousie University.

