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a b s t r a c t

Let G = (V , E) be any finite graph. A mapping C : E → [k] is called an acyclic edge k-
colouring ofG, if any two adjacent edges have different colours and there are no bichromatic
cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced in
G by all the edges which have colour i or j, is acyclic. The smallest number k of colours, such
that G has an acyclic edge k-colouring is called the acyclic chromatic index of G, denoted by
χ ′a(G).
In 2001, Alon et al. conjectured that for any graph G it holds that χ ′a(G) ≤ ∆(G) + 2;

here∆(G) stands for the maximum degree of G.
In this paper we prove this conjecture for planar graphs with girth at least 5 and for

planar graphs not containing cycles of length 4, 6, 8 and 9. We also show that χ ′a(G) ≤
∆(G) + 1 if G is planar with girth at least 6. Moreover, we find an upper bound for the
acyclic chromatic index of planar graphs without cycles of length 4. Namely, we prove that
if G is such a graph, then χ ′a(G) ≤ ∆(G)+ 15.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

All graphs, which we consider, are finite, without loops or multiple edges. For a graph G, we denote its vertex set, edge
set, maximum degree andminimum degree by V (G), E(G),∆(G) and δ(G), respectively. For undefined concepts we refer the
reader to [10].
As usual [k] stands for the set {1, . . . , k}.
A mapping C : E(G) → [k] is called an acyclic edge k-colouring of a graph G, if any two adjacent edges have different

colours and there are no bichromatic cycles in G, it means, for every pair of distinct colours i and j, the subgraph induced
in G by all the edges which have colour i or j, is acyclic. The smallest number k of colours such that G has an acyclic edge
k-colouring is called the acyclic chromatic index of G, denoted by χ ′a(G).
The acyclic chromatic index has been widely studied over past twenty years. The first general linear upper bound on

χ ′a(G)was found by Alon et al. in [1]. Namely, they proved that χ
′
a(G) ≤ 64∆(G). This bound was later improved to 16∆(G)

by Molloy and Reed [5].
In 2001 Alon et al. [2] stated the Acyclic Edge Coloring Conjecture (AECC for short), which says that χ ′a(G) ≤ ∆(G) + 2

for all graphs G. In [2] this conjecture was proved to be true for random d-regular graphs and for graphs having sufficiently
large girth. (The girth of a graph is defined as the length of its shortest cycle.)
The AECC was also verified for some special classes of graphs, including subcubic graphs [9], outerplanar graphs [8] and

grid-like graphs [7]. Recently, Basavaraju and Chandran proved in [3] that any nonregular connected graph of maximum
degree 3 is acyclically 4-edge colourable.
Since the problem of solving the AECC in general seems to be very difficult, it is interesting to prove it for some special

classes of graphs or at least to give an upper bound for the acyclic chromatic index of a graph from a given class. In [4] such
bounds for the class of planar graphs are given. Namely, the authors proved that the acyclic chromatic index of a planar
graph G does not exceed 2∆(G)+ 29 and that for a planar graph Gwith girth at least 4 it holds that χ ′a(G) ≤ ∆(G)+ 6.
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In this paper we prove that the AECC is true for planar graphs with girth at least 5 and for planar graphs not containing
cycles of length 4, 6, 8 and 9. For the class of planar graphs with girth at least 6 we have a better bound. Namely, we show
that if G is such a graph, then G is acyclically edge colourable with at most ∆(G) + 1 colours. Moreover, we prove that if G
is planar and without cycles of length 4, then χ ′a(G) ≤ ∆(G)+ 15.
The paper is organized as follows: in Section 2 necessary notations are given. Section 3 contains the proofs concerning

planar graphs with girth at least 5. The classes of planar graphs without specific short cycles are considered in Section 4.

2. Notations

In this section we introduce some necessary notations. Let G be a graph. For a vertex v ∈ V (G), its degree is denoted by
dG(v), or simply d(v)when no confusion can arise. We call v a k-vertex if d(v) = k. Similarly, v is called a k−- or a k+-vertex
if its degree is at most k or at least k, respectively. We denote by lk(v) (respectively, lk−(v), lk+(v)) the cardinality of the set
of these neighbours of v, which are k-vertices (respectively, k−-vertices, k+-vertices).
Let G be a plane graph. We denote its face set by F(G). Let f ∈ F(G). We say that f is incident to a vertex x (or an edge

e), if x (or e) belongs to the boundary of f . By the degree dG(f ) (or simply d(f )) of a face f we mean the number of incident
edges. A face of degree 3 will be called a triangle.

3. Planar graphs with girth at least 5

In this section we prove that the AECC is true for planar graphs with girth at least 5. Moreover, we show that if we have
a planar graph Gwith girth at least 6, then its acyclic chromatic index does not exceed∆(G)+ 1.

Theorem 1. (a) If the girth of a planar graph G is at least 6, then
χ ′a(G) ≤ ∆(G)+ 1.

(b) If the girth of a planar graph G is at least 5, then

χ ′a(G) ≤ ∆(G)+ 2.

In order to prove Theorem 1, we recall the notion of the maximum average degree of a graph. Following [6], let us define
for a given graph G themaximum average degree of G, denoted byMad(G), as follows:

Mad(G) = max
{
2
|E(H)|
|V (H)|

: H ⊆ G
}
.

At the beginning we provide some structural properties of graphs with bounded maximum average degree in Lemmas 1
and 4. Next, we use these properties to obtain tight bounds for the acyclic chromatic index of such graphs. Finally, we prove
Theorem 1, using the following basic observation, mentioned in [6], which shows the connection between the maximum
average degree and the girth of a given planar graph. The proof of this observation is straightforward and follows easily from
Euler’s formula.

Proposition 1 ([6]). If G is a planar graph with girth g, then Mad(G) < 2g
g−2 .

In the proof of Lemma 1 a notion of a weak 3-vertex plays an important role. A vertex of degree 3 is called weak, if it has
a neighbour of degree 2. For a vertex x, we denote by l3(x) the cardinality of the set of weak 3-vertices in its neighbourhood.

Lemma 1. Let G be a graph such that Mad(G) < 3 and δ(G) ≥ 2. Then G contains at least one of the configurations:
A1: a 2-vertex adjacent to a 2-vertex,
A2: a 3-vertex adjacent to a 2-vertex y1 and a 3−-vertex y2, y1 6= y2,
A3: a 4-vertex adjacent to a 2-vertex and three weak 3-vertices,
A4: a 4-vertex adjacent to at least two 2-vertices and a weak 3-vertex,
A5: a 4-vertex adjacent to at least three 2-vertices,
A6: a 5-vertex adjacent to four 2-vertices and a weak 3-vertex,
A7: a 5-vertex adjacent to five 2-vertices.

Proof. We use the discharging method to prove the lemma. Let G = (V , E) be a graph such thatMad(G) < 3 and δ(G) ≥ 2.
Initially, we define a mapping f on the set of vertices of G as follows: for each x ∈ V let f (x) = d(x). From the definition of
Mad(G) it follows that

Mad(G) ≥
2|E|
|V |
=

∑
x∈V
d(x)

|V |
=

∑
x∈V
f (x)

|V |
. (1)

In the discharging step, we redistribute the values of f between adjacent vertices, according to the rules described below,
to obtain the function f ′.
• If x is a 2-vertex, then x does not give anything to its neighbours;
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• if x is a 3-vertex, then x gives 12 to each 2-vertex in its neighbourhood;
• if x is a 4+-vertex, then x gives 12 to each 2-vertex in its neighbourhood and

1
4 to eachweak 3-vertex in its neighbourhood.

After this procedure, each vertex x has a new value f ′(x), but the sums of values of the functions f ′ and f , counting over
all the vertices, are the same.
We show that if G does not contain any of the configurations A1–A7, then for each vertex x the value f ′(x) is greater

than or equal to 3, contrary to the inequality (1). To calculate the value f ′(x) we consider a number of cases, depending on
d(x).
• If d(x) = 2, then f ′(x) = 2+ 1

2 · l3+(x) = 3, becauseA1 does not hold.
• If d(x) = 3 and x is not weak, then f ′(x) = f (x) = 3, therefore we can assume that x is a weak 3-vertex. Thus
f ′(x) = 3 − 1

2 · l2(x) +
1
4 · l4+(x). From the fact that A2 does not hold we have that l2(x) < 2 and that if l2(x) = 1,

then l3(x) = 0. Hence, l4+(x) = 2 and f ′(x) = 3− 1
2 +

1
4 · 2 = 3.

• If d(x) = 4, then f ′(x) = 4 − 1
2 · l2(x) −

1
4 · l3(x). We can conclude, from the fact thatA5 does not hold, that l2(x) < 3.

Moreover, from the fact thatA4 cannot occur we have that if l2(x) = 2, then l3(x) = 0 and then f
′(x) = 4− 2 · 12 = 3.

If l2(x) = 1, then l3(x) ≤ 2, because A3 does not occur and therefore f ′(x) ≥ 4 − 1
2 − 2 ·

1
4 = 3. If l2(x) = 0, then

f ′(x) ≥ 4− 4 · 14 = 3.
• If d(x) = 5, then f ′(x) = 5− 1

2 · l2(x)−
1
4 · l3(x). From the fact that bothA6 andA7 do not occur we have that l2(x) < 5

and that if l2(x) = 4, then l3(x) = 0. Hence, if l2(x) = 4, then f
′(x) = 5− 1

2 · 4 = 3. On the other hand, if l2(x) ≤ 3, then
f ′(x) ≥ 5− 1

2 · 3−
1
4 · 2 = 3.

• If d(x) = d ≥ 6, then f ′(x) ≥ d− 1
2 · l2(x)−

1
4 · l3(x) ≥ d−

1
2 · d =

1
2 · d ≥ 3. �

From now on, if we say a colouring, we always mean an edge colouring.
In what follows we frequently use the following notations. Let C be an acyclic k-colouring of a graph G. By C(v), for any

vertex v ∈ V (G), we denote the set of colours assigned by C to the edges incident to v. IfW ⊆ V (G), then we define

C(W ) =
⋃
w∈W

C(w).

If v and u are two distinct vertices of G, then let

WG(v, u) = {w ∈ NG(v) : C(vw) ∈ C(u)}.

Notice that the order of v and u is important here and that the setWG(v, u) could be empty.
The next useful lemma was stated in [4], as a modification of the Extension Lemma presented in [8].

Lemma 2 ([4]). Let G be a graph, vu ∈ E(G) and let C be an acyclic k-colouring of G− vu. If

|C(v) ∪ C(u) ∪ C(WG−vu(v, u))| < k,

then the colouring C can be extended to an acyclic k-colouring of G.

To shorten the proof of the next lemma we use a recent result on acyclic edge colourings of subcubic graphs.

Theorem 2 ([3]). If G is a nonregular connected graph of maximum degree 3, then χ ′a(G) ≤ 4.

Lemma 3. If G is a graph such that Mad(G) < 3, then χ ′a(G) ≤ ∆(G)+ 1.
Proof. SupposeH is a counterexample to the lemmawith theminimum number of edges.Without loss of generality we can
assume that H is connected and∆(H) ≥ 3. Moreover, since each connected graph of maximum degree at most 3, but with
maximum average degree less than 3, has a vertex of degree 2 or 1 and therefore, by Theorem 2, has the acyclic chromatic
index at most 4, we can assume∆(H) ≥ 4. Let t = ∆(H)+ 1.
We use Lemma 2 to prove that if for some edge vu ∈ E(H) the graph H − vu has an acyclic t-colouring, then the graph

H also has an acyclic t-colouring, which contradicts its choice.
It is easy to see that H cannot contain vertices of degree one. Hence, we can assume δ(H) ≥ 2. According to Lemma 1 we

have that H contains at least one of the configurationsA1–A7.
A1: If H contains a 2-vertex x, adjacent to a 2-vertex y1, then let y2 be the remaining neighbour of x. Let H ′ = H − xy1.

Since H ′ has less edges than H , by the minimality of H , we have that H ′ has an acyclic t-colouring C . Clearly,
|C(x) ∪ C(y1) ∪ C(WH ′(x, y1))| ≤ t − 1, therefore, by Lemma 2, we conclude that the colouring C can be extended
to an acyclic t-colouring of H , a contradiction.

A2: If H contains a 3-vertex x adjacent to a 2-vertex y1 and to a 3−-vertex y2, then let y3 be the remaining neighbour of x.
Let H ′ = H − xy1. Similarly as above, from the minimality of H , we have that H ′ has an acyclic t-colouring C .
Let u be the neighbour of y1 in H ′. If C(y1u) 6= C(xy3), then observe that |C(x) ∪ C(y1) ∪ C(WH ′(x, y1))| ≤ t − 1,

therefore, by Lemma 2, the colouring C can be extended to an acyclic t-colouring of H , a contradiction.
In the opposite case, if C(y1u) = C(xy3), thenwe can recolour, inH ′, the edge y1uwith a colour α 6∈ C(u)∪{C(xy3)},

obtaining in this way an acyclic t-colouring C ′ of H ′, and we are back in the previous case.



1448 M. Borowiecki, A. Fiedorowicz / Discrete Mathematics 310 (2010) 1445–1455

A3: If H contains a 4-vertex xwhich is adjacent to a 2-vertex y1 and to three weak 3-vertices y2, y3 and y4, then let zi be the
neighbour of degree 2 of yi, for i = 2, 3, 4. Moreover, let H ′ = H − xy1. From the minimality of H , it follows that H ′ has
an acyclic t-colouring C . If C(y1)∩C(x) = ∅, then clearly the colouring C can be extended to an acyclic t-colouring ofH .
Thereforewe can assume that C(y1)∩C(x) = {a}. There is no loss of generality in assuming that C(xy2) = a, C(xy3) = b
and C(xy4) = c . Let z1 be the neighbour, in H ′, of y1. We can assume that |C(x) ∪ C(z1)| = t and |C(x) ∪ C(y2)| = t ,
since otherwise the colouring C can be extended to an acyclic t-colouring of H .
One can observe that |C(x)∪ C(y2)| can equal t only if t = 5, because dH(y2) = 3 and dH(x) = 4, hence we can now

assume∆(H) = 4.
Clearly, one of the colours b, c , say b, cannot belong to C(z1). Moreover, it is easy to observe that if |C(x)∪C(y3)| < 5,

then we can recolour, in H ′, the edge y1z1 with the colour b, obtaining in this way an acyclic 5-colouring of H ′, which
can be extended to an acyclic 5-colouring of H .
Hence we can assume |C(x) ∪ C(y3)| = 5. Let u be the neighbour of z2 different from y2. One can observe that

C(z2u) = a, since otherwise the colouring C can be extended to an acyclic 5-colouring of H . Let d = C(y2z2). Clearly
d 6∈ {a, b, c} and we can recolour, in H ′, the edge y2z2 with the colour b and then we can colour the edge xy1 with the
colour d, obtaining an acyclic 5-colouring of H , a contradiction.

A4: If H contains a 4-vertex x which is adjacent to two 2-vertices y1 and y2, and to a weak 3-vertex y3, then let y4 be the
remaining neighbour of x. Moreover, let z1 6= x be the neighbour of y1 and let z2 be the neighbour of y3 of degree 2.
Let H ′ = H − xy1. Since H ′ has less edges than H , by the minimality of H we have that H ′ has an acyclic t-colouring C .
Assume that C(xy2) = a, C(xy3) = b and C(xy4) = c . If C(x) ∩ C(y1) = ∅ or C(y1z1) = a, then clearly the colouring C
can be extended to an acyclic t-colouring ofH , a contradiction. Hence there are two cases to consider: one if C(y1z1) = b
and another if C(y1z1) = c.
At the beginning we assume that C(y1z1) = b. One can observe that if |C(x) ∪ C(y3)| < t or |C(x) ∪ C(z1)| < t or

b 6∈ C(z2), then the colouring C can be extended to an acyclic t-colouring of H , a contradiction.
Therefore, similarly, as in the caseA3, we can assume that t = 5 and∆(H) = 4, since otherwise |C(x)∪C(y3)| < t .
Thus |C(x) ∪ C(y3)| = 5 and |C(x) ∪ C(z1)| = 5 and b ∈ C(z2). Moreover, a ∈ C(z1), since otherwise we can

recolour, in H ′, the edge y1z1 with a, obtaining in this way an acyclic 5-colouring of H ′, which can be extended to an
acyclic 5-colouring of H . Therefore, we can assume that C(z1) = {a, b, d, e} and C(y3) = {b, d, e}, and there is no loss
of generality in assuming C(y3z2) = d, with {a, b, c} ∩ {d, e} = ∅.
Clearly, if C(y2) 6= {a, b}, then we can recolour, in H ′, the edge y3z2 with a, obtaining in this way an acyclic

5-colouring of H ′, which can be extended to an acyclic 5-colouring of H . Hence C(y2) = {a, b}.
It is also easy to see that if d 6∈ C(y4) (or, similarly, e 6∈ C(y4)), then we can recolour, in H ′, the edge y1z1 with c and

then we can colour, in H , the edge xy1 with d (or e), obtaining an acyclic 5-colouring of H , a contradiction.
Hence we can assume d, e ∈ C(y4). Moreover, a ∈ C(y4), since otherwise we can recolour, in H ′, the edge y1z1 with

c , xy2 with c and xy4 with a, obtaining in this way an acyclic 5-colouring of H ′, which can be extended to an acyclic
5-colouring of H , a contradiction.
Therefore, C(y4) = {a, c, d, e} and we can recolour, in H ′, the edge y3z2 with c to obtain an acyclic 5-colouring of

H ′, which clearly can be extended, a contradiction.
In the opposite case, if C(y1z1) = c , then we can recolour, in H ′, the edge y1z1 with a colour α 6∈ C(z1) ∪ {C(xy4)},

and we are in the previous case.
A5: If H contains a 4-vertex x adjacent to three 2-vertices: y1, y2 and y3, then let y4 be the remaining neighbour of x.

Moreover, let H ′ = H − xy1. Since H ′ has less edges than H , by the minimality of H we have that H ′ has an acyclic
t-colouring C . Let z1 be the neigbour, in H ′, of y1. One can observe that if C(y1z1) 6= C(xy4), then the colouring C can be
extended to an acyclic t-colouring of H , a contradiction. Hence we can assume that C(y1z1) = C(xy4). Clearly, we can
recolour, in H ′, the edge y1z1 with a colour α 6∈ C(z1) ∪ {C(xy4)} to obtain an acyclic t-colouring of H ′, which can be
extended to an acyclic t-colouring of H , a contradiction.

A6: IfH contains a 5-vertex x adjacent to four 2-vertices: y1, y2, y3 and y4 and to aweak 3-vertex y5, then letH ′ = H−xy1. As
above, from theminimality ofH , we have thatH ′ has an acyclic t-colouring C . Let z1 be the neigbour, inH ′, of y1. One can
observe that if C(y1z1) 6= C(xy5), then the colouring C can be extended to an acyclic t-colouring of H , a contradiction.
On the other hand, if C(y1z1) = C(xy5), then we can recolour, in H ′, the edge y1z1 with a colour α 6∈ C(z1) ∪ {C(xy5)},
and we are in the previous case.

A7: If H contains a 5-vertex x adjacent to five 2-vertices, then let y be any of them. Moreover, let H ′ = H − xy. Since H ′
has less edges than H , by the minimality of H we have that H ′ has an acyclic t-colouring C . It is easy to observe that, by
Lemma 2, the colouring C can be extended to an acyclic t-colouring of H , a contradiction. �

Lemma 4. Let G be a graph such that Mad(G) < 10
3 and δ(G) ≥ 2. Then G contains at least one of the configurations:

B1: a 2-vertex adjacent to a 3−-vertex,
B2: a 3-vertex adjacent to at least two 3−-vertices,
B3: a 4-vertex adjacent to a 2-vertex y1 and a 3−-vertex y2, y1 6= y2,
B4: a 5-vertex adjacent to at least three 2-vertices,
B5: a 5-vertex adjacent to two 2-vertices y1, y2 and three 3−-vertices y3, y4, y5, yi 6= yj, for i 6= j,
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B6: a 6-vertex adjacent to at least four 2-vertices y1, . . . , y4 and a 3−-vertex y5, yi 6= yj, for i 6= j,
B7: a 7-vertex adjacent to at least six 2-vertices,
B8: an 8-vertex adjacent to seven 2-vertices y1, . . . , y7 and a 3−-vertex y8, yi 6= yj, for i 6= j,
B9: a 9-vertex adjacent to nine 2-vertices.

Proof. Let G = (V , E) be a graph such that Mad(G) < 10
3 and δ(G) ≥ 2. We proceed similarly as in the proof of Lemma 1

using the discharging method. In the first step, we define a mapping f on the set of vertices of G as follows: for each x ∈ V
let f (x) = d(x).
In the discharging step, we redistribute the values of f between adjacent vertices, according to the rules described below,

to obtain the function f ′.
• If x is either a 2-vertex or a 3-vertex, then x does not give anything to its neighbours;
• if d(x) ≥ 4, then x gives 23 to each 2-vertex in its neighbourhood and

1
6 to each 3-vertex in its neighbourhood.

After this procedure, each vertex x has a new value f ′(x), but the sums of values of the functions f ′ and f , counting over
all the vertices, are the same.
Nowwe check that if G does not contain any of the configurationsB1–B9, then f ′(x) ≥ 10

3 for each vertex x, which is an
obvious contradiction with the inequality (1).
• If d(x) = 2, then f ′(x) = 2+ 2

3 · l4+(x) =
10
3 , becauseB1 does not hold.

• If d(x) = 3, then f ′(x) = 3+ 1
6 · l4+(x) ≥

10
3 , sinceB2 does not occur.

• If d(x) = 4, then f ′(x) = 4 − 2
3 · l2(x) −

1
6 · l3(x). We can conclude, from the fact that B3 does not hold, that l2(x) ≤ 1

and moreover, that if l2(x) = 1, then l3(x) = 0. Therefore, f ′(x) = 4 − 2
3 =

10
3 . On the other hand, if l2(x) = 0, then

f ′(x) ≥ 4− 3 · 16 =
7
2 .

• If d(x) = 5, then f ′(x) = 5− 2
3 · l2(x)−

1
6 · l3(x). From the fact thatB4 does not occur we have that l2(x) ≤ 2. If l2(x) = 2,

then l3(x) ≤ 2, since B5 cannot occur, and therefore, f ′(x) ≥ 5 − 2
3 · 2 −

1
6 · 2 =

10
3 . If we assume that l2(x) ≤ 1, then

f ′(x) ≥ 5− 2
3 −

1
6 · 4 =

11
3 .

• If d(x) = 6, then f ′(x) = 6− 2
3 · l2(x)−

1
6 · l3(x). From the fact thatB6 does not occur we have that l2(x) ≤ 4 and that if

l2(x) = 4, then l3(x) = 0, and therefore, f ′(x) = 6− 2
3 · 4 =

10
3 . Finally, if l2(x) ≤ 3, then f

′(x) ≥ 6− 2
3 · 3−

1
6 · 3 =

7
2 .

• If d(x) = 7, then f ′(x) = 7− 2
3 · l2(x)−

1
6 · l3(x). From the fact thatB7 does not hold we have that l2(x) ≤ 5 and hence

f ′(x) ≥ 7− 2
3 · 5−

1
6 · 2 =

10
3 .

• If d(x) = 8, then f ′(x) = 8− 2
3 · l2(x)−

1
6 · l3(x). From the fact thatB8 does not occur we have that l2(x) ≤ 7 and that if

l2(x) = 7, then l3(x) = 0 and f ′(x) = 8− 2
3 · 7 =

10
3 . If l2(x) ≤ 6, then f

′(x) ≥ 8− 2
3 · 6−

1
6 · 2 =

11
3 .

• If d(x) = 9, then f ′(x) = 9 − 2
3 · l2(x) −

1
6 · l3(x). From the fact that B9 does not occur we have that l2(x) ≤ 8. Hence

f ′(x) ≥ 9− 2
3 · 8−

1
6 >

10
3 .

• If d(x) = d ≥ 10, then f ′(x) = d− 2
3 · l2(x)−

1
6 · l3(x) ≥ d−

2
3 · d =

1
3 · d ≥

10
3 . �

Lemma 5. If Mad(G) < 10
3 , then χ

′
a(G) ≤ ∆(G)+ 2.

Proof. First suppose H is a counterexample to the lemma with the minimum number of edges. Without loss of generality
we can assume that H is connected. Let t = ∆(H) + 2. We will use Lemma 2 to prove that if for some edge vu ∈ E(H) the
graph H − vu has an acyclic t-colouring, then the graph H also has an acyclic t-colouring, which contradicts its choice.
It is easy to see that H cannot contain any vertex of degree one. Therefore, we can assume δ(H) ≥ 2.We can also assume

∆(H) ≥ 4, because the proof in the case ∆(H) ≤ 3 follows from the fact that the acyclic chromatic index of any subcubic
graph is at most 5, see [1,9].
From Lemma 4 we have that H contains at least one of the configurationsB1–B9.

B1: If H contains a 2-vertex x, adjacent to a 3−-vertex y1, then let y2 be the remaining neighbour of x. Moreover, let
H ′ = H − xy1. H ′ has less edges than H , hence, by the minimality of H , we have that H ′ has an acyclic t-colouring
C . Clearly, |C(x)∪C(y1)∪C(WH ′(x, y1))| ≤ t−1. By Lemma 2, we can extend the colouring C to an acyclic t-colouring
of H , a contradiction.

B2: If H contains a 3-vertex x, adjacent to two 3−-vertices y1 and y2, then let y3 be the remaining neighbour of x. Moreover,
let H ′ = H − xy1. As above, by the minimality of H , we have that H ′ has an acyclic t-colouring C . If |C(y1) ∩ C(x)| ≤ 1,
then, by Lemma 2 and since t ≥ 6, we can extend the colouring C to an acyclic t-colouring of H , a contradiction. Hence
|C(y1) ∩ C(x)| = 2. Let C(y1) = {a, b} and C(xy2) = a, C(xy3) = b.
Let us initially assume that |C(y3)∪C(y2)| = t . If a 6∈ C(y3), then there is a colour α 6∈ C(y3), α 6= a such that we can

recolour, in H ′, the edge xy3 with α and obtain in this way an acyclic t-colouring C ′ of H ′ in which |C ′(y1)∩ C ′(x)| ≤ 1.
This colouring can be extended to an acyclic t-colouring of H , a contradiction.
Therefore, we can assume that a ∈ C(y3). Hence b 6∈ C(y2) and there is a colour α 6∈ C(y2), α 6∈ {a, b} such that we

can recolour, inH ′, the edge xy2withα andobtain in thisway an acyclic t-colouringC ′ ofH ′ inwhich |C ′(y1)∩C ′(x)| ≤ 1.
On the other hand, if |C(y3) ∪ C(y2)| < t , then there is a colour α 6∈ C(y1) ∪ C(y2) ∪ C(y3) and we can extend the

colouring C to an acyclic t-colouring of H , a contradiction.
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B3: IfH contains a 4-vertex x adjacent to a 2-vertex y1 and to a 3−-vertex y2, then let y3, y4 be the remaining neighbours of x
and letH ′ = H−xy1.H ′ has less edges thanH , hence, by theminimality ofH , we have thatH ′ has an acyclic t-colouring
C . Assume that C(y1) = {b}. One can observe that if b 6∈ {C(xy3), C(xy4)}, then |C(x) ∪ C(y1) ∪ C(WH ′(x, y1))| ≤ t − 1
and, by Lemma 2, the colouring C can be extended to an acyclic t-colouring of H , a contradiction.
Hencewe can assume that b = C(xy3) (or, similarly, b = C(xy4)). Let u be the neighbour of y1 inH ′. We can recolour,

in H ′, the edge y1u with a colour α 6∈ C(y1) ∪ C(u) ∪ {C(xy3), C(xy4)} to obtain an acyclic t-colouring C ′ of H ′ which
we can extend to an acyclic t-colouring of H , a contradiction.

B4: If H contains a 5-vertex x adjacent to three 2-vertices y1, y2 and y3, then let y4, y5 be the remaining neighbours of x and
let H ′ = H − xy1. H ′ has less edges than H , and, by the minimality of H , it follows that H ′ has an acyclic t-colouring C .
Assume C(y1) = {b}. If b 6∈ {C(xy4), C(xy5)}, then it is easy to observe that |C(x)∪C(y1)∪C(WH ′(x, y1))| ≤ t−1, and,
by Lemma 2, the colouring C can be extended to an acyclic t-colouring of H , a contradiction.
Hence we can assume that b = C(xy4) (or, similarly, b = C(xy5)). Moreover, let u be the neighbour of y1 in H ′.

Clearly, we can recolour, in H ′, the edge y1u with a colour α 6∈ C(y1) ∪ C(u) ∪ {C(xy4), C(xy5)} to obtain an acyclic
t-colouring C ′ of H ′ and we are back in the previous case.

B5: IfH contains a 5-vertex x adjacent to two 2-vertices y1 and y2, and to three 3−-vertices y3, y4, y5, then letH ′ = H−xy1.
H ′ has less edges thanH , hence, by theminimality ofH , we have thatH ′ has an acyclic t-colouring C . It is easy to observe
that |C(x)∪ C(y1)∪ C(WH ′(x, y1))| ≤ t − 1, therefore, by Lemma 2, we conclude that the colouring C can be extended
to an acyclic t-colouring of H , a contradiction.

B6: If H contains a 6-vertex x adjacent to four 2-vertices y1, y2, y3, y4 and to a 3−-vertex y5, then let y6 be the remaining
neighbour of x and let H ′ = H − xy1. Similarly as above, H ′ has an acyclic t-colouring of C . We can assume that
C(y1) = {b}. If b 6∈ {C(xy5), C(xy6)}, then it is easy to observe that |C(x) ∪ C(y1) ∪ C(WH ′(x, y1))| ≤ t − 2, therefore,
by Lemma 2, the colouring C can be extended to an acyclic t-colouring of H , a contradiction.
On the other hand, if b = C(xy5) (or, similarly, b = C(xy6)), then let u be the neighbour of y1 in H ′. We can recolour,

in H ′, the edge y1u with a colour α 6∈ C(y1) ∪ C(u) ∪ {C(xy5), C(xy6)} to obtain an acyclic t-colouring C ′ of H ′ and we
are back in the previous case.

B7: If H contains a 7-vertex x adjacent to six 2-vertices y1, y2, . . . , y6 and to a vertex y7, then let H ′ = H − xy1. H ′ has
less edges than H , hence, by the minimality of H , we have that H ′ has an acyclic t-colouring C . We can assume that
C(y1) = {b}.
If b 6= C(xy7), then clearly |C(x)∪C(y1)∪C(WH ′(x, y1))| ≤ t−2, and, by Lemma 2, the colouring C can be extended

to an acyclic t-colouring of H , a contradiction.
In the opposite case, if b = C(xy7), then let u be the neighbour of y1 in H ′. We can recolour, in H ′, the edge y1uwith

a colour α 6∈ C(y1) ∪ C(u) ∪ {C(xy7)} to obtain an acyclic t-colouring C ′ of H ′, which can be extended to an acyclic
t-colouring of H , a contradiction.

B8: If H contains an 8-vertex x adjacent to seven 2-vertices y1, y2, . . . , y7 and to a 3−-vertex y8, then let H ′ = H − xy1.
Clearly, from the minimality of H , it follows that H ′ has an acyclic t-colouring C . It is easy to observe that |C(x) ∪
C(y1)∪ C(WH ′(x, y1))| ≤ t − 1, therefore, by Lemma 2, the colouring C can be extended to an acyclic t-colouring of H ,
a contradiction.

B9: If H contains a 9-vertex x adjacent to nine 2-vertices, then let y be any of them and let H ′ = H − xy. H ′ has less
edges than H , and, by the minimality of H , it follows that H ′ has an acyclic t-colouring C . It is easy to observe that
|C(x)∪ C(y)∪ C(WH ′(x, y))| ≤ t − 2. Hence, by Lemma 2, the colouring C can be extended to an acyclic t-colouring of
H , a contradiction. �

Proof of Theorem 1. It follows from Lemmas 3, 5 and Proposition 1. �

4. Planar graphs without short cycles

In this section we prove that the AECC is true for planar graphs not containing cycles of length 4, 6, 8, 9 and also present
new upper bound for the acyclic chromatic index of planar graphs not containing cycles of length 4.
We start with the following lemma which presents structural properties of 2-connected planar graphs without cycles of

length 4, 6, 8, 9.

Lemma 6. Let G be a 2-connected planar graph not containing cycles of length 4, 6, 8, 9. Then G contains at least one of the
configurations:

C1: a triangle incident to at least two 3−-vertices,
C2: a 2-vertex adjacent to a 3−-vertex,
C3: a 3-vertex adjacent to at least two 3−-vertices,
C4: a 4-vertex x adjacent to a 2-vertex y1 and a 4−-vertex y2, y1 6= y2, and such that there is a triangle which is incident to both

x and y2, but not to y1,
C5: a 4-vertex x adjacent to a 2-vertex y and such that there is a triangle which is incident to both x and y,
C6: a d-vertex, with d ≥ 4, such that at least d− 2 of its neighbours are 3−-vertices and at least one of them is of degree 2.



M. Borowiecki, A. Fiedorowicz / Discrete Mathematics 310 (2010) 1445–1455 1451

Proof. We use the discharging method to prove the lemma. Let G = (V , E) be a 2-connected planar graph without cycles of
length 4, 6, 8, 9. We fix a plane embedding of G. Let F be the face set of G. At the beginning, we define a mapping f on V ∪ F
as follows: for each x ∈ V let f (x) = 6

5d(x)− 4 and for each x ∈ F let f (x) =
4
5d(x)− 4. Clearly,∑

x∈V∪F

f (x) =
∑
x∈V

(
6
5
d(x)− 4

)
+

∑
x∈F

(
4
5
d(x)− 4

)
=
6
5

∑
x∈V

d(x)− 4|V | +
4
5

∑
x∈F

d(x)− 4|F | = 4(|E| − |V | − |F |) = −8,

which follows from Euler’s formula and the fact that
∑
x∈V d(x) =

∑
x∈F d(x) = 2|E|. In the next step we will distribute the

values of f between adjacent vertices, faces and between incident vertices and faces, according to the rules described below,
to obtain the function f ′.

• If x is either a cycle of length less than 10 or a 3−-vertex, then x does not give anything;
• if x is a cycle of length at least 10, then x gives 25 · la(x, y) to each adjacent triangle y, where la(x, y) is the number of
common edges (of the cycle x and the triangle y);
• if x is a 4-vertex, then x gives 15 to each incident triangle, provided the triangle is not incident to two 5

+-vertices;
• if x is a 5+-vertex, then x gives 15 to each incident triangle;
• if x is a 4+-vertex, then x gives 45 to each adjacent 2-vertex and

1
5 to each adjacent 3-vertex.

Now we calculate the values of the function f ′. We show, that if the graph G does not contain any of the configurations
C1–C6, then the value f ′(x) is nonnegative for each x ∈ V ∪ F , contrary to the fact that the sums of values of the functions
f ′ and f , counting over all the vertices and faces, remain the same.
At the beginning we calculate the value f ′(x) for each vertex x. Let us start with the following straightforward, but very

useful, observation.

Proposition 2. If G is a 2-connected planar graph without cycles of length 4 and v is a d-vertex, then v is incident to at most d2
triangles.

We consider a number of cases, depending on the degree of the vertex x. Let lt(x) stand for the number of triangles
incident to x. Let lt(x) denote the number of such triangles incident to x, which are not incident to two 5+-vertices. Clearly,
lt(x) ≤ lt(x).

• If d(x) = 2, then f ′(x) = 6
5 · 2− 4+

4
5 · l4+(x) = 0, since C2 does not hold.

• If d(x) = 3, then f ′(x) = 6
5 · 3− 4+

1
5 · l4+(x) ≥ 0, because l4+(x) ≥ 2, from the absence of C3.

• If d(x) = 4, then f ′(x) = 6
5 · 4− 4−

4
5 · l2(x)−

1
5 · l3(x)−

1
5 · lt(x). From Proposition 2 it follows that lt(x) ≤ 2. From the

fact that C6 does not hold it clearly follows that l2(x) < 2 and that if l2(x) = 1, then l3(x) = 0.
If we assume that l2(x) = 1, l3(x) = 0 = lt(x), then clearly f ′(x) = 0. Hence we can assume that if l2(x) = 1, then

lt(x) = 1 or lt(x) = 2.
In the case when l2(x) = 1 and lt(x) = 1, let y1 be the 2-vertex adjacent to x and let T be the triangle incident to x.

It is easy to observe that y1 cannot be incident to T , because C5 does not occur. Hence there must be another 4−-vertex,
say y2, which is adjacent to x and incident to T , but this situation is also impossible, since C4 does not hold.
It is easy to observe that the case l2(x) = 1 and lt(x) = 2 is also impossible, since C5 does not occur.
Hencewe can assume l2(x) = 0. If moreover lt(x) = 0, then clearly f ′(x) ≥ 0. It is also easy to observe that if l3(x) = 4,

then lt(x) = 0, because C1 does not hold. Moreover, from the absence of C1, we have that if l3 = 3, then lt(x) ≤ 1 and
f ′(x) ≥ 0.
Hence there is only one case left to consider, namely, when 0 < lt(x) ≤ 2 and l3(x) ≤ 2, but in this case we also have

f ′(x) ≥ 0.
• If d(x) = 5, then f ′(x) = 6

5 · 5− 4−
4
5 · l2(x)−

1
5 · l3(x)−

1
5 · lt(x).

Observe at the beginning that from the absence of C6 it follows that if l2(x) > 0, then l2(x) + l3(x) ≤ 2. Moreover,
from Proposition 2, we have lt(x) ≤ 2.
If we assume that l2(x) = 2, then clearly l3(x) = 0 and f ′(x) ≥ 0. It is also easy to calculate that if l2(x) = 1, then

f ′(x) > 0, since l3(x) ≤ 1 in this case.
In the opposite case, when l2(x) = 0, then it is easy to observe that f ′(x) = 2− 1

5 · l3(x)−
1
5 · lt(x) > 0, since l3(x) ≤ 5

and lt(x) ≤ 2.
• If d(x) = d ≥ 6, then f ′(x) = 6

5 · d − 4 −
4
5 · l2(x) −

1
5 · l3(x) −

1
5 · lt(x). As above, we have lt(x) ≤

d
2 . To calculate the

value f ′(x)we need to consider two cases.
If l2(x) > 0, then from the fact that C6 does not hold we have l2(x) + l3(x) ≤ d − 3. Hence f ′(x) ≥ 6

5 · d − 4 −
4
5 ·

(d− 3)− 1
5 ·

d
2 =

3
10 · d−

8
5 > 0.

In the opposite case, when l2(x) = 0, we have f ′(x) ≥ 6
5 · d− 4−

1
5 · d−

1
5 ·

d
2 =

9
10 · d− 4 > 0.
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To finish the proof it is enough to show that for each face x the value f ′(x) is nonnegative. It is easy to observe that from
the absence of cycles of lengths 4, 6, 8 and 9, we have that a triangle cannot be adjacent to a cycle of length less than 10.
Hence for each triangle x there are three adjacent cycles of length at least 10. Moreover, from the fact that C1 does not hold,
it follows that there are at least two 4+-vertices incident to x. Hence, f ′(x) ≥ 4

5 · 3− 4+
2
5 · 3+

1
5 · 2 = 0.

Clearly, for each cycle x of length 5 or 7, the value f ′(x) = f (x) and is greater than or equal to 0.
Moreover, if x is a cycle of length d ≥ 10, then it is obvious that f ′(x) ≥ 4

5 · d− 4−
2
5 · d =

2
5 · d− 4 ≥ 0.

We have shown that for each x ∈ V ∪ F the value f ′(x) is nonnegative, which completes the proof. �

Theorem 3. If G is a planar graph not containing any cycle of length 4, 6, 8 and 9, then

χ ′a(G) ≤ ∆(G)+ 2.

Proof. Let H be a counterexample to Theorem 3 with the minimum number of edges. There is no loss of generality in
assuming that H is connected. We fix a plane embedding of G. As in the prove of Lemma 5, we can assume ∆(H) ≥ 4. Let
t = ∆(H) + 2. It is easy to observe that H is 2-connected, since otherwise we can obtain an acyclic t-colouring of each its
2-connected component and combine them (by permuting some colours, if needed) to get an acyclic colouring of the entire
graph. Hence, by Lemma 6, we have that H contains at least one of the configurations C1–C6.
By Lemma 2, it is sufficient to show that there exists an edge vu and an acyclic t-colouring C of H − vu such that

|C(v) ∪ C(u) ∪ C(WH−vu(v, u))| < t . We consider a number of cases, depending on which of the configurations C1–C6
occurs in H . In each case we point out such an edge which we can use with Lemma 2 to obtain a contradiction.

C1: If H contains a triangle incident to the vertices x1, x2, x3, such that d(x1), d(x2) ≤ 3, then let H ′ = H − x1x2. From the
minimality of H it follows that H ′ has an acyclic t-colouring C . Let y1 6= x3 be the neighbour, in H ′, of x1 and let y2 6= x3
be the neighbour, in H ′, of x2. We need to consider two cases.
Let us assume at the beginning that C(x1y1) 6= C(x2y2).
If C(x2x3) = C(x1y1) and C(x1x3) = C(x2y2), then clearly |C(x1) ∪ C(x2) ∪ C(x3)| ≤ t − 2 and we can extend the

colouring C to an acyclic t-colouring of H , a contradiction.
If we assume that C(x2x3) = C(x1y1) and C(x1x3) 6= C(x2y2) (or, similarly, C(x2x3) 6= C(x1y1) and C(x1x3) =

C(x2y2)), then |C(x1) ∪ C(x2) ∪ C(x3)| ≤ t − 1 and, similarly as above, we can extend the colouring C to an acyclic
t-colouring of H , a contradiction.
In the case when C(x2x3) 6= C(x1y1) and C(x1x3) 6= C(x2y2) it is also easy to observe that the colouring C can be

extended, a contradiction.
In the opposite case, namely, when C(x1y1) = C(x2y2), then if C(x1x3) ∈ C(y2) (or, similarly, if C(x2x3) ∈ C(y2)),

then, from the fact that |C(x1) ∪ C(x2) ∪ C(y2)| ≤ t − 1, we clearly have that the colouring C can be extended to
an acyclic t-colouring of H , a contradiction. On the other hand, if C(x1x3) 6∈ C(y2) and C(x2x3) 6∈ C(y2), then we can
recolour, in H ′, the edge x2y2 with a colour C(x1x3) and we are back in the previous case.

C2: This case is equivalent to the caseB1 in the proof of Lemma 5.
C3: This case is equivalent to the caseB2 in the proof of Lemma 5.
C4: If H contains a 4-vertex x adjacent to a 2-vertex y1 and a 4−-vertex y2, y1 6= y2, and such that there is a triangle xy2y3

which is not incident to y1, then let y4 be the remaining neighbour of x. Let H ′ = H − xy1. From the minimality of H it
follows that H ′ has an acyclic t-colouring C . Let z be the neighbour, in H ′, of y1. We need to consider three cases.
At the beginning, we assume that C(y1z) = C(xy2).
Moreover, if C(xy3), C(xy4) 6∈ C(y2) and C(xy2) 6∈ C(y3), then we can extend C by colouring the edge xy1 with the

colour C(y2y3). On the other hand, if C(xy3), C(xy4) 6∈ C(y2), but C(xy2) ∈ C(y3), then we can recolour, in H ′, the edge
y1z with a colour α 6∈ C(z)∪ {C(xy2), C(xy4)}. It can happen, that the only one possible α = C(xy3), but in this case we
can colour the edge xy1 with the colour C(y2y3) to extend the colouring C to an acyclic t-colouring ofH , a contradiction.
In the opposite case, if such an α 6= C(xy3), then, by Lemma 2, we can also extend the colouring C , a contradiction.
If C(xy3) ∈ C(y2) or C(xy4) ∈ C(y2), then it is easy to see that |C(x) ∪ C(y1) ∪ C(y2)| ≤ t − 1 and, by Lemma 2, we

can extend the colouring C , a contradiction.
In the second case we assume that C(y1z) = C(xy3) (or C(y1z) = C(xy4)). It is obvious that we can recolour, in H ′,

the edge y1z with a colour α 6∈ C(z) ∪ {C(xy3), C(xy4)}, and we are either in the first case or in the next case.
At the end, we assume that C(y1z) 6∈ C(x), but in this case it is obvious that the colouring C can be extended, because

WH ′(xy1) = ∅, a contradiction.
C5: IfH contains a 4-vertex x adjacent to a 2-vertex y1 and such that there is a triangle xy1y2, then let y3, y4 be the remaining

neighbours of x. Consider H ′ = H − xy1. From the minimality of H it follows that H ′ has an acyclic t-colouring C .
If C(y1y2) 6∈ C(x), then clearly the colouring C can be extended. In the opposite case, when C(y1y2) ∈ C(x), then
|C(x) ∪ C(y1) ∪ C(y2)| ≤ t − 1 and, by Lemma 2, the colouring C can be extended, again a contradiction.

C6: Let us assume that H contains a 4+-vertex x which has a neighbour y1 of degree 2 and is adjacent to at most two
4+-vertices. It is easy to observe that the worst case is when x is adjacent to exactly two 4+-vertices, say y2, y3. Let
H ′ = H − xy1. Similarly as above, H ′ has an acyclic t-colouring C . Let z be the neighbour, in H ′, of y1. We need to
consider two cases.
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Let us assume at the beginning that C(y1z) 6∈ {C(xy2), C(xy3)}. Clearly, |C(x) ∪ C(y1) ∪ C(WH ′(x, y1))| ≤ t − 1.
Hence, by Lemma 2, we can extend the colouring C to an acyclic t-colouring of H , a contradiction.
In the opposite case, if C(y1z) ∈ {C(xy2), C(xy3)}, say C(y1z) = C(xy2), then it is easy to observe that we can

recolour, in H ′, the edge y1z with the colour α 6∈ C(y1) ∪ C(z) ∪ {C(xy2), C(xy3)}, obtaining in this way an acyclic
t-colouring C ′ of H ′, and we are back in the previous case. �

For the class of planar graphs without cycles of length 4 we have the following upper bound for the acyclic chromatic
index.

Theorem 4. If G is a planar graph without cycles of length 4, then

χ ′a(G) ≤ ∆(G)+ 15.

Beforewe prove Theorem4,we show some structural properties of 2-connected planar graphswithout cycles of length 4.

Lemma 7. Let G be a 2-connected planar graph without cycles of length 4. Then G contains at least one of the configurations:
D1: a triangle incident to at least two 3−-vertices,
D2: a 2-vertex adjacent to at least one 9−-vertex,
D3: a 3-vertex adjacent to at least two 9−-vertices,
D4: a 4-vertex adjacent to at least three 7−-vertices,
D5: a d-vertex, with d ≥ 10, such that at least d− 5 of its neighbours are 4−-vertices and at least one of them is of degree 2.

Proof. We use the discharging method to prove the lemma. Let G = (V , E) be a 2-connected planar graph without cycles
of length 4. We fix a plane embedding of G. Let F be the face set of G. At the beginning we define a function f on V ∪ F as
follows: for each x ∈ V ∪ F , let f (x) = d(x)− 4. Clearly,∑

x∈V∪F

f (x) =
∑
x∈V

(d(x)− 4)+
∑
x∈F

(d(x)− 4) = 4(|E| − |V | − |F |) = −8, (2)

which follows from Euler’s formula and the fact that
∑
x∈V d(x) =

∑
x∈F d(x) = 2|E|. In the next step we will distribute the

values of f between adjacent vertices, faces and between incident vertices and faces, according to the rules described below,
to obtain the function f ′.

• If x is a 3−-vertex, then x does not give anything;
• if x is a 4-,5-,6-,7-vertex, then x gives 15 to each incident triangle;
• if x is a 8-,9-vertex, then x gives 15 to each incident triangle and

1
5 to each adjacent 4-vertex;

• if x is a 10+-vertex, then x gives 15 to each incident triangle,
1
5 to each adjacent 4-vertex,

1
2 to each adjacent 3-vertex and

1 to each adjacent 2-vertex;
• each non-triangular face x gives 15 · la(x, y) to each adjacent triangle y, where la(x, y) is the number of common edges (of
the face x and the triangle y).

Now each x ∈ V ∪ F has a new value f ′(x), but the sums of values of the functions f ′ and f , counting over all the vertices
and faces, remain the same.
We show that if G does not contain any of the configurations D1–D5, then f ′(x) is nonnegative for each x ∈ V ∪ F ,

contrary to the equality (2).
First we show that for each vertex x the value f ′(x) is nonnegative. We consider a number of cases depending on the

degree of x. Let lt(x) stand for the number of triangles incident to a vertex x.

• If d(x) = 2, then f ′(x) = −2+ 1 · l10+(x) = 0, becauseD2 does not hold.
• If d(x) = 3, then f ′(x) = −1+ 1

2 · l10+(x) ≥ −1+
1
2 · 2 = 0 in all cases, becauseD3 does not occur.

• If d(x) = 4, then f ′(x) = 0+ 1
5 · l8+(x)−

1
5 · lt(x) ≥

1
5 · 2−

1
5 · 2 = 0, which follows from the facts that l8+(x) ≥ 2, by

the absence ofD4, and that lt(x) ≤ 2, by Proposition 2.
• If 5 ≤ d(x) = d ≤ 7, then f ′(x) = d− 4− 1

5 · lt(x) ≥ d− 4−
1
5 ·

d
2 > 0, once again from Proposition 2.

• If 8 ≤ d(x) = d ≤ 9, then f ′(x) = d− 4− 1
5 · l4(x)−

1
5 · lt(x) ≥ d− 4−

1
5 · d−

1
5 ·

d
2 ≥ 0, because obviously l4(x) ≤ d

and lt(x) ≤ d
2 , by Proposition 2.

• If d(x) = d ≥ 10, then f ′(x) = d− 4− 1 · l2(x)− 1
2 · l3(x)−

1
5 · l4(x)−

1
5 · lt(x).

If l2(x) = 0 then f ′(x) = d−4− 12 · l3(x)−
1
5 · l4(x)−

1
5 · lt(x) ≥ d−4−

1
2 ·(l3(x)+ l4(x))−

1
5 · lt(x) ≥ d−4−

1
2 ·d−

1
5 ·
d
2 =

4
10 · d− 4 ≥ 0, because l3(x)+ l4(x) ≤ d and, similarly as above, lt(x) ≤

d
2 .

Therefore, we can assume l2(x) > 0. Moreover, one can observe that since bothD1 andD2 do not hold it follows that
in each triangle which is incident to x there can be at most one 3−-vertex. Hence l2(x)+ l3(x) ≤ d− lt(x). We consider
two cases.
First assume that lt(x) ≥ 1

4 · l4(x) + 5. Clearly, f
′(x) = d − 4 − l2(x) − 1

2 · l3(x) −
1
5 · l4(x) −

1
5 · lt(x) ≥

d− 4− (l2(x)+ l3(x))− 1
5 · l4(x)−

1
5 · lt(x) ≥ d− 4− (d− lt(x))−

1
5 · l4(x)−

1
5 · lt(x) =

4
5 · lt(x)−

1
5 · l4(x)− 4 ≥ 0.
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In the opposite case, if lt(x) < 1
4 · l4(x) + 5, then f

′(x) = d − 4 − l2(x) − 1
2 · l3(x) −

1
5 · l4(x) −

1
5 · lt(x) >

d−4− l2(x)− 12 · l3(x)−
1
5 · l4(x)−

1
5 ·(

1
4 · l4(x)+5) = d−5− l2(x)−

1
2 · l3(x)−

1
4 · l4(x) ≥ d−5−(l2(x)+ l3(x)+ l4(x)) > 0,

the last inequality follows from the fact that l2(x)+ l3(x)+ l4(x) < d− 5, by the absence ofD5.

To finish the proof it is enough to calculate the value f ′(x) for each x ∈ F .
If x is a triangle, then f ′(x) ≥ −1+ 1

5 · 2+
1
5 · 3 = 0, because the triangle has to be incident to at least two 4

+-vertices,
sinceD1 does not hold and,moreover, the triangle x cannot be adjacent to any other triangle, by the absence of 4-cycles inG.
On the other hand, if x is a cycle of degree d ≥ 5, then clearly, f ′(x) ≥ d− 4− 1

5 · d ≥ 0, since the cycle x can have with
adjacent triangles at most d common edges.
Hence for each x ∈ V ∪ F we have f ′(x) ≥ 0 and the proof is complete. �

Proof of Theorem 4. Let H be a counterexample to Theorem 4 with the minimum number of edges. There is no loss of
generality in assuming that H is connected. Let us fix a plane embedding of G. As in the prove of Theorem 3, we can assume
that H is 2-connected. Hence, by Lemma 7, H contains at least one of the configurationsD1–D5. Let t = ∆(H)+ 15.
By Lemma 2, it is sufficient to show that there exists an edge vu and an acyclic t-colouring C of H − vu such that

|C(v) ∪ C(u) ∪ C(WH−vu(v, u))| < t . We consider a number of cases, depending on which of the configurations D1–D5
occurs in H . In each case we point out such an edge which we can use with Lemma 2 to obtain a contradiction.

D1: This case is equivalent to the case C1 in the proof of Theorem 3.
D2: If H contains a 2-vertex xwhich is adjacent to a 9−-vertex y, then let H ′ = H − xy. From the minimality of H it follows

that H ′ has an acyclic t-colouring C .
One can easily observe that |C(x)∪C(y)∪C(WH ′(x, y))| ≤ ∆(H)+7, and, by Lemma 2, we can extend the colouring

C to an acyclic t-colouring of H , a contradiction.
D3: If H contains a 3-vertex x adjacent to two 9−-vertices y1 and y2, then let y3 be the remaining neighbour of x. Consider

H ′ = H− xy1. As above, by the minimality of H , we have that H ′ has an acyclic t-colouring C . We need to consider two
cases.
If |C(x)∩ C(y1)| ≤ 1, then clearly |C(x)∪ C(y1)∪ C(WH ′(x, y1))| ≤ ∆(H)+ 8 and, by Lemma 2, we can extend the

colouring C to an acyclic t-colouring of H , a contradiction.
In the opposite case, if |C(x) ∩ C(y1)| = 2, then if we assume that C(xy3) 6∈ C(y2), then it easy to observe that we

can recolour, in H ′, the edge xy2 with a colour α 6∈ C(x) ∪ C(y2) ∪ C(y1), and we are back in the previous case. On the
other hand, if C(xy3) ∈ C(y2), then |C(x) ∪ C(y1) ∪ C(WH ′(x, y1))| ≤ ∆(H) + 14 and, similarly as above, we can use
Lemma 2 to show that the colouring C can be extended to an acyclic t-colouring of H , a contradiction.

D4: If H contains a 4-vertex x adjacent to three 7−-vertices y1, y2, y3, then let y4 be the remaining neighbour of x. Let
H ′ = H − xy1. From the minimality of H it follows that H ′ has an acyclic t-colouring C . We consider two cases.
If we assume that |C(x)∩C(y1)| ≤ 2, then it is quite easy to observe that |C(x)∪C(y1)∪C(WH ′(x, y1))| ≤ ∆(H)+12

and, by Lemma 2, we can extend the colouring C to an acyclic t-colouring of H , a contradiction.
If |C(x)∩C(y1)| = 3, then let us assume at the beginning that C(xy3) 6∈ C(y2) (or C(xy4) 6∈ C(y2)). It easy to observe

that in this case we can recolour, in H ′, the edge xy2 with a colour α 6∈ C(x) ∪ C(y2) ∪ C(y1) ∪ C(WH ′(x, y2)), and we
are back in the previous case.
On the other hand, if C(xy3), C(xy4) ∈ C(y2), then C(xy2) 6∈ C(y3), since otherwise |C(x)∪C(y1)∪C(WH ′(x, y1))| ≤

∆(H) + 14 and, similarly as above, we can use Lemma 2 to show that the colouring C can be extended and obtain a
contradiction. But, if C(xy2) 6∈ C(y3), then we can recolour, in H ′, the edge xy3 with a colour α 6∈ C(x)∪C(y3)∪C(y1)∪
C(WH ′(x, y3)) and we fall in the first case.

D5: Let us assume that H contains a 10+-vertex x which has a neighbour y of degree 2 and is adjacent to at most five 5+-
vertices. Clearly, theworst case iswhen x is adjacent to exactly five 5+-vertices, say z1, z2, . . . , z5. ConsiderH ′ = H−xy.
As above, by the minimality of H , we have that H ′ has an acyclic t-colouring C . Let z be the neighbour, in H ′, of y. We
need to consider two cases.
Let us assume at the beginning that C(yz) 6∈ {C(xz1), . . . , C(xz5)}. Clearly, |C(x)∪C(y)∪C(WH ′(x, y))| ≤ ∆(H)+2.

Hence, by Lemma 2, we can extend the colouring C to an acyclic t-colouring of H , a contradiction.
In the opposite case, if C(yz) ∈ {C(xz1), . . . , C(xz5)}, say C(yz) = C(xz1), then it is easy to observe that we can

recolour, in H ′, the edge yz with a colour α 6∈ C(y) ∪ C(z) ∪ {C(xz1), . . . , C(xz5)}, obtaining in this way an acyclic
t-colouring C ′ of H ′, and we are back in the previous case. �
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