Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the maximum number of edges in a hypergraph with a unique perfect matching

Deepak Bal^{a,*}, Andrzej Dudek^b, Zelealem B. Yilma^a

^a Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA ^b Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA

ARTICLE INFO

Article history: Received 18 April 2011 Received in revised form 7 July 2011 Accepted 8 July 2011 Available online 30 July 2011

Keywords: Hypergraph Perfect matching

1. Introduction

ABSTRACT

In this note, we determine the maximum number of edges of a *k*-uniform hypergraph, $k \ge 3$, with a unique perfect matching. This settles a conjecture proposed by Snevily. © 2011 Elsevier B.V. All rights reserved.

Let $\mathcal{H} = (V, \mathcal{E}), \mathcal{E} \subseteq {\binom{V}{k}}$, be a *k*-uniform hypergraph (or *k*-graph) on *km* vertices for $m \in \mathbb{N}$. A perfect matching in \mathcal{H} is a collection of edges $\{M_1, M_2, \ldots, M_m\} \subseteq \mathcal{E}$ such that $M_i \cap M_j = \emptyset$ for all $i \neq j$ and $\bigcup_i M_i = V$. In this note we are interested in the maximum number of edges of a hypergraph \mathcal{H} with a unique perfect matching. Hetyei observed (see, *e.g.*, [1–3]) that for ordinary graphs (*i.e.* k = 2), this number cannot exceed m^2 . To see this, note that at most two edges may join any pair of edges from the matching. Thus the number of edges is bounded from above by $m + 2\binom{m}{2} = m^2$. Hetyei also provides a unique graph satisfying the above conditions. His construction can be easily generalized to uniform hypergraphs (see Section 2 for details). Snevily [4] anticipated that such generalization is optimal. Here we present our main result.

Theorem 1.1. For integers $k \ge 2$ and $m \ge 1$ let

$$f(k,m) = m + b_{k,2}\binom{m}{2} + b_{k,3}\binom{m}{3} + \dots + b_{k,k}\binom{m}{k},$$

where

$$b_{k,\ell} = \frac{\ell-1}{\ell} \sum_{i=0}^{\ell-1} (-1)^i \binom{\ell}{i} \binom{k(\ell-i)}{k}.$$

Let $\mathcal{H} = (V, \mathcal{E})$ be a k-graph of order km with a unique perfect matching. Then

$$|\mathcal{E}| \le f(k,m). \tag{1.1}$$

Moreover, (1.1) is tight.

* Corresponding author. E-mail address: dbal@cmu.edu (D. Bal).

Note

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.07.016

In particular, if $\mathcal{H} = (V, \mathcal{E})$ is a 3-uniform hypergraph of order 3m with a unique perfect matching, then

$$|\mathcal{E}| \le f(3,m) = m + 9\binom{m}{2} + 18\binom{m}{3} = \frac{5m}{2} - \frac{9m^2}{2} + 3m^3.$$

2. Construction

In this section, we provide a recursive construction of a hypergraph \mathcal{H}_m^* of order km with a unique perfect matching and containing exactly f(k, m) edges.

Let \mathcal{H}_1^* be a *k*-graph on *k* vertices with exactly one edge. Trivially, this graph has a unique perfect matching. Suppose we already constructed a *k*-graph \mathcal{H}_{m-1}^* on k(m-1) vertices with a unique perfect matching. To construct the graph \mathcal{H}_m^* on km vertices, add k-1 new vertices to \mathcal{H}_{m-1}^* and add all edges containing at least one of these new vertices. Then, add another new vertex and draw the edge containing the *k* new vertices. Formally, let

$$M_i = \{k(i-1) + 1, \dots, ki\} \quad \text{for } i = 1, \dots, m.$$
(2.1)

Let $\mathcal{H}_m^* = (V_m, \mathcal{E}_m), m \ge 1$, be a *k*-graph on *km* vertices with the vertex set

$$V_m = \{1, \ldots, km\} = \bigcup_{i=1}^m M_i$$

and the edge set (defined recursively)

$$\mathscr{E}_m = \mathscr{E}_{m-1} \cup \left\{ E \in \binom{V_m}{k} : E \cap M_m \neq \emptyset, \ km \notin E \right\} \cup \{M_m\}$$

where $\mathcal{E}_0 = \emptyset$.

Note that \mathcal{H}_m^* has a unique perfect matching, namely, $\mathcal{M}_m = \{M_1, M_2, \dots, M_m\}$. To see this, observe that the vertex km is only included in edge M_m . Hence, any matching must include M_m . Removing all vertices in M_m , we see that M_{m-1} must be also included and so on. We call the elements of \mathcal{M}_m , matching edges.

Claim 2.1. The k-graph $\mathcal{H}_m^* = (V_m, \mathfrak{E}_m)$ satisfies $|\mathfrak{E}_m| = f(k, m)$.

Proof. For $\ell = 1, 2, ..., k$, let \mathcal{B}_{ℓ} be the set of edges that intersect exactly ℓ matching edges, *i.e.*,

$$\mathcal{B}_{\ell} = \left\{ E \in \mathcal{E}_m : \sum_{i=1}^m \mathbf{1}_{E \cap M_i \neq \emptyset} = \ell \right\}.$$

Note that $\mathcal{E}_m = \bigcup_{\ell} \mathcal{B}_{\ell}$. Clearly, $|\mathcal{B}_1| = |\{M_1, \ldots, M_m\}| = m$, giving us the first term in f(k, m). Now we show that $|\mathcal{B}_{\ell}| = b_{k,\ell} \binom{m}{\ell}$ for $\ell = 2, \ldots, k$. Let $\mathcal{L} = \{M_{i_1}, M_{i_2}, \ldots, M_{i_{\ell}}\} \subseteq \mathcal{M}_m$ be any set of ℓ matching edges with $1 \le i_1 < i_2 < \cdots < i_{\ell} \le m$. Let \mathcal{G} be the collection of *k*-sets on the vertex set of \mathcal{L} which intersect all of $M_{i_1}, \ldots, M_{i_{\ell}}$. The principle of inclusion and exclusion (conditioning on the number of *k*-sets that do not intersect a given subset of matching edges) yields that

$$|\mathfrak{g}| = \sum_{i=0}^{\ell-1} (-1)^i \binom{\ell}{i} \binom{k(\ell-i)}{k}.$$

Now note that due to the symmetry of the roles of the vertices in \mathcal{G} , each vertex belongs to the same number of edges of \mathcal{G} , say η . Consequently, the number of pairs $(x, E), x \in E \in \mathcal{G}$ equals $k\ell\eta$. On the other hand, since every edge of \mathcal{G} consists of k vertices we get that the number of pairs is equal to $|\mathcal{G}|k$, implying that $\eta = |\mathcal{G}|/\ell$.

By construction, $E \in \mathcal{G}$ implies $E \in \mathcal{B}_{\ell}$ unless vertex ki_{ℓ} is in E. As

$$|\{E \in \mathcal{G} : ki_{\ell} \in E\}| = \eta = |\mathcal{G}|/\ell,$$

the number of edges of \mathcal{B}_{ℓ} on the vertex set of \mathcal{L} equals

$$\frac{\ell-1}{\ell}|\mathfrak{g}| = b_{k,\ell}.$$
(2.2)

As this argument applies to any choice of ℓ matching edges, we have $|\mathcal{B}_{\ell}| = b_{k,\ell} \binom{m}{\ell}$, thus proving the claim.

Corollary 2.2. For all integers $k \ge 2$ and $m \ge 1$,

$$f(k,m) = m + \sum_{i=1}^{m-1} \left[\binom{k(i+1)-1}{k} - \binom{ki}{k} \right]$$

Proof. We prove this by counting the edges of $\mathcal{H}_m^* = (V_m, \mathcal{E}_m)$ in a different way. Let $a_m = |\mathcal{E}_m|, m \ge 1$. Then it is easy to see that the following recurrence relation holds: $a_1 = 1$ and

$$a_m = a_{m-1} + \binom{km-1}{k} - \binom{k(m-1)}{k} + 1 \text{ for } m \ge 2,$$
 (2.3)

where the first binomial coefficient counts all the edges that do not contain vertex km; the second coefficient counts all the edges which do not intersect the matching edge M_m (cf. (2.1)); and the term 1 stands for M_m itself. Summing (2.3) over $m, m-1, \ldots, 2$ gives the desired formula. \Box

Note that \mathcal{H}_m^* proves that (1.1) is tight. However, in contrast to the case of k = 2, there are hypergraphs on km vertices containing a unique perfect matching and f(k, m) edges which are not isomorphic to \mathcal{H}_m^* . For example, if m = 2, consider an edge $E \in \mathcal{H}_2^*, E \neq M_1, M_2$. Let \overline{E} be the complement of $E, i.e., \overline{E} = \{1, \dots, 2k\} \setminus E$. Then, the hypergraph obtained from \mathcal{H}_{2}^{*} by replacing *E* with \overline{E} provides a non-isomorphic example for the tightness of (1.1).

3. Proof of Theorem 1.1

We start with some definitions. We use the terms "edge" and "k-set" interchangeably.

Definition 3.1. Given any collection of $2 < \ell < k$ disjoint edges $\mathcal{L} = \{M_1, \ldots, M_\ell\}$, we call a collection of edges $C = \{C_1, \ldots, C_\ell\}$ a covering of \mathcal{L} if

• $C_i \cap M_i \neq \emptyset$ for all $i, j \in \{1, \ldots, \ell\}$, and

•
$$\bigcup_i C_i = \bigcup_i M_i$$

Note that the second condition forces the edges in a covering to be disjoint.

Definition 3.2. Let \mathcal{L} be as in Definition 3.1, let \mathcal{C} be a covering of \mathcal{L} and let $\mathcal{C} \in \mathcal{C}$. We say \mathcal{C} is of type \vec{a} if

- $\vec{\mathbf{a}} = (a_1, \dots, a_\ell) \in \mathbb{N}^\ell$, $\sum_i a_i = k$ and $a_1 \ge a_2 \ge \dots \ge a_\ell \ge 1$, and there exists a permutation σ of $\{1, 2, \dots, \ell\}$ such that $|C \cap M_{\sigma(i)}| = a_i$ for each $1 \le i \le \ell$.

Let $\mathcal{A}_{k,\ell} = \{ \vec{\mathbf{a}} = (a_1, \dots, a_\ell) \in \mathbb{N}^\ell : a_1 \ge a_2 \ge \dots \ge a_\ell \ge 1 \text{ and } a_1 + \dots + a_\ell = k \}.$

Given a vector $\vec{a} \in A_{k,\ell}$, let $C_{\vec{a}}$ be the collection of all coverings C of \mathcal{L} such that every $C \in C$ is of type \vec{a} . In other words, $C_{\vec{a}}$ consists of coverings using only edges of type \vec{a} . We claim that $C_{\vec{a}}$ is not empty for every $\vec{a} \in A_{k,\ell}$. Indeed, for $i = 0, \ldots, \ell - 1$ let σ_i be a permutation of $\{1, 2, ..., \ell\}$ (clockwise rotation) obtained by a cyclic shift by *i*, *i.e.*, $\sigma_i(j) = j + i \pmod{\ell}$. We form C_i by picking $a_{\sigma_i(j)}$ items from M_j for each $1 \le j \le \ell$. As $\sum_i a_{\sigma_i(j)} = k$, we may pick the ℓ edges C_i to be disjoint, thereby obtaining a covering.

Proof of Theorem 1.1. Let $\mathcal{H} = (V, \mathcal{E})$ be a *k*-graph of order *km* with the unique perfect matching $\mathcal{M} = \{M_1, \ldots, M_m\}$. We show that $|\mathcal{E}| < f(k, m)$.

We partition the edges into collections of edges which intersect exactly ℓ of the matching edges. That is, for $\ell = 1, \ldots, k$, we set

$$\mathcal{B}_{\ell} = \left\{ E \in \mathcal{E} : \sum_{i=1}^{m} \mathbf{1}_{E \cap M_i \neq \emptyset} = \ell \right\}.$$

Clearly, $|\mathcal{E}| = \sum_{\ell=1}^{k} |\mathcal{B}_{\ell}|$. Once again, $|\mathcal{B}_{1}| = m$. We will show, by contradiction, that $|\mathcal{B}_{\ell}| \le b_{k,\ell} {m \choose \ell}$ for all $2 \le \ell \le k$.

Suppose that $|\mathcal{B}_{\ell}| > b_{k,\ell} \binom{m}{\ell}$ for some $2 \le \ell \le k$. Then, by the pigeonhole principle, there exists some set of ℓ matching edges, say, without loss of generality, $\mathcal{L} = \{M_1, \dots, M_\ell\}$ such that

$$|\mathcal{B}_{\ell} \cap \mathcal{H}[\mathcal{L}]| \ge b_{k,\ell} + 1, \tag{3.1}$$

where $\mathcal{H}[\mathcal{L}]$ denotes the sub-hypergraph of \mathcal{H} spanned by the vertices in $\bigcup_{i=1}^{\ell} M_i$. Let \mathcal{G} be the collection of all *k*-sets on $\bigcup_i M_i$ that intersect every $M_i \in \mathcal{L}$. That is

$$\mathcal{G} = \left\{ A : |A| = k, A \cap M_i \neq \emptyset \text{ for each } 1 \le i \le \ell \text{ and } A \subseteq \bigcup_i M_i \right\}.$$

As in (2.2), we have

$$b_{k,\ell} = \frac{\ell-1}{\ell} |\mathfrak{g}| = \frac{\ell-1}{\ell} \sum_{\mathbf{\tilde{a}} \in \mathcal{A}_{k,\ell}} |\mathfrak{g}_{\mathbf{\tilde{a}}}|$$

where $g_{\vec{a}}$ is the collection of *k*-sets of type \vec{a} . Hence, by Eq. (3.1) we get

$$|\mathcal{B}_{\ell} \cap \mathcal{H}[\mathcal{L}]| \geq \frac{\ell - 1}{\ell} \sum_{\bar{\mathbf{a}} \in \mathcal{A}_{k,\ell}} |\mathcal{G}_{\bar{\mathbf{a}}}| + 1$$

and consequently, there exists some type \vec{a} such that

$$|\mathcal{B}_{\ell} \cap \mathcal{G}_{\bar{\mathbf{a}}}| \ge \frac{\ell - 1}{\ell} |\mathcal{G}_{\bar{\mathbf{a}}}| + 1.$$
(3.2)

Recall that $|\mathcal{C}| = \ell$ and that $\mathcal{C}_{\vec{a}}$ is the nonempty collection of all coverings \mathcal{C} of \mathcal{L} such that every $\mathcal{C} \in \mathcal{C}$ is of type \vec{a} . By symmetry, every k-set $A \in \mathcal{G}_{\vec{a}}$ belongs to exactly

$$\frac{|\mathcal{C}_{\vec{a}}|\ell}{|\mathcal{G}_{\vec{a}}|}$$

coverings $C \in C_{\vec{a}}$. Since no $C \in C_{\vec{a}}$ is contained in \mathcal{H} (otherwise we could replace \mathcal{L} by C to obtain a different perfect matching, contradicting the uniqueness of \mathcal{M}), the number of k-sets in $\mathcal{G}_{\vec{a}}$ that are not in \mathcal{B}_{ℓ} is at least

$$|\mathcal{C}_{\vec{a}}| / \frac{|\mathcal{C}_{\vec{a}}|\ell}{|\mathcal{G}_{\vec{a}}|} = \frac{|\mathcal{G}_{\vec{a}}|}{\ell}.$$

That means,

$$|\mathcal{B}_{\ell} \cap \mathcal{G}_{\vec{a}}| \leq rac{\ell-1}{\ell} |\mathcal{G}_{\vec{a}}|$$

which contradicts (3.2). Thus, $|\mathcal{B}_{\ell}| \leq b_{k,\ell} \binom{m}{\ell}$, as required. \Box

References

[1] A. Hoffmann, L. Volkmann, On unique k-factors and unique [1, k]-factors in graphs, Discrete Math. 278 (2004) 127–138.

- [2] L. Lovász, On the structure of factorizable graphs. I, II, Acta Math. Acad. Sci. Hungar. 23 (1972) 179–195;
- L. Lovász, On the structure of factorizable graphs. I, II, Acta Math. Acad. Sci. Hungar. 23 (1972) 465–478.
- [3] L. Lovász, M. Plummer, Matching Theory, AMS Chelsea Publishing, Providence, RI, 2009, Corrected Reprint of the 1986 Original.

[4] H. Snevily, Personal communication, 2010.