Note

On the maximum number of edges in a hypergraph with a unique perfect matching

Deepak Bal ${ }^{\text {a,* }}$, Andrzej Dudek ${ }^{\text {b }}$, Zelealem B. Yilma ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA

A R T I C L E I N F O

Article history:

Received 18 April 2011
Received in revised form 7 July 2011
Accepted 8 July 2011
Available online 30 July 2011

Keywords:

Hypergraph
Perfect matching

Abstract

In this note, we determine the maximum number of edges of a k-uniform hypergraph, $k \geq 3$, with a unique perfect matching. This settles a conjecture proposed by Snevily. © 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let $\mathscr{H}=(V, \mathcal{E}), \mathcal{E} \subseteq\binom{v}{k}$, be a k-uniform hypergraph (or k-graph) on $k m$ vertices for $m \in \mathbb{N}$. A perfect matching in \mathscr{H} is a collection of edges $\left\{M_{1}, M_{2}, \ldots, M_{m}\right\} \subseteq \mathcal{E}$ such that $M_{i} \cap M_{j}=\emptyset$ for all $i \neq j$ and $\bigcup_{i} M_{i}=V$. In this note we are interested in the maximum number of edges of a hypergraph \mathscr{H} with a unique perfect matching. Hetyei observed (see, e.g., [1-3]) that for ordinary graphs (i.e. $k=2$), this number cannot exceed m^{2}. To see this, note that at most two edges may join any pair of edges from the matching. Thus the number of edges is bounded from above by $m+2\binom{m}{2}=m^{2}$. Hetyei also provides a unique graph satisfying the above conditions. His construction can be easily generalized to uniform hypergraphs (see Section 2 for details). Snevily [4] anticipated that such generalization is optimal. Here we present our main result.

Theorem 1.1. For integers $k \geq 2$ and $m \geq 1$ let

$$
f(k, m)=m+b_{k, 2}\binom{m}{2}+b_{k, 3}\binom{m}{3}+\cdots+b_{k, k}\binom{m}{k},
$$

where

$$
b_{k, \ell}=\frac{\ell-1}{\ell} \sum_{i=0}^{\ell-1}(-1)^{i}\binom{\ell}{i}\binom{k(\ell-i)}{k}
$$

Let $\mathscr{H}=(V, \mathcal{E})$ be a k-graph of order $k m$ with a unique perfect matching. Then

$$
\begin{equation*}
|\mathscr{E}| \leq f(k, m) \tag{1.1}
\end{equation*}
$$

Moreover, (1.1) is tight.

[^0]In particular, if $\mathscr{H}=(V, \mathcal{E})$ is a 3-uniform hypergraph of order $3 m$ with a unique perfect matching, then

$$
|\varepsilon| \leq f(3, m)=m+9\binom{m}{2}+18\binom{m}{3}=\frac{5 m}{2}-\frac{9 m^{2}}{2}+3 m^{3} .
$$

2. Construction

In this section, we provide a recursive construction of a hypergraph \mathscr{H}_{m}^{*} of order km with a unique perfect matching and containing exactly $f(k, m)$ edges.

Let \mathscr{H}_{1}^{*} be a k-graph on k vertices with exactly one edge. Trivially, this graph has a unique perfect matching. Suppose we already constructed a k-graph \mathscr{H}_{m-1}^{*} on $k(m-1)$ vertices with a unique perfect matching. To construct the graph \mathscr{H}_{m}^{*} on km vertices, add $k-1$ new vertices to \mathscr{H}_{m-1}^{*} and add all edges containing at least one of these new vertices. Then, add another new vertex and draw the edge containing the k new vertices. Formally, let

$$
\begin{equation*}
M_{i}=\{k(i-1)+1, \ldots, k i\} \quad \text { for } i=1, \ldots, m . \tag{2.1}
\end{equation*}
$$

Let $\mathscr{H}_{m}^{*}=\left(V_{m}, \mathcal{E}_{m}\right), m \geq 1$, be a k-graph on $k m$ vertices with the vertex set

$$
V_{m}=\{1, \ldots, k m\}=\bigcup_{i=1}^{m} M_{i}
$$

and the edge set (defined recursively)

$$
\varepsilon_{m}=\varepsilon_{m-1} \cup\left\{E \in\binom{V_{m}}{k}: E \cap M_{m} \neq \emptyset, k m \notin E\right\} \cup\left\{M_{m}\right\},
$$

where $\varepsilon_{0}=\emptyset$.
Note that \mathscr{H}_{m}^{*} has a unique perfect matching, namely, $\mathcal{M}_{m}=\left\{M_{1}, M_{2}, \ldots, M_{m}\right\}$. To see this, observe that the vertex km is only included in edge M_{m}. Hence, any matching must include M_{m}. Removing all vertices in M_{m}, we see that M_{m-1} must be also included and so on. We call the elements of \mathcal{M}_{m}, matching edges.

Claim 2.1. The k-graph $\mathscr{H}_{m}^{*}=\left(V_{m}, \varepsilon_{m}\right)$ satisfies $\left|\varepsilon_{m}\right|=f(k, m)$.
Proof. For $\ell=1,2, \ldots, k$, let \mathcal{B}_{ℓ} be the set of edges that intersect exactly ℓ matching edges, i.e.,

$$
\mathcal{B}_{\ell}=\left\{E \in \mathcal{E}_{m}: \sum_{i=1}^{m} \mathbf{1}_{E \cap M_{i} \neq \emptyset}=\ell\right\} .
$$

Note that $\mathcal{E}_{m}=\bigcup_{\ell} \mathcal{B}_{\ell}$. Clearly, $\left|\mathcal{B}_{1}\right|=\left|\left\{M_{1}, \ldots, M_{m}\right\}\right|=m$, giving us the first term in $f(k, m)$. Now we show that $\left|\mathcal{B}_{\ell}\right|=b_{k, \ell}\binom{m}{\ell}$ for $\ell=2, \ldots, k$. Let $\mathcal{L}=\left\{M_{i_{1}}, M_{i_{2}} \ldots, M_{i_{\ell}}\right\} \subseteq \mathcal{M}_{m}$ be any set of ℓ matching edges with $1 \leq i_{1}<i_{2}<$ $\cdots<i_{\ell} \leq m$. Let g be the collection of k-sets on the vertex set of \mathcal{L} which intersect all of $M_{i_{1}}, \ldots, M_{i_{\ell}}$. The principle of inclusion and exclusion (conditioning on the number of k-sets that do not intersect a given subset of matching edges) yields that

$$
|g|=\sum_{i=0}^{\ell-1}(-1)^{i}\binom{\ell}{i}\binom{k(\ell-i)}{k} .
$$

Now note that due to the symmetry of the roles of the vertices in g, each vertex belongs to the same number of edges of \mathcal{G}, say η. Consequently, the number of pairs $(x, E), x \in E \in g$ equals $k \ell \eta$. On the other hand, since every edge of g consists of k vertices we get that the number of pairs is equal to $|g| k$, implying that $\eta=|g| / \ell$.

By construction, $E \in \mathcal{g}$ implies $E \in \mathscr{B}_{\ell}$ unless vertex $k i_{\ell}$ is in E. As

$$
\left|\left\{E \in g: k i_{\ell} \in E\right\}\right|=\eta=|g| / \ell,
$$

the number of edges of \mathscr{B}_{ℓ} on the vertex set of \mathcal{L} equals

$$
\begin{equation*}
\frac{\ell-1}{\ell}|g|=b_{k, \ell} . \tag{2.2}
\end{equation*}
$$

As this argument applies to any choice of ℓ matching edges, we have $\left|\mathscr{B}_{\ell}\right|=b_{k, \ell}\binom{m}{\ell}$, thus proving the claim.
Corollary 2.2. For all integers $k \geq 2$ and $m \geq 1$,

$$
f(k, m)=m+\sum_{i=1}^{m-1}\left[\binom{k(i+1)-1}{k}-\binom{k i}{k}\right] .
$$

Proof. We prove this by counting the edges of $\mathscr{H}_{m}^{*}=\left(V_{m}, \varepsilon_{m}\right)$ in a different way. Let $a_{m}=\left|\mathcal{E}_{m}\right|, m \geq 1$. Then it is easy to see that the following recurrence relation holds: $a_{1}=1$ and

$$
\begin{equation*}
a_{m}=a_{m-1}+\binom{k m-1}{k}-\binom{k(m-1)}{k}+1 \quad \text { for } m \geq 2 \tag{2.3}
\end{equation*}
$$

where the first binomial coefficient counts all the edges that do not contain vertex $k m$; the second coefficient counts all the edges which do not intersect the matching edge M_{m} (cf. (2.1)); and the term 1 stands for M_{m} itself. Summing (2.3) over $m, m-1, \ldots, 2$ gives the desired formula.

Note that \mathscr{H}_{m}^{*} proves that (1.1) is tight. However, in contrast to the case of $k=2$, there are hypergraphs on $k m$ vertices containing a unique perfect matching and $f(k, m)$ edges which are not isomorphic to \mathscr{H}_{m}^{*}. For example, if $m=2$, consider an edge $E \in \mathscr{H}_{2}^{*}, E \neq M_{\underline{1}}, M_{2}$. Let \bar{E} be the complement of E, i.e., $\bar{E}=\{1, \ldots, 2 k\} \backslash E$. Then, the hypergraph obtained from \mathscr{H}_{2}^{*} by replacing E with \bar{E} provides a non-isomorphic example for the tightness of (1.1).

3. Proof of Theorem 1.1

We start with some definitions. We use the terms "edge" and " k-set" interchangeably.
Definition 3.1. Given any collection of $2 \leq \ell \leq k$ disjoint edges $\mathcal{L}=\left\{M_{1}, \ldots, M_{\ell}\right\}$, we call a collection of edges $\mathcal{C}=\left\{C_{1}, \ldots, C_{\ell}\right\}$ a covering of \mathcal{L} if

- $C_{i} \cap M_{j} \neq \emptyset$ for all $i, j \in\{1, \ldots, \ell\}$, and
- $\bigcup_{i} C_{i}=\bigcup_{i} M_{i}$.

Note that the second condition forces the edges in a covering to be disjoint.
Definition 3.2. Let \mathcal{L} be as in Definition 3.1, let \mathcal{C} be a covering of \mathcal{L} and let $C \in \mathcal{C}$. We say C is of type $\overrightarrow{\mathbf{a}}$ if

- $\overrightarrow{\mathbf{a}}=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{N}^{\ell}, \sum_{i} a_{i}=k$ and $a_{1} \geq a_{2} \geq \cdots \geq a_{\ell} \geq 1$, and
- there exists a permutation σ of $\{1,2, \ldots, \ell\}$ such that $\left|C \cap M_{\sigma(i)}\right|=a_{i}$ for each $1 \leq i \leq \ell$.

Let $\mathcal{A}_{k, \ell}=\left\{\overrightarrow{\mathbf{a}}=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{N}^{\ell}: a_{1} \geq a_{2} \geq \cdots \geq a_{\ell} \geq 1\right.$ and $\left.a_{1}+\cdots+a_{\ell}=k\right\}$.
Given a vector $\overrightarrow{\mathbf{a}} \in \mathcal{A}_{k, \ell}$, let $\mathcal{C}_{\overrightarrow{\mathbf{a}}}$ be the collection of all coverings \mathcal{C} of \mathcal{L} such that every $C \in \mathcal{C}$ is of type $\overrightarrow{\mathbf{a}}$. In other words, $\mathcal{C}_{\overrightarrow{\mathbf{a}}}$ consists of coverings using only edges of type $\overrightarrow{\mathbf{a}}$. We claim that $\mathcal{C}_{\overrightarrow{\mathbf{a}}}$ is not empty for every $\overrightarrow{\mathbf{a}} \in \mathcal{A}_{k, \ell}$. Indeed, for $i=0, \ldots, \ell-1$ let σ_{i} be a permutation of $\{1,2, \ldots, \ell\}$ (clockwise rotation) obtained by a cyclic shift by i, i.e., $\sigma_{i}(j)=j+i(\bmod \ell)$. We form C_{i} by picking $a_{\sigma_{i}(j)}$ items from M_{j} for each $1 \leq j \leq \ell$. As $\sum_{i} a_{\sigma_{i}(j)}=k$, we may pick the ℓ edges C_{i} to be disjoint, thereby obtaining a covering.

Proof of Theorem 1.1. Let $\mathscr{H}=(V, \mathcal{E})$ be a k-graph of order $k m$ with the unique perfect matching $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$. We show that $|\mathcal{E}| \leq f(k, m)$.

We partition the edges into collections of edges which intersect exactly ℓ of the matching edges. That is, for $\ell=1, \ldots, k$, we set

$$
\mathcal{B}_{\ell}=\left\{E \in \mathcal{E}: \sum_{i=1}^{m} \mathbf{1}_{E \cap M_{i} \neq \emptyset}=\ell\right\}
$$

Clearly, $|\mathscr{E}|=\sum_{\ell=1}^{k}\left|\mathscr{B}_{\ell}\right|$. Once again, $\left|\mathscr{B}_{1}\right|=m$. We will show, by contradiction, that $\left|\mathscr{B}_{\ell}\right| \leq b_{k, \ell}\binom{m}{\ell}$ for all $2 \leq \ell \leq k$.
Suppose that $\left|\mathcal{B}_{\ell}\right|>b_{k, \ell}\binom{m}{\ell}$ for some $2 \leq \ell \leq k$. Then, by the pigeonhole principle, there exists some set of ℓ matching edges, say, without loss of generality, $\mathcal{L}=\left\{M_{1}, \ldots, M_{\ell}\right\}$ such that

$$
\begin{equation*}
\left|\mathscr{B}_{\ell} \cap \mathscr{H}[\mathcal{L}]\right| \geq b_{k, \ell}+1 \tag{3.1}
\end{equation*}
$$

where $\mathscr{H}[\mathcal{L}]$ denotes the sub-hypergraph of \mathscr{H} spanned by the vertices in $\bigcup_{i=1}^{\ell} M_{i}$. Let \mathcal{q} be the collection of all k-sets on $\bigcup_{i} M_{i}$ that intersect every $M_{i} \in \mathcal{L}$. That is

$$
\mathcal{G}=\left\{A:|A|=k, A \cap M_{i} \neq \emptyset \text { for each } 1 \leq i \leq \ell \text { and } A \subseteq \bigcup_{i} M_{i}\right\}
$$

As in (2.2), we have

$$
b_{k, \ell}=\frac{\ell-1}{\ell}|g|=\frac{\ell-1}{\ell} \sum_{\overrightarrow{\mathbf{a}} \in \mathcal{A}_{k, \ell}}\left|\mathcal{g}_{\mathbf{a}}\right|,
$$

where $\mathscr{q}_{\overrightarrow{\mathbf{a}}}$ is the collection of k-sets of type $\overrightarrow{\mathbf{a}}$. Hence, by Eq. (3.1) we get

$$
\left|\mathscr{B}_{\ell} \cap \mathscr{H}[\mathscr{L}]\right| \geq \frac{\ell-1}{\ell} \sum_{\overrightarrow{\mathbf{a}} \in \mathcal{A}_{k, \ell}}\left|\mathscr{G}_{\tilde{\mathbf{a}}}\right|+1
$$

and consequently, there exists some type $\overrightarrow{\mathbf{a}}$ such that

$$
\begin{equation*}
\left|\mathscr{B}_{\ell} \cap \mathscr{G}_{\overrightarrow{\mathbf{a}}}\right| \geq \frac{\ell-1}{\ell}\left|\mathscr{G}_{\overrightarrow{\mathbf{a}}}\right|+1 . \tag{3.2}
\end{equation*}
$$

Recall that $|\mathcal{C}|=\ell$ and that $\mathcal{C}_{\overrightarrow{\mathbf{a}}}$ is the nonempty collection of all coverings \mathcal{C} of \mathcal{L} such that every $C \in \mathcal{C}$ is of type $\overrightarrow{\mathbf{a}}$. By symmetry, every k-set $A \in \mathcal{G}_{\mathbf{a}}$ belongs to exactly

$$
\frac{\left|\mathcal{C}_{\overrightarrow{\mathbf{a}}}\right| \ell}{\left|\mathcal{G}_{\overrightarrow{\mathbf{a}}}\right|}
$$

coverings $\mathcal{C} \in \mathcal{C}_{\overrightarrow{\mathbf{a}}}$. Since no $\mathcal{C} \in \mathcal{C}_{\overrightarrow{\mathbf{a}}}$ is contained in \mathscr{H} (otherwise we could replace \mathcal{L} by \mathcal{C} to obtain a different perfect matching, contradicting the uniqueness of \mathcal{M}), the number of k-sets in $\mathcal{g}_{\mathbf{a}}$ that are not in \mathscr{B}_{ℓ} is at least

$$
\left|C_{\overrightarrow{\mathbf{a}}}\right| / \frac{\left|C_{\overrightarrow{\mathbf{a}}}\right| \ell}{\left|\mathscr{G}_{\overrightarrow{\mathbf{a}}}\right|}=\frac{\left|\mathscr{C}_{\overrightarrow{\mathbf{a}}}\right|}{\ell} .
$$

That means,

$$
\left|\mathcal{B}_{\ell} \cap \mathcal{G}_{\overrightarrow{\mathbf{a}}}\right| \leq \frac{\ell-1}{\ell}\left|\mathscr{G}_{\vec{a}}\right|
$$

which contradicts (3.2). Thus, $\left|\mathcal{B}_{\ell}\right| \leq b_{k, \ell}\binom{m}{\ell}$, as required.

References

[1] A. Hoffmann, L. Volkmann, On unique k-factors and unique [1, k]-factors in graphs, Discrete Math. 278 (2004) 127-138.
[2] L. Lovász, On the structure of factorizable graphs. I, II, Acta Math. Acad. Sci. Hungar. 23 (1972) 179-195;
L. Lovász, On the structure of factorizable graphs. I, II, Acta Math. Acad. Sci. Hungar. 23 (1972) 465-478.
[3] L. Lovász, M. Plummer, Matching Theory, AMS Chelsea Publishing, Providence, RI, 2009, Corrected Reprint of the 1986 Original.
[4] H. Snevily, Personal communication, 2010.

[^0]: * Corresponding author.

 E-mail address: dbal@cmu.edu (D. Bal).

