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1. Introduction

Let H be a separable infinite dimensional complex Hilbert space and let B(H) be the algebra of all bounded linear
operators on H. An operator T € B(H) has a unique polar decomposition T = U|T|, where |T| = (T*T)% and U is a partial
isometry. For T = U|T| in B(H), the Aluthge transform of T is defined by T= IT| 3 U|T|l (cf. [1,10]). Several operators related
to such transforms are well developed and introduced in detail [8]. For every T in B(H), the sequence of Aluthge iterates
of T is defined by T® =T and T®+D = (T™)~ for n € N. In [11] the authors continued to study this sequence {T™} of
iterates, and discussed the convergence of Aluthge iterations in some special cases. In particular, it was shown in [4] that
the sequence {T‘")};’i ; of iterated Aluthge transforms of T need not converge in the strong operator topology in general.
However, it was proved that the sequence {T(")} (of n x n complex matrices) converges to a normal operator (cf. [3,2]). In
this note we discuss Aluthge iteration of a weighted translation semigroup {S;} with symbol ¢ which will be defined below.

Let R, := (R, i) be the Lebesgue measure space on the set of non-negative real numbers and let L? := L*(R,) be
the Hilbert space of square integrable Lebesgue measurable complex valued functions on R,. Let B(L?) be the algebra of
all bounded linear operators on L2. A family {S;: t € Ry} in B(L?) is a semigroup if So =1 and S;Ss = Sy for all t and s
in R,. In particular, a weighted translation semigroup {S:} on L? is defined by

P (X)
(S = | po-n X =0 fEsx
0 if0<x<t
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where ¢ is a measurable, almost everywhere non-zero function from R, into C that is called the symbol of {S;}. A semi-
group {S;} is strongly continuous if, for each f in L2, the mapping t — S;f is continuous from R, into L2. It follows from
[5, p. 619] that {S;} is strongly continuous on R if and only if there exist M, w > 0 such that

px+1)
¢

For brevity we will assume that ¢ is continuous on R, throughout this article. Since the weighted translation semigroups
with symbols ¢ and |¢| are unitarily equivalent, we will assume throughout this paper that all symbols of weighted trans-
lation semigroups are positive, and also assume that {S;} is a strongly continuous semigroup with symbol ¢. (See [9] for
more information about semigroups.)

This note is organized as follows: In Section 2 we introduce symbols with a fractional monotone property and discuss
membership in various classes for semigroups with such symbols. In Section 3 the nth Aluthge iterations of a weighted
translation semigroup {S;} are described in detail, and it is proved that if {S;} is a weighted translation semigroup whose
symbol has the fractional monotone property, then its Aluthge iteration {Ef")}n>1 converges to a quasinormal operator
in B(L2) under the strong operator topology.

ess sup <Me*t, teR,. (1.1)

xeR4

2. Fractional monotone properties

Let ¢ be a symbol satisfying (1.1) and let

Px+k+D) -
o <Kk,

o (x) := | #GFE=TD) ' (21)
0 ifo<x<t,

for ke Ng:=NU {0} and t € R;. Then {@;k) ¥}, is a sequence of measurable functions on R..

Definition 2.1. Let ¢ be a symbol satisfying (1.1). The symbol ¢ is said to have the fractional monotone property (we write
f.m.p.) if the sequence {<1>[(k) (®)}k>0 as in (2.1) is monotone pointwise on [t, 00), for each t € R,. And, when {qﬁ[(k) () }k>o0 is
monotone increasing (decreasing, resp.) pointwise on [t, co0) for each t € Ry, we say that the symbol ¢ has the fractional
monotone increasing (decreasing, resp.) property (we write f.m.i.p. (f.m.d.p, resp.)).

Let ¢ be a symbol with the f.m.p. Then, since

d(x+ (k+ 1)t) < qu(x+2t)
px+k—10) | ok

2
H <Me*™, x>t
o0

{dﬁt(k) (X)), is a bounded sequence pointwise on R for t € R,. Therefore a measurable bounded function limy_ o @t(k) x)
exists and we denote it by

) (x) = Jim o (x). (2.2)

In particular, if ¢ has the f.m.i.p. (or, fm.d.p.), then (Dt(oo)(x) = SUpP>0 <1>t(k) (%) (or, infio gbt(k) x)).
Recall from [6, Lemma 3.3] that a weighted translation semigroup {S;} with symbol ¢ is hyponormal if and only if

Px—DP(x+0 >¢*(x), x>t (2.3)
Proposition 2.2. Let {S;} be a weighted translation semigroup with symbol ¢. Then the following assertions are equivalent:

(i) {S¢} is hyponormal,
(ii) ¢ has the fm.i.p.;
(iii) log¢ is convex.

Proof. (i) = (ii). Suppose {S;} is hyponormal. By (2.3)
¢ (x+ 2t) < p(x+1t)
o0 T px—10’

which implies that (Dt(kﬂ)(x) > ¢>t(k) (%), k € Ng. Hence ¢ has f.m.i.p.
(ii) = (i). The method is similar to that used above and omitted.
(i) < (iii). Condition (iii) is equivalent to (2.3). (Also see [6, Lemma 3.3].) O
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Recall from [7] that T in B(H) is k-expansive if
k 2
S 0P D) TPR)* <0, hen.
0<p<k P
A simple computation shows that the k-expansivity of {S;} is equivalent to the inequality

i
3 (—1)1’(‘)¢2(x+pr)<0, XeR,, teR,. (2.4)
0<p<k P

Proposition 2.3. Let {S;} be a weighted translation semigroup with symbol ¢. Then {S;} is 2-expansive if and only if $(x) is concave,
and thus 2-expansivity implies that log ¢ is concave.

Proof. The first part is obvious by (2.4). For the second part, since ¢2(x) + ¢%(x + 2t) < 2¢2(x +1t), x € Ry, ¢ () (x + 2t) <
$2(x+1), ie, logg is concave. O

Corollary 2.4. If log ¢ is concave, then ¢ has f.m.d.p. Thus the symbol ¢ of any 2-expansive weighted translation semigroup {S¢} has
the fm.d.p.
Proof. Since the inequality ¢ (x)¢(x + 2t) < ¢%(x +t) implies that

o (x+2¢) < ¢(x+1)
p(x) p(x—1)

the sequence {th(")(x)}neNo is decreasing pointwise on [t, c0). Hence ¢ has fm.d.p. O

forall x> t,

Example 2.5. This example will be continued in Example 3.5.

(i) Let ¢(x) =e™* for x € Ry satisfying (1.1) with M = 1 = w. Then log¢(x) = —x is convex and concave but ¢? is not
concave. However, the symbol ¢ has both f.m.i.p. and f.m.d.p.

(i) Define ¢ (x) = \/log(x+ 1) for 0 < x <1 and ¢(x) = \/log2 for x > 1 satisfying (1.1). Then ¢ is concave, and so the
symbol ¢ has f.m.d.p.

(iii) Define ¢ (x) = e for 0 <x<1 and ¢(x) =e for x > 1 satisfying (1.1). Then ¢? is not convex nor concave. And also,
log ¢ is not convex nor concave.

Remark 2.6. There are several classes of operators with weak hyponormality, for example, p-paranormal operators, abso-
lutely p-paranormal operators, A(p)-class operators, etc. (The definitions of these classes will be given below.) The symbols
of these weighted translation semigroups have f.m.p., too. Recall that T is p-hyponormal if (T*T)? > (TT*)P; p-paranormal if
IITIPU|T|Px| > |||T|Px||?> for all unit vectors x € H; absolute p-paranormal if |||T|PTx|| > ||Tx|[P*! for all unit vectors x € H;
and A(p)-class if (T*|T|2PT)Y/®P+D > T2 (0 < p < 00) (cf. [8,12]). It is known that “p-hyponormal = A(p) class = ab-
solute p-paranormal”; “p-hyponormal = p-paranormal”. In fact, some direct computations show that if {S;} is a weighted
translation semigroup, then {S;} is one of the above weak hyponormal semigroups if and only if log¢ is convex, which
holds if and only if {S;} is hyponormal.

An operator T € B(H) is normaloid if ||T"|| = ||T||" for all n € N (cf. [8]). It is easy to show that if {S;} is a weighted
translation semigroup with symbol ¢, then {S;} is normaloid if and only if [|¢(x)/¢p(x — t)||% = llP(x)/¢(x —nt)|« for
all n e N. Also, it is known that “p-paranormal = normaloid” (cf. [8]); however, in general, the normaloid of a weighted
translation semigroup {S;} is not equivalent to its hyponormality (see Example 2.7).

Example 2.7. Let us consider a symbol ¢(x) =2 — x2 for 0 < x< 1 and ¢(x) =1 for x > 1 satisfying (1.1). Since log¢ is not
convex, a weighted translation semigroup {S;} with symbol ¢ is not hyponormal. But, ||S¢|| = [|¢(x)/d (X — t)]lcc =1 and
ST = ll¢p(x)/¢(x —nt)|loo = 1. Thus {S;} is normaloid.

3. Convergence of Aluthge iterations

Let {U;} be the isometric semigroup in B(L?) defined by (U f)(x) = f(x —t) for x >t and 0 otherwise. Then the polar
decomposition of a weighted translation semigroup S; is represented by U¢|S;|. Note that S} f(x) = ¢g‘(;t)f(x +t) and
1Self (0 = 202 F (0.

The following is the main theorem of this note.
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Theorem 3.1. Let {S;} be a weighted translation semigroup whose symbol ¢ has the f.m.p. Then the sequence {’s”g’”}@] of Aluthge
iteration converges to a quasinormal operator A in B(L%) under the strong operator topology (SOT), where

(00) (1 1/2 ;

Acf(x) = S () USRIt <, G1)

0 ifog<x<t.
We need several lemmas to prove this theorem.
Lemma 3.2. Let {S;} be a weighted translation semigroup with symbol ¢. Suppose that n € N. Then

n—1 (/2

= +k+ 1)\

SM £ix) = (W—) x—1t), x>t 3.2

0 IE) ST =)D fx=0 (32)

and 0 otherwise.

Proof. Since U; is isometric, by a simple computation, we have
$(x+1)
p(x—1t)

and 0 otherwise. Hence (3.2) holds for n = 1. For mathematical induction, we assume that (3.2) holds for some n > 1. For
brevity, write ¢, = ¢(x + kt), k=-1,0,1,.... Since

~ 1/2
stf(x):( ) fx=10), x>t

~ n—1 ¢ "2
S g(x) = H(%) -g(x+1), x>0,
k=0 k

we have that
n—1
~m)1/2 (¢>k+2
S = —_—
St ,E) Py

Set SMHD = [SM 172y, 5™ |1/2 with the polar decomposition S = U,[S™| of SI™. Since

("2t
) , x=>0.

_ _ n—1 ("2
SE")f<x>=Un|SE“)!f(x)=1‘[(%) R

o \ k=1
and 0 otherwise, U, = U;. Hence, for x > t, we have

§§n+1)f(X) — |’§§n)|l/2ut|§§n) |1/2f(x)

n—1 ("2 =1 ("2
_ ¢k+2> : (¢k+1 ) . ¢
|:,lj[< br }{U P f&x=0

" n-1 n—1 n+1
SO D SN
(" bl ¢(2:1} ¢( ¢(" N (
)+( ¢(n11)+(n2]).”¢ )*( )¢(1 1/2m+1
n+ _
< (" Y (” D+ OO+ H)+(,F1 ) (] fx=n
¢ n72 ¢n—
(0) (1) (2) (n 1)¢( )] 1/2m+1
n+ _
( 0, (") <2) ¢(n 1>¢<")) fx=10)
()/2n+1
_1—[(¢I<+1> f(X—l') x>0,
0 ¢k—

which proves this lemma. O

The next lemma and proposition use the function @ introduced in (2.1) and (2.2).
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Lemma 3.3. Suppose that {ay};2 , is a sequence of real numbers that converges to a. Then
(i) we have
. 1 < (n
i 2 (Jacme
k=0

n—1 n

(ii) if {®" (X)}n>0 is a sequence of positive real numbers that converges to ®°” (x) pointwise on R, then [T'—} (@ (x))("c )2

converges to (¢°” (x))1/2 pointwise on R, asn — oo.

Proof. (i) Let € > 0. Find N € N such that k > N implies |ay — a| < €. Let M = max{|ap —a|, |a; —al, ..., |an—1 — a|}. Then
when n > N we have

N-1

1 <& /n 1 & /n 1 n 1 & /n
2 (k)ak —al=5%D <k>(ak —0)| <[5 D (k)(ak —0)|+ |5 D <k>(ak —a)
k=0 k=0 k=0 k=N
N-1 n N-1
M n 1 n M n
<2_nZ</<>+2_HZ</<>E<2_"Z(k)“'
k=0 k=N k=0
Therefore limsup,,_, o, |21—,, > ko (Z)ak —a| < €. Since € > 0 was arbitrary, (i) holds.
(ii) Since
TT(a® e 572" ’
bn :=ln(]_[(<1>}‘)(x)) k ) 55 Z( >1n (2 W),
k=0

letting n — oo and applying (i), we see that the sequence {b,} converges to %ln(cpt(oo) (x)). And, upon exponentiating, we
obtain (ii). O

Remark 3.4. In fact if we consider an arbitrary monotone increasing (or, decreasing) sequence {a};2, of positive real

-1
numbers (instead of (& ®)}p2,) and write o 1= ]_[;Zfl(akﬂ)(nk )/2" then {on}p2; is monotone increasing (o, decreasing).
(Indeed, by mathematical induction, we may prove that {o,};2, is monotone increasing. For example, if {a} is increasing,
then

o1 = a}/z <(ma)t=0y= 01/4‘1;/4 <(@1a2)3(a2a3) B =03 = 1/8";/4";/8 < (@12)"®(a2a3) /B (azaq) /1

1/16 3/16 3/16 _1/16
:‘11/ az/ a3/ a4/ =04<---, etc

The monotone decreasing case is similar and omitted.)

Proof of Theorem 3.1. Suppose that ¢ has the fm.p. Let t e Ry and let E; :={x € R: Iqﬁfw)(x)l < ||®¢]loo}- Then obviously
the complement of E; has measure zero. To show the SOT-convergence of {§§")}n>1. for f e L2, we consider ||§§") fx) —

At f ()| 2, where A; is as in (3.1). Note that tDt(°°) x) = qﬁt(oo) (x —t) since dﬁfoo)(x) is periodic w.r.t. t € R;. And we have
that

1 2
I3 F o0 — Acf @7, = ]‘[¢~“‘>(x) G2 _ o 02| |fx—)| du
[£,00) ' K=0
n—1 N an 2
= [TT@ )% — 0w | ool du

R, | k=0

Applying Lemma 3.3, and by using the Lebesgue dominated convergence theorem, we see that ||§§") fx)— A f (x)||f2 —0
as n— oo.
On the other hand, since A f(x) = <I>t(°°) ()12 f (x +t), by direct computation, we find that

(00) ,13/2 ;
(AFA)AFX) = Ac(AFA) f(x) = { P = ifrsx
0 ifo<x<t.

Hence A; is quasinormal and the proof is complete. O

We close this note with the following examples and remark.
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Example 3.5. (Continued from Examples 2.5 and 2.7.) Using the same symbols as in Example 2.5(i), (ii) and (iii), we obtain
(i) Ar =e~2tU;; (ii) A = Uy; (iii) A; = U,. However, even if the symbol ¢ in Example 2.7 does not have the f.m.p, we may
obtain A; = U; because ¢ (x) is constant for x > 1.

Remark 3.6. We do not know whether the Aluthge iterations of a normaloid weighted translation semigroup {S;} with
symbol ¢ converges under the SOT.

Example 3.7. Theorem 3.1 allows us to easily construct many examples of a weighted translation semigroup {S:;} whose
Aluthge iteration {§§”)}n>1 converges to a quasinormal operator in B(L?) under the SOT. For example, let fo(x) = x + 1,
0<x<1,and let fr(x) = ﬁ(x—n)-l—fn_](n), n<x<n+1, for neN. Define ¢(x) =e/"® for n<x<n+1 and n € Ny.
Then obviously ¢(x) satisfies (1.1) and log¢(x) is concave. Thus, by Theorem 3.1, the Aluthge iteration converges to a
quasinormal operator A; in B(L2?) under the SOT.
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