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a b s t r a c t

Kalman filters are widely used in the turbine engine community for health monitoring
purpose. This algorithm has proven its capability to track gradual deteriorationwith a good
accuracy. On the other hand, its response to rapid deterioration is either a long delay in
recognising the fault, and/or a spread of the estimated fault in several components. The
main reason of this deficiency lies in the transition model of the parameters that assumes
a smooth evolution of the engine’s condition. The aim of this contribution is to compare
two adaptive diagnosis tools that combine a Kalman filter and a secondary system that
monitors the residuals. This auxiliary component implements on one hand a covariance
matching scheme and on the other hand a generalised likelihood ratio test to improve the
behaviour of the diagnosis tool with respect to abrupt faults.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the last years, predictivemaintenance has beenwidely promoted in the jet engine community. Amaintenance schedule
adapted to the level of deterioration of the engine leads to many advantages such as improved operability and safety or
reduced life cycle costs. In this framework, generating a reliable information about the health condition of the engine is a
requisite.
In this paper,Module Performance Analysis is considered. Its purpose is to detect, isolate and quantify the changes in

engine module performance, described by so-called health parameters, on the basis of measurements collected along the
gas path of the engine [1]. Typically, the health parameters are correcting factors on the efficiency and the flow capacity
of the modules (fan, lpc, hpc, hpt, lpt, nozzle) while the measurements are inter-component temperatures, pressures and
shaft speeds. As illustrated in Fig. 1, the diagnosis problem (or health parameter estimation problem) can be regarded as the
inverse problem of performance simulation.
Fig. 2 sketches a typical Exhaust Gas Temperature profile versus engine usage time. As far as time scale is considered,

engine health variations can be divided into two groups. On one hand, gradual deterioration (due to erosion or fouling for
instance) occurs during normal operation of the engine and affects all major components at the same time. On the other
hand, accidental events, caused for instance by hot restarts or foreign/domestic object damage,1 impact one (at most two)
component(s) at a time and occur infrequently. The time of occurrence of the event, as well as the impacted component and
the magnitude of the fault are typically unknown.
Among the numerous techniques that have been investigated to solve the diagnosis problem, see [2] for a detailed review,

the popular Kalman filter [3] has received special attention. This recursive, minimum-variance algorithm has proven its
capability to track gradual deterioration such as wear with good accuracy. Indeed, the Kalman filter embeds a transition
model that describes a ‘‘relatively slow’’ evolution of the health parameters. On the other hand, the response of the Kalman
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1 A Domestic Object Damage is caused by an element of the engine (e.g. part of a blade) that breaks off and strikes a downstream flow path component.
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Nomenclature

·̂ Estimated value
A8IMP Nozzle exit area (nominal value : 1.4147 m2)
EGT Exhaust Gas Temperature
EKF Extended Kalman Filter
GLR Generalised Likelihood Ratio
hpc High pressure compressor
hpt High pressure turbine
k Discrete time index
lpc Low pressure compressor
lpt Low pressure turbine
M Size of the buffer
N Rotational speed
nw Number of health parameters
ny Number of measurements
p0i Total pressure at station i
SEi Efficiency factor of the component whose entry is located at section i (nominal value : 1.0)
SWiR Flow capacity factor of the component whose entry is located at section i (nominal value : 1.0)
T 0i Total temperature at station i
uk Actual command parameters
wk Actual but unknown health parameters
yk Observed measurements
∆w Unknown abrupt fault
εk Measurement noise vector
νk Process noise vector
τ Unknown time of occurrence of the abrupt fault
N (m,R) A Gaussian probability density function with meanm and covariance matrix R

Fig. 1. The Gas Path Analysis approach to jet engine diagnostics.
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Fig. 2. Typical EGT margin profile showing gradual and abrupt health variations.

filter to short-time-scale variations in the engine condition is either a long delay in recognising the fault, or/and a spread of
the estimated fault over several components which is termed the ‘‘smearing’’ effect, see [4].
One way to tackle this problem is to reconsider it in the realm of adaptive estimation [5]. The basic idea consists of

increasing the mobility of the health parameters momentarily in order to recognise a rapid degradation. Two different
approaches have been investigated by the authors in previous researches. In [6], a Covariance Matching scheme has been
implemented in the Kalman filter. The constraints on the rate of variation of the health parameters are tuned on-line
by ensuring consistency between the observed residuals and their statistics. In [7], the transition model for the health
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parameters is modified so as to account for possible jumps in the parameters. A Generalised Likelihood Ratio Test that
detects and estimates abrupt faults is added to the Kalman filter for this improved transition model.
The present contribution aims at comparing both adaptive algorithms at the theoretical, implementation and

performance levels. As far as this last issue is concerned, the adaptive diagnosis tools are submitted to a series of simulated
fault cases that may be encountered on a commercial aircraft engine.

2. Kalman-filter-based diagnostics

The scope of this section is to describe the diagnosis toolwhich relies on the celebratedKalman filter [3]. One of themaster
pieces of this algorithm is amodel of the jet engine. Considering a steady-state operation of the gas turbine, these simulation
tools are generally nonlinear aero-thermodynamicmodels based onmass, energy andmomentumconservation laws applied
to the engine flow path. Eq. (1) represents such an engine model where k is a discrete time index, uk are the parameters
defining the operating point of the engine (e.g. fuel flow, altitude, Mach number), wk are the health parameters and yk
are the gas path measurements. A random variable εk ∈ N (0,Rr) which accounts for sensor inaccuracies and modelling
errors is added to the deterministic part G(·) of the model in order to reconcile the observed measurements and the model
predictions. Eq. (1) is therefore termed the statistical model.

yk = G(uk,wk)+ εk. (1)

In the frame of turbine engine diagnosis, the quantity of interest is the difference between the actual engine health
condition and a reference one. In the recursive approach that is proposed here, this reference value is represented by a so-
called prior value which designates a value of the health parameters ŵ−k that is available before the measurements yk are
observed. Assuming a linear relationship between the measurements and the health parameters around the prior values, as
well as given operating conditions, the statistical model is reformulated according to Eq. (2).

εk = rk − Gk(wk − ŵ−k ) (2)

where

rk , yk − G(uk, ŵ−k ) and Gk ,
∂G(uk,wk)

∂wk

∣∣∣∣
wk=ŵ−k

(3)

are respectively the a priori residuals and the Jacobian matrix of the engine model at the prior value ŵ−k .
A common interpretation of the Kalman filter is that of a recursive, bayesian algorithm for parameter identification. The

health parameters and the measurement noise are considered here as Gaussian random variables.2Within this framework,
the estimated health parameters are obtained by minimising the following objective function

J(wk) = (wk − ŵ−k )
T (P−w,k)−1 (wk − ŵ−k )+ εTk R−1r εk. (4)

The first term on the right-hand side of Eq. (4) forces the identified parameters to remain in the neighbourhood of the
prior values ŵ−k , the prior covariance matrix P−w,k specifying the shape of this region. The second term reflects a weighted-
least-squares criterion.
To generate the a priori values of the health parameter distribution (i.e.mean ŵ−k and covarianceP−w,k), amodel describing

the temporal evolution of the parameters must be supplied as well. Generally, little information is available about the way
the engine degrades which motivates the choice of a random walk model

wk = wk−1 + νk. (5)

The randomvariable νk ∈ N (0,Qk) is the so-called process noise that provides some adaptability to track a time-evolving
fault. In the present application it is assumed that the health parameters vary independently such that the covariancematrix
Qk is strictly diagonal. Even if the transition model (5) appears quite simple, the covariance matrix Qk enables the control of
the stochastic character of the time series formed by the health parameters wk: low values mean slow variations while high
values suppose fast variations.
Algorithm 1 summarises in a pseudo-code style the basic processing step of the extended Kalman filter. This algorithm

has a predictor–corrector structure and involves only basic linear algebra operations. On line 1, prediction of the prior
values of the health parameter distribution are made through the transition model (5). Then the data are acquired and
used for building the a priori residuals (lines 2 and 3). The Jacobian matrix is assessed on line 4 and subsequently used in
the computation of the covariance matrix of the residuals Py,k (line 5) and of the Kalman gain Kk (line 6). Loosely speaking,
it weights the uncertainty on the parameters versus the one on the measurements. Finally, the a posteriori distribution is
assessed at the corrector step (line 7).
To complete the picture, the block diagram in Fig. 3 shows this closed-loop, predictor–corrector structure. The interested

reader may consult Reference [8] for an extensive derivation and additional details.

2 Statistically, they are hence thoroughly defined by their mean and covariance matrix.
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Algorithm 1 : Basic step of the extended Kalman filter
1: ŵ−k = wk−1 and P−w,k = Pw,k−1 + Qk
2: acquire uk and yk
3: rk = yk − G(uk, ŵ

−

k )
4: compute Jacobian matrix as per eqn. 3
5: Py,k =

(
Gk P−w,k GTk + Rr

)
6: Kk = P−w,k GTk P−1y,k

7: ŵk = ŵ−k + Kk rk and Pw,k = (I− Kk Gk)P
−

w,k

Fig. 3. Performance monitoring tool based on an Extended Kalman Filter.

3. Adaptive algorithms

To improve the tracking abilities of abrupt faults without sacrificing the reliability of the estimation of long-time-scale
deterioration, adaptive estimation is considered. The approach is based on the assumption that abrupt faults may occur,
but that they occur infrequently. Hence, the core of the adaptive algorithm consists of a Kalman filter, which relies on the
assumption of a smooth variation of the engine condition. An auxiliary component complements the design. Basically, this
secondary system monitors the residuals of the filter to determine whether an abrupt event has occurred and adjusts the
response of the filter accordingly. In the following, two techniques are presented: the first one implements a covariance
matching scheme and the second one uses a generalised likelihood ratio test.

3.1. Covariance matching

The adaptive algorithm based on the covariance matching technique is inspired by the work in [9]. It is intended to
enforce consistency between the predicted residuals rk and their statistics. In short, the adaptive algorithm provides an on-
line feedback from the residuals in terms of process noise levels. A thorough description of the methodology being provided
in Reference [6], only the major elements are recalled in the following.
The implementation of the adaptive feature relies on a buffer containing the M + 1 latest residuals. The estimation is

hence delayed byM time steps ; it means that at time step k, the most recent estimate is ŵk−M−1 and that the new estimate
ŵk−M will be based on the residuals in the buffer. The covariance matching scheme is applied to the averaged residual over
theM + 1 samples of the buffer

rk =
1

M + 1

M∑
l=0

rk−l. (6)

This averagingmakes themean rk less sensitive to themeasurement noise. Indeed, it can be shown that themean residual
rk is a white and Gaussian random variable with zero-mean, E(rk|yk−M−1) = 0 and covariance matrix given by

E(rk rTk|yk−M−1) = Gk,M Pw,k−M G
T
k,M + Rr +

M∑
l=0

Gk,l Qk G
T
k,l (7)

where the ny × nw matrix Gk,l and the ny × ny matrix Rr are defined as

Gk,l =
1

M + 1

l∑
i=0

Gk−i and Rr =
1

M + 1
Rr. (8)
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The covariance matching scheme ensures consistency of the residuals with their statistics by determining Qk such that

diag
(
rk rTk

)
= diag

(
E(rk rTk|yk−M−1)

)
(9)

where the operator diag (·) designates the vector made of the diagonal values of a square matrix. The matching criterion
(9) is restricted to the diagonal terms of the matrix (rk rTk) as the off-diagonal terms are sensitive to the measurement noise,
even after the averaging performed by Eq. (6). The left-hand side of Eq. (9) is computed from the buffer of residuals, while
the right-hand side is the expected theoretical value from Eq. (7) that does not depend on the data.
For sake of simplicity, the matrix Qk is reduced to a vector containing its diagonal terms which leads to the following

equality to be verified

r2k − diag
(

Gk,M Pw,k−M G
T
k,M + Rr

)
= diag

(
M∑
l=0

Gk,l Qk G
T
k,l

)
⇔dk = Bk fk (10)

where

fk = diag (Qk) and Bk =
M∑
l=0

G
2
k,l (11)

note that in the computation of Bk, the square operator is applied element-wise.
In turbine engine diagnosis the number of health parameters nw generally exceeds the number of sensors ny. As a result,

thematrix Bk is not invertible and Eq. (10) has no unique solution. The diagonal terms ofQk are obtained from amaximum a
posteriori approach. Obviously, the maximum a posteriori solution is limited to positive values as f̂k is a variance. The prior
distribution is specified through its mean value fmin and its covariance matrix Pf . fmin is set to the value of the variance of
the process noise Qmink that is used to track gradual deterioration. The diagonal terms of Pf reflect the maximum expected
magnitude of an abrupt event.
The residuals dk in relation (10) are not Gaussian as they result from a non-linear operation on the residuals rk.

Consequently, the maximum a posteriori solution may be quite noisy for small-sized buffers. This generates spurious
covariance rises that decrease the quality of the filtering. It can be shown that in the case of progressive degradation, the
Mahalanobis distance qk, defined in Eq. (12), follows a Chi-squared distribution with ny degrees of freedom.

qk = rTk
(
Pr,k
)−1

rk (12)

where covariance matrix Pr,k is assessed through Eq. (7) with Qk = Qmink .
The scalar qk is compared to a threshold η defined by specifying an acceptable misclassification probability PF that is

the probability of obtaining qk > η in the case of gradual deterioration. Typically, PF is set to a low, but nonzero, value
(e.g. 10−6).

PF =
∫
∞

η

p(qk) dqk. (13)

If an abrupt fault is deemed to have occurred, themaximuma posteriori solution to Eq. (10) is used, otherwise the process
noise Qmink related to gradual deterioration is selected. This logic is translated mathematically in Eq. (14).

f̂k =

{
fmin +max

[
0 ,

(
P−1f + BTk Bk

)−1
BTkdk

]
if qk > η

fmin otherwise.
(14)

3.2. Generalised likelihood ratio

The adaptive algorithmbased on the generalised likelihood (GLR) technique is inspired by thework in [10]. It implements
a GLR test in order to detect and estimate abrupt faults. Themilestones of the technique are reported hereafter, the interested
reader can find a detailed description in Reference [7].
The adaptive algorithmuses amodified transitionmodel of the health parameters that accounts for possible abrupt faults

wk = wk−1 + νk +∆w δτ ,k. (15)

The last term in (15) accounts for a possible ‘‘jump’’ in the health parameters:

• ∆w is a vector modelling the jump,
• τ is a positive integer that represents its time of occurrence,
• δi,j is the Kronecker delta operator.



S. Borguet, O. Léonard / Journal of Computational and Applied Mathematics 234 (2010) 2202–2212 2207

Note that ∆w and τ are regarded here as unknown parameters and not as random variables, which means that no prior
distribution is attached to them.
The strategy of adaptive estimation comes from viewing the new state-space model according to two different

hypotheses:

• H0: no jump up to now (τ > k)
• H1: a jump has already occurred (τ ≤ k).

Under assumption H0, the Kalman filter provides an optimal estimation of the health parameters in the least-squares
sense. Under assumption H1, the residuals rk are a function of the jump characteristics τ and∆w. Given the linearisation of
the measurement equation, the residuals rk can be expressed as the sum of two terms

rk = rk,H0 + Hk,τ ∆w (16)

where rk,H0 are the residuals in the no-jump case, distributed as N (0,Py,k) and the second term represents the influence
of a jump∆w that has occurred at time τ on the residuals at time k. The matrix Hk,τ can be computed from the state-space
model and the Kalman filter equations, see Reference [10] for further details.
In order to determinewhich hypothesis betweenH0 andH1 is true, a GLR test (see [11]) is applied. In short, it is a statistical

test in which a ratio is computed between the maximum probability of a result under two different hypotheses, so that a
decision can bemade between them based on the value of this ratio. Unlike the classical likelihood ratio test, the generalised
one does not require prior distributions for τ and ∆w to be specified, but it provides estimates of these quantities. This is
definitely an advantage in the present application.
Similar to the approach taken in the covariance matching scheme, the detection of the occurrence of an abrupt event

is limited to a sliding window covering the previous M time steps. Essentially, the procedure consists first in computing
the maximum likelihood estimates τ̂ and ∆̂w from the residuals rk−M , . . . , rk assuming H1 is true. These values are then
substituted into the usual LRT for H1 versus H0. Given that all probability densities are Gaussian, the log-likelihood ratio
takes the form

lk,τ = dTk,τ C−1k,τ dk,τ k−M < τ ≤ k (17)

where matrix Ck,τ is deterministic and does not depend on the data while vector dk,τ is a linear combination of the residuals

Ck,τ =
k∑
j=τ

HTj,τ P−1y,j Hj,τ and dk,τ =
k∑
j=τ

HTj,τ P−1y,j rj. (18)

These two equations show that the likelihood ratio (17) actually implements a matched filter i.e. a correlation test
between the variations in the residuals and the signature of a jump, represented by Hk,τ .
The value τ̂ that maximises lk,τ represents the most likely time at which a jump occurred during the last M time steps.

The decision rule to choose between H0 and H1 is

lk,̂τ

H1
>
<
H0

η. (19)

The threshold η is directly related to the probability of false alarms PF in jump detection through

PF =
∫
∞

η

p(l = L|H0) dL (20)

where p(l = L|H0) is the probability density of lk,τ conditioned onH0 which is a central Chi-squared density with nw degrees
of freedom, see [10] for a proof. Specifying an allowable false alarm rate (small, but nonzero) gives the threshold value.
If hypothesis H1 is verified at time step k, a jump has occurred at estimated time τ̂ and its maximum likelihood estimate

is given by

∆̂w,k = C−1k,̂τ dk,̂τ (21)

the latter relation provides a least-squares estimate of the jump∆w assuming that τ is known and that no prior information
is available about the value of the jump. In that case, C−1k,̂τ is the error covariance of the estimate ∆̂w.
Once a jump is detected by the GLR test, the maximum likelihood estimates τ̂ and ∆̂w,k can be used directly to increment

the parameters estimated by the Kalman filter

ŵk = ŵk,KF +
(
I− Fk,̂τ

)
∆̂w,k︸ ︷︷ ︸

δŵk

(22)
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GLR

(a) Covariance matching. (b) Generalised likelihood ratio.

Fig. 4. Block diagram of the adaptive algorithms.

where ŵk,KF are the Kalman filter estimates, I ∆̂w,k is the contribution to the parameters of a jump that occurs at τ̂ and
Fk,̂τ ∆̂w,k represents the response of the Kalman filter to the jump prior to its detection.
In some cases, the estimate of the jump may be inaccurate. To reflect this degradation in the quality of the estimate,

caused by the jump, it is advised in [10] to increase the covariance matrix of the health parameters accordingly. This rise in
parameter covariance results in an increased Kalman gain i.e. an increased bandwidth. The filter can improve its response
to the jump and hence compensate for inaccuracies in τ̂ and ∆̂w,k. The covariance modification is done through

Pw,k = Pw,k,KF +
(
I− Fk,̂τ

)T
C−1k,̂τ

(
I− Fk,̂τ

)︸ ︷︷ ︸
δPw,k

. (23)

As mentioned in the description of the covariance matching scheme, the number of health parameters generally
outweighs the number of measurements. As a consequence, the system is only partially observable and matrix Ck,τ is
singular. In that case, the pseudo-inverse usefully replaces the common inverse. The possible jump directions are then
restricted to the observable subspace of the parameter space, see [12] for further details. Another possibility is to estimate
the jump with a bayesian approach. The introduction of prior knowledge about the jump focuses the search for a solution
in a neighbourhood of the a priori values. Note that this solution could also be used for fully observable systems in the case
where some a priori information about the possible range of values for∆w is available.

3.3. Practical implementation of the adaptive algorithms

To complete the presentation of the adaptive filters, Fig. 4 sketches the integration of each adaptive component, which
comprises all the elements in the dashed box, with the Kalman filter. For sake of clarity, only themost relevant data streams
are sketched in the diagram. The left part of the figure is related to the implementation of the covariance matching scheme.
The ‘‘data buffer’’ box stores the residuals and compute their averaged values rk. The ‘‘adaptive estimation’’ box implements
relation (14).
The right part of the figure depicts the implementation of the generalised likelihood technique. The ‘‘GLR’’ box updates

the quantities dk,τ and Ck,τ in theM-sized buffer. Note that recursive relations can be derived, see [10]. The likelihood ratio
is assessed through Eq. (17) and its maximum value is searched for. The outputs of the GLR box are the estimated time of
occurrence of the jump τ̂ (not represented), the estimated jump ∆̂w,k and the maximum value of the likelihood ratio in the
buffer lk,̂τ .

4. Application

4.1. Engine layout

The application used as a test case is a high bypass ratio, mixed-flow turbofan. The engine performance model has been
developed in the frame of theOBIDICOTE3 project and is detailed in [13]. A schematic of the engine is sketched in Fig. 5where
the location of the eleven health parameters and the station numbering are also indicated. Only one command variable,
which is the fuel flow rate fed in the combustor, is considered here.
The sensor suite selected for diagnosing the engine condition is representative of the instrumentation available on-board

contemporary turbofan engines and is detailed in Table 1 where the nominal accuracy of each sensor is also reported.

3 A Brite/Euram project for On-Board Identification, Diagnosis and Control of Turbofan Engine.
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Fig. 5. Turbofan layout with station numbering and health parameters location.

Table 1
Selected sensor suite (uncertainty is three times the standard deviation).

Label Uncertainty Label Uncertainty

p013 ±100 Pa T 013 ±2 K
p03 ±5000 Pa T 03 ±2 K
Nlp ±6 RPM Nhp ±12 RPM
T 05 ±2 K

Table 2
List of abrupt component faults.

Label Definition of the fault Faulty component

a −1% on SW12R −0.5% on SE12 FAN
−0.7% on SW2R −0.4% on SE2 LPC

b −1% on SE12

c −1% on SW26R −0.7 % on SE26 HPC
d −1% on SE26
e −1% on SW26R

f +1% on SW41R HPT
g −1% on SW41R −1 % on SE41
h −1% on SE41

i −1% on SE49 LPT
j −1% on SW49R −0.4 % on SE49
k −1% on SW49R
l +1% on SW49R −0.6 % on SE49

m +1% on A8IMP Nozzle
n −1% on A8IMP

4.2. Definition of the test-cases

Simulated data have been generated to examine how both adaptive algorithms perform and to assess the improvements
they can achieve with respect to the generic EKF. Cruise conditions (Alt= 10668m, Mach= 0.8,∆TISA = 0 K) are assumed.
The flight sequence is 5000 s long and the sampling rate is set to 2 Hz. Gaussian noise, whose magnitude is specified in
Table 1 is added to the clean simulated measurements to make them representative of real data. No sensor malfunction
such as bias or drift is considered in the present study.
Enginewear due to normal operation is simulated by linearly drifting values of nearly all health parameters, starting from

a healthy engine (all parameters at their nominal values) at t = 0 s and with the following degradation at the end of the
sequence (t = 5000 s):−0.5 % on SW12R,−0.5% on SE12,−0.4% on SW2R,−0.5% on SE2,−1.0% on SW26R,−0.7% on SE26,
+0.4% on SW41R,−0.8% on SE41,−0.5% on SE49. To demonstrate the improvements achievedwith the adaptive algorithms,
a number of fault cases, summarised in Table 2, are superimposed one at a time to the global performance deterioration.
While far from being exhaustive, these cases are representative of typical accidental component faults that can be expected
on turbofans and are added as a step change to engine wear at t = 2500 s. This library of degradations (both distributed and
localised) has been devised in the frame of the OBIDICOTE project too, see [14] and has been used in a number of studies.
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Table 3
Comparison of the figure of merit obtained with the generic and adaptive algorithms.

Case EKF EKF+ CM EKF+ GLR

wear (w) 0.09 % 3 0.10 % 3 0.10 % 3

w+ a 0.50 % - 0.14 % 3 0.12% 3

w+ b 0.27 % - 0.08 % 3 0.09 % 3

w+ c 0.20 % 3 0.13 % 3 0.11 % 3

w+ d 0.18 % 3 0.11 % 3 0.13 % 3

w+ e 0.32 % - 0.15 % 3 0.12 % 3

w+ f 0.21 % 3 0.10 % 3 0.09 % 3

w+ g 0.43 % - 0.12 % 3 0.11 % 3

w+ h 0.23 % 3 0.12 % 3 0.10 % 3

w+ i 0.20 % 3 0.10 % 3 0.09 % 3

w+ j 0.53 % - 0.52 % - 0.57 % -
w+ k 0.45 % - 0.13 % 3 0.09 % 3

w+ l 0.40 % - 0.08 % 3 0.09 % 3

w+m 0.16 % 3 0.13 % 3 0.11 % 3

w+ n 0.34 % - 0.14 % 3 0.15 % 3

4.3. Definition of a figure of merit

The quality of the estimation performed by the generic and adaptive diagnosis tools is assessed in terms of themaximum
root mean square error (RMSE) over the last 50 s of the sequence (i.e. over 100 samples):

RMSE = max

(√√√√ 1
100

5000s∑
t=4950s

(
wt − ŵt

whl

)2)
(24)

where whl are the nominal values of the health parameters.
Given the stochastic character of the measurement noise, each test-case has been run twenty times. The RMSEs reported

in Table 3 are the average values over the twenty runs in order to guarantee that they are statistically representative. A
test-case characterised by an averaged maximum RMSE below 0.25% is declared as successful which is indicated by a check
mark. This threshold corresponds to roughly three times the standard deviation of the identified health parameters (i.e. the
square root of the diagonal terms of the covariance matrix Pw,k).

4.4. Results

The generic and adaptive diagnosis tools have been run on the aforementioned test-cases. The tuning parameters for the
covariance matching scheme are a buffer size M = 50 samples and a probability PF = 10−4%. For the GLR detector, the
sliding window has a width ofM = 10 time steps and a probability PF = 10−4% too. These settings were found satisfactory
for the level of noise and the magnitude of the abrupt faults.
Table 3 reports the figure of merit defined by (24) for the different fault-cases that have been considered in the present

study. The first line is related to the case of engine wear (abbreviatedw in the subsequent lines). For this case of long-time-
scale deterioration, the Kalman filter performs an accurate tracking of the engine condition, which is confirmed by a RMSE
of 0.09%. It can also be seen that the adaptive tools have essentially the same performance as the Kalman filter for this test-
case. Indeed, as long as the adaptive component does not issue any detection flag, the adaptive algorithm confounds with
the generic one. This can clearly be seen from the schematics in Fig. 4.
Considering the cases ofmixing gradual deterioration and an abrupt component fault, it can be seen that the EKF achieves

a reasonable identification for a mere 6 cases out of 14. Furthermore, the figure of merit is a measure of the estimation
accuracy at the end of the sequence, but does not reflect the delay in fault recognition. On the other hand, both adaptive
tools succeed in solving all test-cases but case w + j. The meaning of this statement is twofold: the gradual deterioration
is effectively tracked and each abrupt fault (but the type j ones) is correctly detected and isolated. The figure of merit is
about the same as for the case of pure engine wear, which hints at the capability of the adaptive tools to efficiently handle
accidental events. For sake of completeness, the misdiagnosis of case w + j is due to a lack of observability of the health
parameters of the turbines with the sensor configuration used here.
Fig. 6 depicts the identification of fault case w + a. The left graphs are obtained with the generic EKF, while the right

ones result from the combination of the EKF and the GLR detector. It can readily be seen that the generic Kalman filter is
unable to follow the abrupt change in the performance of the fan and the lpc. This fast variation is indeed not accounted
for in the transition model of the health parameters that is blended in the EKF. As a result, the fault is spread over multiple
components such as the hpc (SW26R) and the lpt (SE49). Moreover, several hundreds of seconds are needed to (erroneously)
recognise the abrupt fault.
The processing of the same fault case by the EKF+ GLR algorithm leads to obvious improvements. First, the abrupt fault

is localised on the fan and the lpc and its magnitude is quite fairly assessed, the drop on SW2R being slightly overestimated.
Second, the responsiveness for recognising the fault has dramatically improved. These two points greatly enhance the
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(a) Kalman filter (EKF).

(b) Adaptive filter (EKF+ GLR).

Fig. 6. Tracking of engine wear+ fault ‘a’.

relevance of the results and provide a detailed insight of the temporal evolution of the engine condition. Similar conclusions
can be drawn for the adaptive algorithm featuring the covariance matching scheme.

5. Conclusion

In this contribution, two adaptive algorithms for engine health monitoring have been presented and compared. Both
combine a Kalman filter, which provides accurate estimation of the health condition for long-time-scale deterioration
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(such as engine wear), and an adaptive component which monitors the residuals and looks for abrupt changes in the health
condition. On one hand, a covariance matching scheme performs an on-line tuning of the process noise variances. On the
other hand, a generalised likelihood ratio test detects and estimates rapid changes in the engine condition. Interestingly,
the present approach does not require the set-up of a pre-defined bank of accidental faults. The methodology could also be
extended to handle system faults such as stuck bleed valves or mistuned variable stator vanes.
The improvements brought by the adaptive algorithms with respect to a generic Kalman filter have been illustrated

on a turbofan application. The accurate estimation of abrupt faults achieved by the adaptive algorithms allows efficient
performance monitoring and better component fault isolation. Moreover, the good tracking properties of the Kalman filter
are maintained for slow evolutions of the engine’s condition.
The implementation of the adaptive algorithms is quite straightforward and involves only basic matrix operations.

The computational burden of the generalised likelihood ratio technique is slightly higher than that of the covariance
matching scheme. Yet, the former provides a more detailed description about the abrupt fault ; indeed the estimated time
of occurrence, the impacted component and the magnitude of the fault are reported while the latter only recognises the
occurrence of an accidental event within a memory buffer and increases the covariance of the impacted component. With
information fusion in mind, the generalised likelihood ratio approach seems therefore to be more promising.
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