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On-line electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) was devel-
oped using a microflow electrolytic cell. This technique was applied to electrochemical
oxidation of caffeic acid (CAF) which is known to be a highly antioxidative agent. Effects of
electrolytic potentials on ion intensities of product ions and on electrolytic currents were
examined at different pHs. Dimer products were detected at electrolytic potentials of E = 0.7
V (vs. Ag/AgCl) and trimer products at 1.0 V at pH 9. Dimer products were distinguished
from hydrogen-bonded complexes by MS/MS experiments. Hydrogen/deuterium exchange
experiments determined the number of hydroxyl and carboxyl groups in the Dimers formed
by electrolysis. The mechanism of oxidative polymerization of CAF is discussed with

speculation as to the structure of the dimer product.

(J Am Soc Mass Spectrom 2004, 15,

1228-1236) © 2004 American Society for Mass Spectrometry

widely distributed in plants, are known to exhibit

relatively high antioxidative activities [1]. The
antioxidative reactions of polyphenols have been stud-
ied by means of absorption spectroscopy [2], pulse
radiolysis [3-5], EPR [5], NMR [6, 7], HPLC [8-10], and
also electrochemical methods including cyclic voltam-
metry [11-16] and flow coulometry [13-15]. In previous
electrochemical studies [14-16], it was claimed that the
higher radical scavenging activities of polyphenols can
be ascribed to oxidative dimerization (or even higher
degrees of polymerization) through which oxidizable
—OH moieties are reproduced in the “oxidation” prod-
ucts. One of the possible mechanisms of oxidative
dimerization for caffeic acid [14] (CAF) is shown in
Figure 1. This mechanism is assumed to involve Dimer
1 being formed by a coupling reaction of the semiqui-
none radical as an intermediate of one-electron oxida-
tion. Through the coupling reaction, two —OH moieties
are regenerated, so that Dimer 1 possesses four —OH
moieties. If Dimer 1 is further oxidized to Compound 2,
four electrons will be involved in the oxidation of one

Polyphenols (e.g., catechols, flavonoids, tannins),
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molecule of Dimer 1. In this way, Compound 2 is
obtained by oxidizing two molecules of CAF with six
electrons. Although Compound 2 may undergo further
polymerization and oxidation, three electrons have
been involved, at this stage, in oxidizing the CAF
monomer. This is in line with a previous observation
that the number of electrons (1) required for flow-
electrolytic oxidation of CAF (as well as other polyphe-
nols) was larger than that expected based on the num-
ber of —OH moieties in the molecules, i.e., n > 2[14, 15].
Although Dimer 1 and various other dimers of CAF are
reportedly formed by chemical autooxidations [8, 9],
the electrochemical oxidation products could not be
isolated despite considerable effort [14, 15], because the
dimer(s) was susceptible to further polymerization.

In this study, we employed an on-line electrochemis-
try /mass spectrometry (EC/MS) technique with a view to
identifying unstable oxidation products of CAF. The idea
of coupling an electrochemical flow cell to MS for the
identification of non-volatile products was first realized by
Hambitzer and Heitbaum, who connected a three-elec-
trode flow cell to a thermospray mass spectrometer [17].
This approach was then extended to other ionization
techniques, e.g., fast-atom bombardment [18], particle-
beam [19] and electrospray [20—29] (see also a review [30]
on EC/MS). Among the above ionization techniques,
electrospray ionization (ESI), a soft ionization technique, is

Received January 13, 2004
Revised May 5, 2004
Accepted May 5, 2004


https://core.ac.uk/display/82545149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J Am Soc Mass Spectrom 2004, 15, 1228-1236

OH o o
Ao Ht, e ‘\ OH I om
L = J} | /; > “ |
Hc%ﬁ/comx H*, el HCs -co0H HC‘\C./COOH
H H
CAF
Red Semi
MW 180 MW 179

Dim (Rea)
MW 358

CAFFEIC ACID OXIDATION BY ON-LINE EC/ESI-MS 1229

fj/o
H+ e 7

HCs__COOH
C
H
o Ox
[
> MW 178
Semi
COOH COOH

HOOC HOOC
I ‘l 4H+, 4e I ‘I
HO OH o o

OH OH o Y
1 2

S \_COOH

’ \. 0/:\/

HOOC\I/O

Figure 1. A possible mechanism of the oxidative dimerization of caffeic acid (CAF).

the most promising for application to thermally unstable
compounds such as biomolecules. However, there have
been only a few EC/ESI-MS studies on biologically rele-
vant redox reactions. Deng and Van Berkel used a thin-
layer electrochemical flow cell coupled on-line with
ESI-MS to study the redox reaction of dopamine [27]. The
two major oxidation products in aqueous methanol at pH
4 were identified as 5,6-dihydroxyindoline and 5,6-hy-
droxyindole. The Bruins group examined the possible use
of EC/ESI-MS as a convenient means of mimicking phase
I oxidative reactions in drug metabolism [28]. It should
also be noted that EC/ESI-MS has been successfully
employed by Van Berkel’s group to study electrochemical
polymerizations of aniline [25] and methylene blue [26].

We designed a microflow electrolytic cell which has
a narrow flow channel (0.5 mm X 1.0 mm X 14 mm)
tightly packed with carbon fiber as a working electrode.
This microflow cell has allowed for 100% electrolysis at
flow rates below 0.05 mL min~'. We then combined the
microflow cell with ESI-MS for product analysis of the
electrochemical oxidation of CAF.

Experimental
Materials

The special grade CAF was purchased from Nacalai
Tesque Co. Ltd., Osaka, Japan and used without further

purification. Ammonium acetate, acetic acid, sodium
hydroxide, methanol, d,-water (99.8 %), and d,-metha-
nol (99.8 %) were all obtained from Wako Pure Chem-
ical Industries Ltd., Osaka, Japan.

Sample Solutions

The carrier solution was prepared by dissolving ammo-
nium acetate (1 mM) in water/methanol (20/80, vol/
vol), in which CAF was dissolved to make a 100 uM
solution. The pH of the sample solution was adjusted to
5, 7, or 9 with acetic acid or sodium hydroxide. For
determination of the number of hydroxyl groups in the
reaction products, the sample solution was prepared as
described above except that d,-water/d,-methanol was
used instead of the undeuterated solvent mixture; the
pH of the sample solution was adjusted to 9 with
undeuterated sodium hydroxide.

Microflow Cell

Figure 2 shows the microflow cell (MFC). We assem-
bled the three-electrode MFC (now available from Ki-
moto Electric Co.; model UE-491002; Osaka, Japan) as
follows: A narrow channel was formed on a glassy
carbon (GC) disk electrode embedded in a PVC pedes-
tal using a PTFE gasket. The channel was tightly packed
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syringe pump ——

Figure 2. Schematic of a microflow cell (MFC) for EC/ESI-MS
system: (A) Titanium, (B) dialysis membrane, (C) PTFE, (D) PVC,
(E) 1 mM CH,COONH, (H,O:MeOH 20/80(vol/vol), (RE) Ag/
AgCl reference electrode, (CE) Pt counter electrode, (WE) glassy
carbon working electrode.

with carbon fiber (supplied by Toray Industries Inc.,
Tokyo, Japan) and then covered with a dialysis mem-
brane (Viskase Sales Corp., Willowbrook, IL; UC36-32-
100). The laminated structure was supported by down-
ward pressure applied with a titanium disk with small
holes for electric conduction, a cylindrical PVC lid with
a platinum counter electrode, and six screws (not
shown in the figure). Then, an electrolytic solution of
the same composition as the carrier solution was
poured into the MFC from the upper hole for insertion
of a reference electrode. Finally, a Ag/AgCl (sat. KCI)
reference electrode was furnished. The electrolytic po-
tential was regulated by a potentiostat (Fuso Electro-
chemical System Co., Kawasaki, Japan; 1100L). The
MEFC was connected on-line with the ESI-MS system in
the decoupled mode [20], as shown in Figure 2. The
connecting tube was a 0.2 mm i.d. Teflon tube (30 cm
long). The electrolytic efficiency of the MFC was deter-
mined coulometrically for the oxidation of Fe(CN)¢~ at
various flow rates, as shown in Figure 3. A 20 uL
solution of 0.1 mM K,Fe(CN)4 containing 0.1 M KCl as
a supporting electrolyte was injected and electrolyzed

Efficiency (%)

0 ! 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1 1.2
Flow rate (ml/min)

Figure 3. The flow-rate dependence of the electrolytic efficiency
for MFC. A 20 uL solution of 0.1 mM K,Fe(CN), containing 0.1 M
KCl was injected and electrolyzed at E = 0.7 V vs. Ag/AgCl.
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at E = 0.7 V vs. Ag/AgCl. Almost 100% electrolytic
efficiency was attained at flow rates below 0.05 mL
min~'. This was the case even when the 0.1 M KCl was
changed to a 1 mM ammonium-acetate water/metha-
nol solution (i.e., the carrier solution for the MS exper-
iments).

MS Measurements

The mass spectra were obtained with a triple stage
quardrupole mass spectrometer TSQ 700 (Finnigan
MAT, San-Jose, CA). Analyses were consistently carried
out in negative ion mode. The electrolyses of sample
solutions were performed at a sufficiently low flow rate
(5 uL min~') and the solutions were electrosprayed
directly for the mass spectrometric analysis. The elec-
trospray potential was —4.5 kV and the heated capillary
temperature used was 200 °C.

Results and Discussion
Monomeric Products

First, we investigated changes in the electrolytic prod-
ucts of CAF at different pHs. In Figure 4, the mass
spectra obtained at pH 9 with electrolytic potentials E =
(Figrue 4a) 0 V and (Figure 4b) 1.0 V (vs. Ag/AgCl) are
shown. The peaks of monomeric electrolysis products
are shown, with magnification, in Figure 4. As shown
by a cyclic voltammetric study [16], the reduced form of
CAF (Red) undergoes reversible two-electron oxidation.
Under the pH conditions used in this study (pH 5-9),
CAF is not oxidized at E = 0 V, but is completely
oxidized at E = 1.0 V. Accordingly, the initial product at
E = 1.0 V should be the two-electron oxidized form of
CAF (Ox), though this oxidation may be followed by
dimerization or even higher degrees of polymerization
of products in the higher pH range (>9). Thus, the m/z
179 ion formed at E = 0 is a deprotonated ion of the
reduced form of CAF [Red — H]~, and the m/z 177 ion
formed at E = 1.0 is a deprotonated ion of the two-
electron oxidized form of CAF [Ox — H] . This two-
electron oxidized form was observed at all pHs (5,7 and
9) examined. The electrolytic mass spectra obtained
with pH 5 and 7 solutions were almost the same, but
were different from the spectrum with pH 9; the ion
intensities of electrolytic products (i.e., m/z 357 and 535
ions) were greater with pH 9 than with pH 5 or 7.
Changes in ion intensities and electrolytic currents
with different electrolytic potentials were then exam-
ined (Figure 5). As the ion intensity of the reduced form
[Red — H]™ (m/z 179) decreased, an increase in the
two-electron oxidized form [Ox — H]~ (m/z 177) was
observed, while the intensity of the semiquinone [Semi
— H]™ (m/z 178) remained essentially unchanged. The
one electron oxidation product of the semiquinone
radical was not detected at m/z 178 (no correction of >C
isotope from m/z 177). At the same time, it is important
to note that when the pH of the solution was increased,
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Figure 4. The negative ion ESI mass spectra obtained at pH 9 with electrolytic potentials of E = (a)
0V and (b) 1.0 V (vs. Ag/AgCl). The figures on the right represent the signal intensity of a base peak
indicated by TSQ 700.
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Figure 5. The potential dependences of the m/z 177, 178, and 179 ion intensities and of the electrolytic
currents; (a) pH 5, (b) pH 7, and (c) pH 9.
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the oxidation potential, i.e., the potential at which the
ion intensity of the major oxidation product (m/z 177)
and the electrolytic current increased significantly,
shifted to lower values showing that CAF is more easily
oxidized at a higher pH. This is because two protons are
released for the two-electron oxidation of CAF via the
semiquinone, as previously described by Hotta et al.
[16].

Dimeric Products

The ions observed in the m/z range of 355-360 were then
examined (Figure 4). The m/z 359 ion observed at E = 0
V was considered to be a deprotonated ion of a dimeric
complex formed by hydrogen bonding of two reduced
forms of CAF, namely [2Red — H] . The intensity of the
m/z 359 ion decreased when the electrolytic potential
was increased to E = 1.0 V, and simultaneously, two
new peaks appeared at m/z 355 and 357. Similar changes
in the mass spectra were observed when the electroly-
ses were carried out at different pHs. Accordingly, the
m/z 357 ion could be assigned to a deprotonated dimer
formed during electrolytic oxidation, [Dimg.qy — H]™
(Figure 1), or to a deprotonated, hydrogen-bonded
complex formed between the oxidized and reduced
forms of CAF, [Red + Ox — H] . The m/z 355 ion also
has two possible sources; one is a deprotonated dimer
formed by two-electron oxidation [Dim,, — H]~, and
the other is a deprotonated complex formed by hydro-
gen bonding between two molecules of oxidized CAF,
[20x — H] . This raises the question of why the dimer
of the reduced form, Dim .4, is detected at the higher
electrolytic potential despite complete oxidation being
expected in the cell. Two explanations can be outlined
at the present time; one involves the semiquinone
formed by oxidation being polymerized outside of the
cell, though a portion of the semiquinone would pre-
sumably be polymerized within the cell, and the other is
that the oxidized dimer Dimq,, is reduced at the ESI
needle.

In order to confirm the above assignments and
determine whether the uncertain product ions are
dimeric or hydrogen-bonded, we examined the effects
of electrolytic potential on the ion intensities of the
uncertain product ions (Figure 6). At all pHs tested (5, 7,
and 9), the intensity of the m/z 359 ion decreased with
increasing electrolytic potential, suggesting that the
complex, [2Red — H]™, formed by hydrogen bonding of
two reduced forms of CAF was decreased by electrol-
ysis. However, the m/z 355 and 357 ions showed differ-
ent potential dependences of their intensities at the
higher pH of 9. At lower pHs (5 and 7), the intensities of
both m/z 355 and the 357 ions were increased at approx-
imately 0.5 V and leveled off at higher potentials
(Figure 6a and b). The results allow us to conclude
simply that the m/z 355 and 357 ions constitute a
complex formed between two oxidized forms, [20x —
H], and one involving an oxidized form and a reduced
form, [Red + Ox — H], respectively. The formation of
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Figure 6. The potential dependences of the m/z 355, 357, and 359
ion intensities; (a) pH 5, (b) pH 7, and (c) pH 9.

the latter complex including a reduced form at higher
potentials would be accounted for by unfavorable re-
duction of the oxidized CAF at the ESI needle. At pH 9,
however, the intensity of the m/z 357 ion showed a
prominent peak at approximately 0.7 V, while the
intensity of the m/z 355 ion started to increase at 0.7 V,
i.e., the voltage at which the intensity of the m/z 357 ion
began to fall (Figure 6c). This would suggest that at pH
9, the two ions, m/z 355 and 357, are in the relation of
oxidized and reduced forms. We then assigned the
respective ions to [Dimg.q) — H]™ and its two-electron
oxidized form, [Dim,, — H] . These assignments to
the dimeric complexes at pH 9 are supported by previ-
ous electrochemical studies [14-16].

The electrolytic current at a sufficiently positive
potential (1.0 V), being measured simultaneously with
the mass spectra shown in Figure 5, was about 10 nA at
pH 5 and 7, but 1.5 times higher at pH 9. The electrolytic
current measured at a constant flow rate should be
proportional to the number of electrons (1), therefore n
can be estimated to be about 3 for pH 9 (note that CAF
is oxidized by 2 electrons at lower pHs). This is consis-
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Figure 7. The MS/MS spectra of (a) m/z 359 ion obtained at E = 0, (b) m/z 357, and (c) m/z 355 ions

obtained at E = 1.0 V (vs. Ag/AgCl).

tent with the previous result that n increases with pH
and exceeds 2 at pH > 7 [14]. The increase in n with pH
is due to the formation of CAF dimers and/or multim-
ers.

The MS/MS experiments were carried out in order
to confirm that the m/z 355 and 357 ions at pH 9 are
indeed dimeric products, not hydrogen-bonded com-
plexes. The MS/MS spectrum of the complex ion m/z
359, [2Red — H], obtained at E = 0 V, exhibited a
simple spectrum with a single peak due to the elimina-
tion of one CAF molecule from the parent ion (Figure
7a). On the other hand, the MS/MS spectra of ions m/z
355 and 357 obtained at E = 1.0 V (Figure 7b and c) both
showed two ions produced by the elimination of 44 and
88 Da from the parent ions. The production of these two
ions must be attributable to the elimination of CO, from
the carboxyl groups in the parent dimer ions. If the m/z
355 and 357 ions were hydrogen-bonded complexes, the
dissociation of complex ions should occur preferentially
to yield only the m/z 179 or the 177 ion, not generating
a CO, elimination ion as in the spectrum shown in
Figure 7a. In addition, the MS/MS spectrum of m/z 357
generated a fragment ion of m/z 159. This fragment was
not detected in the MS/MS spectra of m/z 179 [Red —
H] ™ and 177 [Ox — H] ™ ions. This also suggests that the
m/z 357 ion is a dimer product. However, the m/z 159
fragment was not observed for the m/z 355 ion. Finally,

the m/z 355 and 357 ions formed by electrolysis at pH 9
were confirmed to be the dimer ions [Dim,, — H]™
and [Dimg.q-H]™, respectively.

Trimer Products

As seen in Figure 4, there were no peaks in the area of
the m/z 535 ion when the spectrum was obtained at an
electrolytic potential of E = 0 V but the spectrum
obtained at E = 1.0 V exhibited two ions of m/z 535 and
507. These high mass ions as electrolysis products were
observed at pH 7 and 9, but not at pH 5. The m/z 535 ion
could be a trimer of CAF, [Tri — H]™ (Tri: mw 536), or
a complex formed between the two-electron oxidized
form of a CAF dimer and a reduced CAF, [Dim,, +
Red — HJ . Next, the effects of electrolytic potential on
the m/z 507 and m/z 535 ions were studied (Figure 8). At
all pHs tested, the ion intensity of the m/z 535 ion was
increased at approximately 0.6 V until it reached a peak,
but the increase was remarkable at pH 9. It should also
be noted that the potential for the m/z 535 ion at pH 9 is
0.2-0.3 V higher than that for the m/z 355 ion, as shown
in Figure 6c. These results raise the possibility that the
m/z 535 ion is the trimer, [Tri — H]™, generated via
formation of the dimer and its subsequent oxidation.
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H/D Exchange Experiments

In order to determine the number of hydroxyl groups in
the dimers formed by electrolysis, electrolysis was
carried out in a deuterated solvent at pH9. AtE=0V,
the spectrum exhibited three ions at m/z 179, 180 and
181 (Figure 9a). The appearance of three peaks near m/z
180 is due to the partial deuterium exchange of the
hydroxyl groups in CAF. The spectrum obtained at E =
1.0 V showed a cluster of multiple ions at the mass
range of dimers. The effects of electrolytic potential on
these dimeric ions were further examined (Figure 10).
The m/z 357 ~ 360 ion intensities started to increase at
around 0.3 V, then fell to a constant level (Figure 10a).
In contrast, the potential dependence of the intensities
of the m/z 355 and 356 ions did not show a peak but
rather an S-shaped curve (Figure 10b). The oxidation
potential of the m/z 355 and 356 ions, ie., 0.5 V,
coincided with the potential at which the intensities of
the m/z 357 ~ 360 ions started to decrease. This relation
is identical to that observed above for [Dim,, — H]~
(m/z 355) and [Dimg.qy — H]™ (m/z 357). Therefore, the
multiple ions at m/z 357 ~ 360 are likely to be among the
deuterium exchanged dimeric ions.

The hydrogen/deuterium (H/D) exchanges in CAF
could occur in both the hydroxyl and carboxyl groups.
Among possible isomeric structures of the reduced
forms of dimers (Dimg.4y) shown in Figure 1, Structure
1 should yield multiple ions at m/z 357 ~ 362 in the
H/D exchange spectrum, because it possesses five
exchanged sites. Similarly, Structure 3 with three ex-
changed sites should yield multiple ions at m/z 357 ~
360, and Structures 5 and 6 with four sites those at m/z
357 ~ 361. In practice, the results of H/D exchange
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Figure 10. The potential dependences of the ion intensities of m/z
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showed multiple ions of m/z 357 ~ 360, suggesting that
the dimer has Structure 3. The oxidized dimer ion
[Dimo,, — H]™, which has no hydroxyl group asa H/D
exchanged site, appeared at m/z 355 and 356. These
results also support our view that the dimer ion is
Structure 3.

Dimers containing several hydroxyl groups were not
observed in the H/D exchange experiment. This may be
due to rapid polymerization of such dimers to multim-
ers.
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