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Using computer algebra to run Einstein’s equations ‘‘backward’’, from field to source rather than from
source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside
astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that gen-
erates the field contains exotic matter of negative energy density but also relies importantly on pressures
and shears, which we describe. The same techniques can be readily used to design other interesting
spacetimes and thereby elucidate the connection between the source and field in general relativity.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

The Einstein field equations of general relativity are nonlinear
partial differential equations for spacetime curvature given a
source of stress, energy, and momentum. They are notoriously dif-
ficult to solve exactly. However, two strategies radically simplify
the problem. First, one can reverse the equations, so that instead
of integrating to find the curvature given the stress-energy, one
differentiates the curvature of a given spacetime to find the
stress-energy needed to create it. Second, one can exploit the wide
availability of powerful computer algebra software. These strate-
gies tame a wide range of interesting problems.

As an example, we design an artificial gravity field for a cylindri-
cal space station or spaceship. Specifically, we stipulate that inside
a cylinder the spacetime curvature (and hence the gravity) will be
the same as near Earth, but outside the cylinder spacetime will be
flat (like empty space far from any stars). We join the two space-
times smoothly and continuously across a finite thickness (of the
spaceship’s hull). Everywhere inside our astronauts experience
normal Earth surface gravity, but outside they float freely. We
highlight the important role of pressures, tensions, and shears –
as well as energy – in creating this spacetime. Such speculative
spacetime engineering provides an illuminating approach to
understanding general relativity.

Section 2 makes the paper self-contained and fixes its notation
and conventions. For nonspecialists, it reviews the minimum gen-
eral relativity needed to create and test the artificial gravity field,
including the field equations and the geodesic equations of motion,
but with special attention to the structure of the stress-energy
source tensor. Section 3 fashions the desired spacetime metric
and differentiates it to obtain the needed stress-energy. It tests
the field by numerically releasing test particles inside and outside
the spaceship. It compares the field with that of a Newtonian slab
and briefly discusses the feasibility of marshaling the stress-energy
needed to create the field. Section 4 suggests future projects and
extensions, including possible experiments. A supplementary
Mathematica notebook [1] provides the details for all the analytics
and numerics in the paper and may be readily modified to further
explore Einsteinian gravity.

2. General relativity primer

This section follows John Archibald Wheeler’s famous summary
of general relativity: matter tells spacetime how to curve, and
spacetime tells matter how to move [2,3]. For simplicity, it uses
natural Planck units where G = c = 1.

2.1. Curvature

Locate an event in spacetime with the rectangular coordinates
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2
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2
6664

3
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where x0 = t is time, {x,y,z} is a place in space, and the superscripts
are indices not exponents. Determine invariant interval dr between
neighboring events in spacetime by the line element
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Fig. 1. Symmetric stress-energy tensor Tlm generalizes the stress tensor from space
to spacetime.
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dr2 ¼
X3

l¼0

X3

m¼0

glmdxldxm ¼ glmdxldxm
; ð2Þ

where glm = gml is the metric, and there is an implied sum over re-
peated upper and lower indices. In flat spacetime far from any
stress or energy, the Minkowski metric

gM
lm ¼ glm $

�1 0 0 0
0 þ1 0 0
0 0 þ1 0
0 0 0 þ1

2
6664

3
7775; ð3Þ

where the minus sign distinguishes time from space. Compute the
change in components of a vector transported parallel to itself with
the connection coefficients

Clmr ¼
1
2
ðglm;r þ glr;m � gmr;lÞ; ð4Þ

where the commas denote differentiation with respect to the coor-
dinate labeled by the following index. Raise and lower indices with
the metric like

Cl
mr ¼ glkCkmr: ð5Þ

Calculate the change in a vector parallel transported around an
infinitesimal parallelogram using the Riemann curvature tensor

Rb
mqr ¼ Cb

mr;q � Cb
mq;r þ Ca

mrC
b
aq � Ca

mqC
b
ar: ð6Þ

Contract the Riemann tensor to get the Ricci tensor and scalar,
Rlm ¼ Rb

lbm and R ¼ Rl
l. Reverse the trace of the Ricci tensor to form

the the Einstein curvature tensor

Glm ¼ Rlm � 1
2

R glm: ð7Þ
2.2. Stress-energy

Record a particle’s spacetime 4-momentum by

pl $
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where p0 = E is energy and {px,py,pz} is spatial momentum. Relate
the 4-momentum dpl to the 3-volume d3Vm by

dpl ¼ Tlmd3Vm; ð9Þ

where Tlm = Tml is the stress-energy tensor. Choose 3-volumes par-
allel to coordinate axes to write the stress-energy as 4-momentum
per unit 3-volume with components
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In terms of forces Fk and areas Al, the the stress-energy compo-
nents are
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which consolidates energy (and mass) density, energy fluxes,
momentum densities, pressures, and shears in one geometrical ob-
ject, as summarized by Fig. 1. Pressure Tzz stretches or compresses
along the sole z direction, while shear pairs Tzx = Txz twist and
anti-twist about the remaining y direction. Fig. 2 illustrates the
pressures and shears in cylindrical coordinates for the cylindrical
spaceship.

2.3. Field equations

Spacetime curvature is proportional to stress-energy

Glm ¼ 8pTlm: ð12Þ

These are 10 nonlinear partial differential equations for the 10
unknown metric components glm. However, only 6 of the equations
are independent, so they determine the metric only up to a general
coordinate transformation. Invert this relation and write

Tlm ¼ 1
8p

Glm ð13Þ

to exploit the fact that differentiation is much easier than
integration.

2.4. Geodesic equation

In curved spacetime, the law of inertia generalizes to the geode-
sic equation

d2xl

ds2 ¼ �Cl
ab

dxa

ds
dxb

ds
; ð14Þ

where, for massive particles, the affine parameter s is the proper
time, and the right side corrects for the turning and twisting of
the basis vectors. A geodesic is the straightest possible path and also
the path of extremal length (typically a minimum in space but a
maximum in spacetime).

3. Artificial gravity field

Smoothly join curved spacetime inside a cylinder, representing
the Earth gravity of the spaceship, with the flat spacetime outside
the cylinder, representing interstellar space. Differentiate the
spacetime metric to find the stress-energy in the cylinder’s sur-
faces, which generates the artificial gravity field.



Fig. 2. Arrows suggest pressures Tii (primary colors red, green, blue) and shears
Tij = Tji (secondary colors yellow, magenta, cyan) on a cylindrical {s,u,z} volume
element. Pressure pairs stretch or compress while shear pairs twist or counter twist.

Fig. 3. Smooth function f creates one and two-dimensional unit box functions v1

and v2 to join flat and curved spacetime and localize the artificial gravity field.
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3.1. Translated Schwarzschild metric

The spacetime outside a spherical mass m such as Earth is de-
scribed by the Schwarzschild metric

gS
lm $

�ð1� rs=rÞ 0 0 0

0 ð1� rs=rÞ�1 0 0
0 0 r2 0
0 0 0 r2 sin2 h

2
6664

3
7775; ð15Þ

where t is faraway time, r is the reduced circumference, h is colati-
tude, u is longitude, and rs = 2m is the Schwarzschild radius. Fol-
lowing Moreau et al. [4], center the coordinates a translation D
from the spherical mass by transforming the corresponding line ele-
ment (including the differentials) to rectangular-like coordinates
using

x ¼ r sin h cos u;

y ¼ r sin h sin u;

z ¼ r cos h� D:

ð16Þ

Next transform to cylindrical-like coordinates using

x ¼ s cos u;

y ¼ s sinu;
ð17Þ

where s is the perpendicular separation from the z-axis. The result
[1] is the cylindrical-coordinates translated metric

gT
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rs=q� 1 0 0 0
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; ð18Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðDþ zÞ2

q
. As a check, if the mass m = rs/2 shrinks to

zero, the translated metric reduces to the cylindrical-coordinates
flat spacetime metric
gF
lm ¼ lim

m!0
gT

lm $

�1 0 0 0
0 1 0 0
0 0 s2 0
0 0 0 1

2
6664

3
7775; ð19Þ

which implies the expected line element

dr2 ¼ gF
lmdxldxm ¼ �dt2 þ ds2 þ s2du2 þ dz2

: ð20Þ
3.2. Join

Because the Einstein field equations are second order partial
differential equations, smoothly join the Eq. (18) translated
Schwarzschild spacetime with the Eq. (19) flat spacetime using a
C2 unit box function. To begin the ‘‘surgery’’, demand that a quintic
function f[n] pass through zero and unity, f[0] = 0 and f[1] = 1, and
be doubly smooth at both ends, f0[0] = f00[0] = 0 and f0[1] = f00[1] = 0,
to get

f ½n� ¼ 10n3 � 15n4 þ 6n5: ð21Þ

Use the quintic to form the one-dimensional unit box

v1½n; n0;w; dw�

¼

f n�n0þw=2þdw
dw

h i
: n0 �w=2� dw 6 n < n0 �w=2

1 : n0 �w=2 6 n < n0 þw=2

1� f n�n0�w=2
dw

h i
: n0 þw=2 6 n < n0 þw=2þ dw

0 : else

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

ð22Þ

where n0 is the center, w is the width, and dw is the join thickness.
From this, create a two-dimensional unit box

v2½s; z� ¼ v1½s;R=2;R; T �v1½z;0;H; T �; ð23Þ

with radius R, height H, and thickness T , as in Fig. 3. Describe all of
spacetime by

glm ¼ gF
lm þ v2½s; z� gT

lm � gF
lm

� �
: ð24Þ
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At small distances v2 = 1 and glm ¼ gT
lm, but at large distances,

v2 = 0 and glm ¼ gF
lm; inside the cylinder is curved Schwarzschild

spacetime, but outside is flat Minkowski spacetime.
3.3. Stress-energy

Compute the stress-energy required to create this spacetime
using the Eq. (13) field equations. This reduces to straightforward
differentiation of the metric, which can be done by hand but is
readily accomplished using computer algebra. The results are alge-
braic (albeit piecewise) solutions for the stress-energy. Although
these expressions are complicated, they are nicely summarized in
the Fig. 4 density plots. Each subplot is a vertical two-dimensional
cross section of a normalized stress-energy component T l̂m̂.
(Appendix A describes the normalization and the supplement [1]
contains vertical and radial one-dimensional cross sectional line
plots.) Red is positive and blue is negative and magnitudes de-
crease with saturation, so white is zero. Parameters are mass
m = m� � 6.0 � 1024 kg and translation D = R� � 6400 km for
Earth-like gravity, as well as a cylinder of height H ¼ 100 m, radius
R ¼ 50 m, and thickness T ¼ 20 m for the spaceship.

The stress-energy contains no energy flux or momentum den-
sity, as nothing moves in the spaceship’s reference frame. There
is no stress-energy in its cylindrical interior, which is good for
our astronauts. However, there are nonzero energy densities, pres-
sures, and shears in the wall, floor, and ceiling of its hull, where the
flat and curved spacetimes join.

The ceiling includes a positive energy density layer of radial and
azimuthal tension just under a layer of radial and azimuthal pres-
Fig. 4. Vertical cross sectional density plots (4 � 4 squares) illustrate the dominant
contributions to the normalized stress-energy components T l̂m̂ that warp spacetime
to create an artificial gravity field (gray cylinder with yellow square marking the
cross section). Red is positive and blue is negative and magnitudes decrease with
saturation until they vanish at white.
sure. The floor includes a negative energy density layer of radial
and azimuthal pressure just under a layer of radial and azimuthal
tension, the reverse of the ceiling. The wall includes a positive en-
ergy density thickness of vertical pressure just outside a negative
energy density thickness of vertical tension, both under azimuthal
twist and anti-twist. Peak energy densities are about 1026 J/m3 in
the floor and ceiling and about 1031 J/m3 in the walls. Peak pres-
sures are about 1031 Pa in the walls, while peak shears are only
about 1025 Pa. Smaller stress-energies are too desaturated to be
visible under the Fig. 4 palette.

The positive energy density in the ceiling and negative energy
density in the floor are analogous to positive and negative charges
creating a vertical electric field in a parallel plate capacitor. The
horizontal bilayers of pressure and tension slow the interior proper
time, as expected from the Schwarzschild metric. The vertical bi-
layer of pressure and tension coupled with the corresponding bi-
layer of positive and negative energy density increase the interior
proper volume (by increasing the locally measured radial dis-
tances), again as expected. Nonuniform variations in the hull’s
stress-energy generate all the fine features of Earth-like gravity,
including tidal effects. (Mathematically, the field equations differ-
entiate the stepped metric twice to generate the bilayers.)

3.4. Other configurations

Repeating the calculations for a cubical spaceship necessitates a
more complicated stress-energy distribution because of the verti-
cal corners. Repeating for a spherical spaceship (to create a space-
time reminiscent of the Einstein–Straus vacuole metric [5,6] that
joins a Schwarzschild and a Robertson–Walker metric) requires a
more complicated stress-energy because the round hull encloses
a ‘‘vertical’’ gravity field. Repeating for a weak-field approximation
of the Schwarzschild metric inside a cylinder requires a simpler
stress-energy distribution but unfortunately with horizontal pres-
sure inside the spaceship (which is not surprising as the approxi-
mate metric is no longer an exact solution to the field equations).
However, repeating for a Rindler uniform-gravity ‘‘flat Earth’’ met-
ric [7] inside a cylinder requires comparable stresses confined to
the hull with no net energy density (although negative energy den-
sity would need to cancel the positive energy density typically
associated with the stresses). While the Rindler spacetime is alge-
braically simpler than the translated Schwarzschild spacetime, it
does not exhibit tidal effects.

3.5. Testing

To test the artificial gravity field, numerically integrate the Eq.
(14) geodesic equations for various initial conditions. A massive
test particle released outside the spaceship does not move, but a
mass released inside the spaceship falls with an Earth-like acceler-
ation of g� � 9.8 m/s2. Other tests [1] reveal tidal effects: while fall-
ing, pairs of particles released side-by-side slowly drift together,
but pairs of particles released one-over-the-other drift apart. As ex-
pected, inside the cylinder horizontal light rays deflect downward
but vertical light rays are undeflected.

Perhaps unexpectedly, the hull of the spaceship gravitationally
confines slow moving particles. A mass released from rest bounces
at the floor if its speed is less than a critical value. For Earth-like
gravity, the critical speed is near the v� � 11 km/s Earth escape
speed. Fast particles deflect as they pass through the floor but
thereafter move in straight lines in flat Minkowski spacetime.

Fig. 5 illustrates typical geodesics for massive and massless test
particles in an artificial gravity field scaled to nicely display the
range of geodesics [1]. The bounces and deflections are completely
gravitational, due to spacetime curvature. The confinement of slow
particles inside the spaceship, where time runs slowly, is reminis-



Fig. 5. Height z as a function of time ct. Inside a scaled artificial gravity field (dark
gray between light gray floor and ceiling), a massive test particle falls as expected
but bounces at the bottom (thick blue curve). Masses shot downward bounce if
their bottom speeds are less than a critical speed but otherwise merely deflect (thin
blue curves), as does a light ray (thick red curve).
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cent of total internal reflection in an optical fiber. Indeed, under
certain conditions, motion in curved spacetime can be described
equivalently as motion in flat spacetime in a medium with a vari-
able index of refraction [8,9].

3.6. Newtonian slab

To understand the importance of general relativity in designing
an artificial gravity field, a Newtonian comparison is helpful. Con-
sider a rectangular slab of thickness T , mass density qM, and grav-
itational field g� just above its center. Imagine a short Gaussian
cylinder of cross sectional area A vertically straddling the surface
near its center. In analogy with Gauss’s law for electricity, Gauss’s
law for Newtonian gravity

�g�2A ¼ t
a¼@;V

~g� � d~a ¼ Ug ¼ �4pGMV ¼ �4pGqMAT ð25Þ

implies a mass density

qM ¼
g�

2pGT
� 109 kg

m3 ð26Þ

and an energy density

T 0̂0̂ ¼ qMc2 � 1026 J
m3 ; ð27Þ

which is comparable to the floor and ceiling energy densities of the
Fig. 4 artificial gravity field stress-energy tensor. Of course, at the
corners of the slab the field is about 4 times smaller (as 4 identical
slabs tiled at the corner would approximately restore the central
field). Furthermore, the field below is opposite to that above!

3.7. Construction

Stretching, compressing, and twisting elastic material can, in
principle, generate negative and positive pressures and shears to
create the artificial gravity field. However, normal materials have
strictly positive total energy density, and the artificial gravity field
needs layers of positive and negative energy density. The necessary
energy density decreases as the inverse square of the hull thickness
T , which is consistent with the corresponding Newtonian density

U
V
� GM2=T

AT
/ 1

T 2 : ð28Þ

However, to make the spaceship well-defined, the thickness of the
hull should be smaller than its radius, T < R.

Generating the negative energies is the hard part. For example,
while a hydrogen atom does have a negative binding energy of
�13.6 eV, this is overwhelmed by its positive mass-energy of about
+1 GeV. Replace the electron by a more massive lepton like a muon
and the binding energy becomes more negative, but the total en-
ergy remains decisively positive.

If arbitrarily negative energy states existed, the vacuum would
be unstable. In fact, various constraints on the stress-energy called
weak and strong energy conditions are conjectured to hold for all
‘‘physically reasonable’’ matter [3]. If these conditions are violated,
the matter is said to be ‘‘exotic’’. The Fig. 4 stress-energy violates
these energy conditions and so is exotic. However, other recently
studied spacetimes including the Alcubierre warp-drive [10,11]
and the Morris-Thorne wormhole [12,13] appeal to violations of
the weak energy condition and rely on negative energy density.

Quantum field theory provides possible sources of negative en-
ergy density. In squeezed vacuum states, destructive quantum
interference can suppress vacuum fluctuations, so that locally the
vacuum has less energy than it normally does. In one interpreta-
tion of the Casimir effect, nearby conductors suppress vacuum fluc-
tuations between them producing negative energy density and a
force that has been precisely measured [14,15]. The Hawking evap-
oration of a black hole can be understood as negative energy den-
sity flowing into its event horizon to balance the positive-energy
radiation escaping to infinity. However, quantum inequalities sug-
gest that assembling macroscopic quantities of negative energy
density may be challenging or impossible [16].

4. Conclusions

Using computer algebra to run Einstein’s equations ‘‘backward’’
is an illuminating tool to further our understanding of general rel-
ativity [17–20]. We are learning how pressures, tensions, and
shears – as well as energy – can modify spacetime in simple exam-
ples, as part of a larger project to better understand the relation-
ship between spacetime curvature and stress, energy, and
momentum. We designed an artificial gravity field for a spaceship,
but using simple stress-energy distributions one can readily design
‘‘closets’’ that are larger on the inside than on the outside or
‘‘refrigerators’’ where time runs slowly (to keep food fresh).
Although the engineering [11] of these spacetimes seems daunting
or impractical, experimentalists may be able to exploit quantum
phenomena like squeezed vacuum states and the Casimir effect
to perturb spacetime in microscopic regions and probe the pertur-
bations with sensitive interferometers.

Even if such exotic spacetimes are ultimately unphysical, they
are exact solutions to Einstein’s equations. They excite the imagi-
nation and help us better grasp the structure of general relativity,
which nearly a hundred years after its introduction remains our
best confirmed theory of gravity.
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Appendix A. Normalizing the stress-energy

In general relativity, it is common to calculate in an unnormal-
ized coordinate basis, but interpret the results in an orthonormal
basis [2]. Normalization is more complicated if the metric is nondi-
agonal, as is the case for both the astrophysically important Kerr
spacetime of a rotating black hole and the Eq. (24) artificial gravity
spacetime.

The scalar products of the unnormalized basis vectors
el = @r/@xl are the general metric components

el � em ¼ glm; ðA:1Þ

while the scalar products of the normalized basis vectors el̂ are the
Minkowski metric components
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el̂ � em̂ ¼ glm: ðA:2Þ

Expand a rank-one tensor (or vector) as

v ¼ vlel ¼ v m̂em̂; ðA:3Þ

and expand a rank-two tensor as

t ¼ tlmel 	 em ¼ tâb̂eâ 	 eb̂; ðA:4Þ

where the tensor product 	 is the most general bilinear product.
For a metric of the form

glm $

gtt 0 0 0
0 gss 0 gsz

0 0 guu 0
0 gsz 0 gzz

2
6664

3
7775; ðA:5Þ

the vectors

et̂ ¼ 1ffiffiffiffiffiffiffi�gtt
p et;

eŝ ¼ gzzes�gszezffiffiffiffiffi
gzz
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gssgzz�g2
sz

p ;

eû ¼ 1ffiffiffiffiffiffi
guu
p eu;

eẑ ¼ 1ffiffiffiffiffi
gzz
p ez;

ðA:6Þ

are orthonormal, as is readily verified [1]. The orthonormal compo-
nents of a rank-one tensor are the projections

v â ¼ eâ � v ¼ ðeâÞlvl; ðA:7Þ

where the coordinate basis components of the orthonormal basis
vectors ðeâÞl are easily identified from Eq. (A.6). Similarly, the
orthonormal components of a rank-two tensor are

tâĉ ¼ ðeâÞlðeĉÞmtlm; ðA:8Þ

and this suffices to normalize the stress-energy.
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.rinp.2013.01.003.
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