Bounds on graph eigenvalues II

Vladimir Nikiforov
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
Received 18 December 2006; accepted 9 July 2007
Available online 23 August 2007
Submitted by R.A. Brualdi

Abstract

We prove three results about the spectral radius $\mu(G)$ of a graph G : (a) Let $T_{r}(n)$ be the r-partite Turán graph of order n. If G is a K_{r+1}-free graph of order n, then $\mu(G)<\mu\left(T_{r}(n)\right)$ unless $G=T_{r}(n)$. (b) For most irregular graphs G of order n and size m, $\mu(G)-2 m / n>1 /(2 m+2 n)$. (c) Let $0 \leqslant k \leqslant l$. If G is a graph of order n with no $K_{2}+\bar{K}_{k+1}$ and no $K_{2, l+1}$, then $$
\mu(G) \leqslant \min \left\{\Delta(G),\left(k-l+1+\sqrt{(k-l+1)^{2}+4 l(n-1)}\right) / 2\right\} .
$$

© 2007 Elsevier Inc. All rights reserved.
AMS classification: Primary 05C50; Secondary 05C35
Keywords: Clique number; Spectral radius; Turán graph; Maximum degree; Books

1. Introduction

Our notation follows [1]; thus, we write $G(n)$ for a graph of order n and $\mu(G)$ for the maximum eigenvalue of the adjacency matrix of G.

[^0]Write $T_{r}(n)$ for the r-partite Turán graph of order n and let $G=G(n)$. In [7] it is shown that if G is r-partite, then $\mu(G)<\mu\left(T_{r}(n)\right)$ unless $G=T_{r}(n)$. On the other hand, Wilf [13] showed that if G is K_{r+1}-free, then $\mu(G) \leqslant(1-1 / r) n$. We strengthen these two results as follows.

Theorem 1. If $G=G(n)$ is a K_{r+1}-free graph, then $\mu(G)<\mu\left(T_{r}(n)\right)$ unless $G=T_{r}(n)$.
Next, let G be a graph of order n, size m, and maximum degree $\Delta(G)=\Delta$. One of the best known facts about $\mu(G)$ is the inequality $\mu(G) \geqslant 2 m / n$, due to Collatz and Sinogowitz [4]. In [11] we gave upper and lower bounds on $\mu(G)-2 m / n$ in terms of degree deviation. In turn, Cioabă and Gregory [3] showed that, if G is irregular and $n \geqslant 4$, then $\mu-2 m / n>1 /(n \Delta+2 n)$. In this note we give another proof of this bound and improve it for most graphs.

Call a graph subregular if $\Delta(G)-\delta(G)=1$ and all but one vertices have the same degree.
Theorem 2. If G is an irregular graph of order $n \geqslant 4$ and size m, then

$$
\begin{equation*}
\mu(G)-2 m / n>1 /(2 m+2 n) \tag{1}
\end{equation*}
$$

unless G is subregular. If G is subregular with $\Delta(G)=\Delta$, then

$$
\begin{equation*}
\mu(G)-2 m / n>1 /(n \Delta+2 n) \tag{2}
\end{equation*}
$$

Finally, let $B_{k}=K_{2}+\bar{K}_{k}$, i.e., the graph B_{k} consists of k triangles sharing an edge.
Let $0 \leqslant k \leqslant l \leqslant \Delta$. Shi and Song [12] showed that if $G=G(n)$ is a connected graph with $\Delta(G)=\Delta$, with no B_{k+1} and no $K_{2, l+1}$, then

$$
\begin{equation*}
\mu(G) \leqslant\left(k-l+\sqrt{(k-l)^{2}+4 \Delta+4 l(n-1)}\right) / 2 . \tag{3}
\end{equation*}
$$

We extend this result as follows.
Theorem 3. Let $0 \leqslant k \leqslant l$. If $G=G(n)$ is a graph with $\Delta(G)=\Delta$, with no B_{k+1} and no $K_{2, l+1}$, then

$$
\begin{equation*}
\mu(G) \leqslant \min \left\{\Delta,\left(k-l+1+\sqrt{(k-l+1)^{2}+4 l(n-1)}\right) / 2\right\} . \tag{4}
\end{equation*}
$$

If G is connected, equality holds if and only if one of the following conditions holds:
(i) $\Delta^{2}-\Delta(k-l+1) \leqslant l(n-1)$ and G is Δ-regular;
(ii) $\Delta^{2}-\Delta(k-l+1)>l(n-1)$ and every two vertices of G have k common neighbors if they are adjacent, and l common neighbors otherwise.

We note without a proof that (4) implies (3).

2. Proofs

Proof of Theorem 1. Write $k_{r}(G)$ for the number of r-cliques of G. The following result is given in [10]: if G is K_{r+1}-free graph, then

$$
\begin{equation*}
\mu^{r}(G) \leqslant \sum_{s=2}^{r}(s-1) k_{s}(G) \mu^{r-s}(G) \tag{5}
\end{equation*}
$$

According to a result of Zykov [14] (see also Erdös [5]), if the clique number of a graph G is r, then $k_{s}(G)<k_{s}\left(T_{r}(n)\right)$ for every $2 \leqslant s \leqslant r$, unless $G=T_{r}(n)$. Assuming that $G \neq T_{r}(n)$,

Zykov's theorem implies that $k_{s}(G)<k_{s}\left(T_{r}(n)\right)$ for every $2 \leqslant s \leqslant r$. Hence, in view of (5), we have

$$
\mu^{r}(G)<\sum_{s=2}^{r}(s-1) k_{s}\left(T_{r}(n)\right) \mu^{r-s}(G)
$$

This implies that $\mu(G)<x$, where x is the largest root of the equation

$$
\begin{equation*}
x^{r}=\sum_{s=2}^{r}(s-1) k_{s}\left(T_{r}(n)\right) x^{r-s} \tag{6}
\end{equation*}
$$

It is known (see, e.g., [2, p. 74]) that (6) is the characteristic equation of the Turán graph; so, $\mu(G)<x=\mu\left(T_{r}(n)\right)$, completing the proof.

To simplify the proof of Theorem 2, we first prove inequality (1) for two special graphs.
Proposition 4. Inequality (1) holds if G has $n-2$ vertices of degree $n-1$ and 2 vertices of degree $n-2$.

Proof. Clearly, G is the complete graph of order n with one edge removed. Using the theorem of Finck and Grohmann [6] (see also [2, Theorem 2.8]), we find that

$$
\mu(G)=\frac{n-3+\sqrt{n^{2}+2 n-7}}{2}
$$

Hence, in view of $2 m=n^{2}-n-2$, we obtain,

$$
\begin{aligned}
\mu(G)-\frac{2 m}{n} & =\frac{\sqrt{n^{2}+2 n-7}-\left(n+1-\frac{4}{n}\right)}{2}=\frac{4 n-8}{n^{2}\left(\sqrt{n^{2}+2 n-7}+\left(n+1-\frac{4}{n}\right)\right)} \\
& >\frac{4 n-8}{n^{2}\left(n+1+\left(n+1-\frac{4}{n}\right)\right)} \geqslant \frac{2 n-4}{n\left(n^{2}+n-2\right)} \geqslant \frac{1}{n^{2}+n-2}=\frac{1}{2 m+2 n},
\end{aligned}
$$

completing the proof.
Proposition 5. Inequality (1) holds if G has $n-2$ vertices of degree $n-2$ and 2 vertices of degree $n-1$.

Proof. We easily deduce that n is even, say $n=2 k$, and that G is the complement of a $(k-1)$-matching. Using the theorem of Finck and Grohmann, we find that

$$
\mu(G)=\frac{n-3+\sqrt{n^{2}-2 n+9}}{2}
$$

Hence, in view of $2 m=n^{2}-2 n+2$, we obtain

$$
\begin{aligned}
\mu(G)-\frac{2 m}{n} & =\frac{\sqrt{n^{2}-2 n+9}-\left(n-1+\frac{4}{n}\right)}{2}=\frac{4 n-8}{n^{2}\left(\sqrt{n^{2}-2 n+9}+\left(n-1+\frac{4}{n}\right)\right)} \\
& >\frac{4 n-8}{n^{2}\left(n+1+\left(n-1+\frac{4}{n}\right)\right)}=\frac{2 n-4}{n\left(n^{2}+2\right)} \geqslant \frac{1}{n^{2}+2}=\frac{1}{2 m+2 n},
\end{aligned}
$$

completing the proof.

Proof of Theorem 2. Set $V=V(G), \mu=\mu(G)$, and $\delta=\delta(G)$. Assume first that G is not subregular.

Proof of inequality (1)
Our proof is based on Hofmeister's inequality [9]: $\mu^{2} \geqslant(1 / n) \sum_{u \in V} d^{2}(u)$.
Case: $\Delta-\delta \geqslant 2$
In this case we easily see that

$$
\sum_{u \in V}\left(d(u)-\frac{2 m}{n}\right)^{2} \geqslant 2>\frac{2 m}{m+n}+\frac{n}{4(m+n)^{2}}
$$

and so,

$$
\mu \geqslant \sqrt{\frac{1}{n} \sum_{u \in V} d^{2}(u)}=\sqrt{\frac{1}{n} \sum_{u \in V}\left(d(u)-\frac{2 m}{n}\right)^{2}+\frac{4 m^{2}}{n^{2}}}>\frac{2 m}{n}+\frac{1}{2 m+2 n},
$$

as claimed. Thus, hereafter we shall assume that $\Delta-\delta=1$.
Case: $\Delta-\delta=1$
Letting k be the number of vertices of degree $\Delta=\delta+1$, we have $2 m / n=\delta+k / n$, and so,

$$
\frac{1}{n} \sum_{u \in V}\left(d(u)-\frac{2 m}{n}\right)^{2}=\frac{n-k}{n}\left(\frac{k}{n}\right)^{2}+\frac{k}{n}\left(\frac{n-k}{n}\right)^{2}=\frac{k(n-k)}{n^{2}}
$$

Hence, if

$$
\begin{equation*}
\frac{k(n-k)}{n^{2}}>\frac{2 m}{n(m+n)}+\frac{1}{4(m+n)^{2}}, \tag{7}
\end{equation*}
$$

then inequality (1) follows as above. Assume for contradiction that (7) fails.
Suppose first that either $k=2$ or $n-k=2$. Since (7) fails, we see that

$$
\begin{align*}
2-\frac{4}{n} & =\frac{(n-2) 2}{n} \leqslant \frac{k(n-k)}{n} \leqslant \frac{2 m}{m+n}+\frac{n}{4(m+n)^{2}} \\
& =2-\frac{2 n}{m+n}+\frac{n}{4(m+n)^{2}} . \tag{8}
\end{align*}
$$

In view of Propositions 4 and 5 , we may assume that $\delta \leqslant n-3$, and so,

$$
2 m=\delta n+k \leqslant \delta n+n-2 \leqslant n^{2}-2 n-2
$$

Noting that (8) increases in m, we obtain

$$
-\frac{4}{n^{2}} \leqslant-\frac{4}{n^{2}-2}+\frac{1}{\left(n^{2}-2\right)^{2}},
$$

a contradiction for $n \geqslant 4$.
Finally, let $k \geqslant 3$ and $n-k \geqslant 3$; thus, $n \geqslant 6$. We have

$$
2 m=\delta n+k \leqslant \delta n+n-3 \leqslant(n-2) n+n-3
$$

By assumption inequality (7) fails; hence,

$$
3-\frac{9}{n} \leqslant \frac{(n-k) k}{n} \leqslant 2-\frac{2 n}{m+n}+\frac{n}{4(m+n)^{2}} \leqslant 2-\frac{4 n}{n^{2}+n-3}+\frac{n}{\left(n^{2}+n-3\right)^{2}} .
$$

This inequality is a contradiction for $n \geqslant 6$, completing the proof of (7).

Proof of inequality (2) when G is subregular

As mentioned in the introduction, inequality (2) was first proved by Cioabă and Gregory [3]. For reader's convenience we present here a more direct proof, based on the same ideas - equitable partitions and interlacing.

Since G is subregular, it has either a single vertex of degree Δ or a single vertex of degree δ. Clearly, $\delta \geqslant 1$, and so, $m>n / 2$.

Case: G has a single vertex of degree Δ
Setting $\Delta=k+1$ and

$$
c=\frac{n k+1}{n}+\frac{1}{n(k+3)}=k+\frac{k+4}{n(k+3)},
$$

in view of $2 m=n k+1$, inequality (2) amounts to $\mu>c$.
Select a vertex $u \in V$ with $d(u)=k+1$; partition V as $V=\{u\} \cup V \backslash\{u\}$ and let B be the quotient matrix of this partition (see, e.g. [8, chapter 9]), i.e.,

$$
B=\left(\begin{array}{cc}
0 & \frac{k+1}{n-1} \\
k+1 & k-\frac{k+1}{n-1}
\end{array}\right)
$$

Writing $P(x)$ for the characteristic polynomial of B and observing that $k \leqslant n-2$, we have

$$
\begin{aligned}
P(c) & =\left(k+\frac{k+4}{n(k+3)}\right)\left(k+\frac{k+4}{n(k+3)}-\left(k-\frac{k+1}{n-1}\right)\right)-\frac{(k+1)^{2}}{n-1} \\
& =k \frac{k+4}{n(k+3)}+\frac{1}{n^{2}}\left(\frac{k+4}{k+3}\right)^{2}+\left(\frac{k+4}{n(k+3)}\right) \frac{k+1}{n-1}-\frac{k+1}{n-1} \\
& =-\frac{3}{n(k+3)}+\frac{1}{n^{2}}\left(\frac{k+4}{k+3}\right)^{2}+\frac{(k+1)}{n(n-1)(k+3)} \\
& =\frac{1}{n^{2}(k+3)}\left(-3 n+2 k+6+\frac{1}{k+3}+\frac{k+1}{n-1}\right) \\
& \leqslant \frac{1}{n^{2}(k+3)}\left(-3 n+2(n-2)+6+\frac{1}{4}+1\right)<0 .
\end{aligned}
$$

By interlacing, $P(\mu) \geqslant 0>P(c)$, and so $\mu>c$, completing the proof of (2) in this case.
Case: G has a single vertex of degree δ
Setting $\Delta=k$ and

$$
c=\frac{n k-1}{n}+\frac{1}{n(k+3)}=k-\frac{k+1}{n(k+2)},
$$

in view of $2 m=n k-1$, inequality (2) amounts to $\mu>c$.
Select $u \in V$ with $d(u)=k-1$; partition V as $V=\{u\} \cup V \backslash\{u\}$ and let B be the quotient matrix of this partition, i.e.,

$$
B=\left(\begin{array}{cc}
0 & \frac{k-1}{n-1} \\
k-1 & k-\frac{k-1}{n-1}
\end{array}\right)
$$

Writing $P(x)$ for the characteristic polynomial of B and observing that $k \leqslant n-2$, we have

$$
P(c)=\left(k-\frac{k+1}{n(k+2)}\right)\left(k-\frac{k+1}{n(k+2)}-\left(k-\frac{k-1}{n-1}\right)\right)-\frac{(k-1)^{2}}{n-1}
$$

$$
\begin{aligned}
& =-\frac{k(k+1)}{n(k+2)}+\frac{1}{n^{2}}\left(\frac{k+1}{k+2}\right)^{2}+\frac{k-1}{n(n-1)(k+2)}+\frac{k-1}{n} \\
& =-\frac{2}{n(k+2)}+\frac{1}{n^{2}}\left(\frac{k+1}{k+2}\right)^{2}+\frac{k-1}{n(n-1)(k+2)} \\
& =\frac{1}{n^{2}(k+2)}\left(-2 n+2 k+1+\frac{1}{k+2}+\frac{k-1}{(n-1)}\right) \\
& <\frac{1}{n^{2}(k+2)}\left(-2 n+2(n-2)+1+\frac{1}{1+2}+1\right)<0 .
\end{aligned}
$$

By interlacing, $P(\mu) \geqslant 0>P(c)$, completing the proof of (2).
Proof of Theorem 3. Set $V=V(G)$ and $\mu=\mu(G)$; given $u \in V$, write $\Gamma(u)$ for the set of neighbors of u. Select $u \in V$; let $A=\Gamma(u), B=V \backslash(\Gamma(u) \cup\{u\})$, and $e(A, B)$ be the number of $A-B$ edges. Since G contains no B_{k+1} and no $K_{2, l+1}$, we see that

$$
\begin{equation*}
\sum_{v \in A}(d(v)-k-1) \leqslant \sum_{v \in A}|\Gamma(v) \cap B|=e(A, B)=\sum_{v \in A}|\Gamma(v) \cap A| \leqslant(n-d(u)-1) l . \tag{9}
\end{equation*}
$$

Letting A be the adjacency matrix of G, note that the u th row sum of the matrix

$$
C=A^{2}-(k+1-l) A-(n-1) l I_{n}
$$

is equal to

$$
\sum_{v \in A}(d(v)-k-1)-(n-1-d(u)) l ;
$$

consequently, all row sums C are nonpositive. Letting $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an eigenvector of A to μ, we see that the value

$$
\lambda=\mu^{2}-(k+1-l) \mu-(n-1) l
$$

is an eigenvalue of C with eigenvector \mathbf{x}. Therefore, $\lambda \leqslant 0$, and so,

$$
\mu \leqslant\left(k-l+1+\sqrt{(k-l+1)^{2}+4 l(n-1)}\right) / 2
$$

completing the proof of inequality (4).
Let equality hold in (4) and G be connected; thus, the eigenvector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ to μ is positive. We shall prove the necessity of conditions (i) and (ii). If

$$
\mu=\Delta \leqslant\left(k-l+1+\sqrt{(k-l+1)^{2}+4 l(n-1)}\right) / 2
$$

then $\Delta^{2}-\Delta(k-l+1) \leqslant l(n-1)$ and G is Δ-regular.
On the other hand, if

$$
\mu=\left(k-l+1+\sqrt{(k-l+1)^{2}+4 l(n-1)}\right) / 2<\Delta,
$$

then $\Delta^{2}-\Delta(k-l+1)>l(n-1)$ and $\lambda=0$. Scaling \mathbf{x} so that $x_{1}+\cdots+x_{n}=1$, we see that λ is a convex combination of the row sums of C which are nonpositive; thus, all row sums of C are 0 . Since equality holds in (9) for every $u \in[n]$, every two vertices have exactly k common neighbors if they are adjacent, and exactly l common neighbors otherwise. This completes the proof.

3. Concluding remarks

Finding tight bounds on the spectral radius of subregular graphs is a challenging problem. Specifically, we cannot determine for which subregular graphs G one has

$$
\mu(G)>\frac{2 m}{n}+\frac{1}{2 m+2 n} .
$$

Note that strongly regular graphs satisfy condition (ii) for equality in (4), but irregular graphs can satisfy this condition as well, e.g., the star $K_{1, n-1}$ and the friendship graph.

Finally, setting $l=\Delta$ or $k=0$, Theorem 3 implies assertions that strengthen Corollaries 1 and 2 of [12].

Acknowledgments

Thanks the referee for careful reading.

References

[1] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1998, xiv+394 pp.
[2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980, 368 pp .
[3] S.M. Cioabă, D. Gregory, Large matchings from eigenvalues, Linear Algebra Appl. 422 (2007) 308-317.
[4] L. Collatz, U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77.
[5] P. Erdös, On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hung. Acad. Sci. VII (Ser. A3) (1962) 459-464.
[6] H.J. Finck, G. Grohmann, Vollständiges Produkt, chromatische Zahl und charakteristisches Polynom regulärer Graphen. I. (German), Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965) 1-3.
[7] L. Feng, Q. Li, X.-D. Zhang, Spectral radii of graphs with given chromatic number, Appl. Math. Lett. 20 (2007) 158-162.
[8] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 2001, $\mathrm{xx}+439 \mathrm{pp}$.
[9] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139 (1988) 37-44.
[10] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179-189.
[11] V. Nikiforov, Eigenvalues and degree deviation in graphs, Linear Algebra Appl. 414 (2006) 347-360.
[12] L. Shi, Z. Song, Upper bounds on the spectral radius of book-free and/or $K_{2, l+1}$ graphs, Linear Algebra Appl. 420 (2007) 526-529.
[13] H. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory Ser. B 40 (1986) 113-117.
[14] A.A. Zykov, On some properties of linear complexes (in Russian), Mat. Sbornik N.S. 24 (66) (1949) 163-188.

[^0]: E-mail address: vnikifrv@memphis.edu
 0024-3795/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
 doi:10.1016/j.1aa.2007.07.010

