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Abstract

We prove three results about the spectral radius μ(G) of a graph G:

(a) Let Tr (n) be the r-partite Turán graph of order n. If G is a Kr+1-free graph of order n, then

μ(G) < μ(Tr (n))

unless G = Tr (n).
(b) For most irregular graphs G of order n and size m,

μ(G) − 2m/n > 1/(2m + 2n).

(c) Let 0 � k � l. If G is a graph of order n with no K2 + Kk+1 and no K2,l+1, then

μ(G) � min

{
�(G),

(
k − l + 1 +

√
(k − l + 1)2 + 4l(n − 1)

)/
2

}
.
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1. Introduction

Our notation follows [1]; thus, we write G(n) for a graph of order n and μ(G) for the maximum
eigenvalue of the adjacency matrix of G.
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Write Tr(n) for the r-partite Turán graph of order n and let G = G(n). In [7] it is shown that
if G is r-partite, then μ(G) < μ(Tr(n)) unless G = Tr(n). On the other hand, Wilf [13] showed
that if G is Kr+1-free, then μ(G) � (1 − 1/r)n. We strengthen these two results as follows.

Theorem 1. If G = G(n) is a Kr+1-free graph, then μ(G) < μ(Tr(n)) unless G = Tr(n).

Next, let G be a graph of order n, size m, and maximum degree �(G) = �. One of the best
known facts about μ(G) is the inequality μ(G) � 2m/n, due to Collatz and Sinogowitz [4]. In
[11] we gave upper and lower bounds on μ(G) − 2m/n in terms of degree deviation. In turn,
Cioabă and Gregory [3] showed that, if G is irregular and n � 4, then μ − 2m/n > 1/(n� + 2n).

In this note we give another proof of this bound and improve it for most graphs.
Call a graph subregular if �(G) − δ(G) = 1 and all but one vertices have the same degree.

Theorem 2. If G is an irregular graph of order n � 4 and size m, then

μ(G) − 2m/n > 1/(2m + 2n) (1)

unless G is subregular. If G is subregular with �(G) = �, then

μ(G) − 2m/n > 1/(n� + 2n). (2)

Finally, let Bk = K2 + Kk , i.e., the graph Bk consists of k triangles sharing an edge.
Let 0 � k � l � �. Shi and Song [12] showed that if G = G(n) is a connected graph with

�(G) = �, with no Bk+1 and no K2,l+1, then

μ(G) �
(
k − l +

√
(k − l)2 + 4� + 4l(n − 1)

)/
2. (3)

We extend this result as follows.

Theorem 3. Let 0 � k � l. If G = G(n) is a graph with �(G) = �, with no Bk+1 and no K2,l+1,

then

μ(G) � min
{
�,
(
k − l + 1 +

√
(k − l + 1)2 + 4l(n − 1)

)/
2
}

. (4)

If G is connected, equality holds if and only if one of the following conditions holds:
(i) �2 − �(k − l + 1) � l(n − 1) and G is �-regular;

(ii) �2 − �(k − l + 1) > l(n − 1) and every two vertices of G have k common neighbors if
they are adjacent, and l common neighbors otherwise.

We note without a proof that (4) implies (3).

2. Proofs

Proof of Theorem 1. Write kr(G) for the number of r-cliques of G. The following result is given
in [10]: if G is Kr+1-free graph, then

μr(G) �
r∑

s=2

(s − 1)ks(G)μr−s(G). (5)

According to a result of Zykov [14] (see also Erd"os [5]), if the clique number of a graph G is
r , then ks(G) < ks(Tr(n)) for every 2 � s � r , unless G = Tr(n). Assuming that G /= Tr(n),
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Zykov’s theorem implies that ks(G) < ks(Tr(n)) for every 2 � s � r. Hence, in view of (5), we
have

μr(G) <

r∑
s=2

(s − 1)ks(Tr(n))μr−s(G).

This implies that μ(G) < x, where x is the largest root of the equation

xr =
r∑

s=2

(s − 1)ks(Tr(n))xr−s . (6)

It is known (see, e.g., [2, p. 74]) that (6) is the characteristic equation of the Turán graph; so,
μ(G) < x = μ(Tr(n)), completing the proof. �

To simplify the proof of Theorem 2, we first prove inequality (1) for two special graphs.

Proposition 4. Inequality (1) holds if G has n − 2 vertices of degree n − 1 and 2 vertices of
degree n − 2.

Proof. Clearly, G is the complete graph of order n with one edge removed. Using the theorem of
Finck and Grohmann [6] (see also [2, Theorem 2.8]), we find that

μ(G) = n − 3 + √
n2 + 2n − 7

2
.

Hence, in view of 2m = n2 − n − 2, we obtain,

μ(G) − 2m

n
=

√
n2 + 2n − 7 −

(
n + 1 − 4

n

)
2

= 4n − 8

n2
(√

n2 + 2n − 7 +
(
n + 1 − 4

n

))
>

4n − 8

n2
(
n + 1 +

(
n + 1 − 4

n

)) � 2n − 4

n(n2 + n − 2)
� 1

n2 + n − 2
= 1

2m + 2n
,

completing the proof. �

Proposition 5. Inequality (1) holds if G has n − 2 vertices of degree n − 2 and 2 vertices of
degree n − 1.

Proof. We easily deduce that n is even, say n = 2k, and that G is the complement of a
(k − 1)-matching. Using the theorem of Finck and Grohmann, we find that

μ(G) = n − 3 + √
n2 − 2n + 9

2
.

Hence, in view of 2m = n2 − 2n + 2, we obtain

μ(G) − 2m

n
=

√
n2 − 2n + 9 −

(
n − 1 + 4

n

)
2

= 4n − 8

n2
(√

n2 − 2n + 9 +
(
n − 1 + 4

n

))
>

4n − 8

n2
(
n + 1 +

(
n − 1 + 4

n

)) = 2n − 4

n(n2 + 2)
� 1

n2 + 2
= 1

2m + 2n
,

completing the proof. �
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Proof of Theorem 2. Set V = V (G), μ = μ(G), and δ = δ(G). Assume first that G is not
subregular.

Proof of inequality (1)
Our proof is based on Hofmeister’s inequality [9]: μ2 � (1/n)

∑
u∈V d2(u).

Case: � − δ � 2
In this case we easily see that∑

u∈V

(
d(u) − 2m

n

)2

� 2 >
2m

m + n
+ n

4(m + n)2
,

and so,

μ �
√

1

n

∑
u∈V

d2(u) =
√√√√1

n

∑
u∈V

(
d(u) − 2m

n

)2

+ 4m2

n2
>

2m

n
+ 1

2m + 2n
,

as claimed. Thus, hereafter we shall assume that � − δ = 1.

Case: � − δ = 1
Letting k be the number of vertices of degree � = δ + 1, we have 2m/n = δ + k/n, and so,

1

n

∑
u∈V

(
d(u) − 2m

n

)2

= n − k

n

(
k

n

)2

+ k

n

(
n − k

n

)2

= k(n − k)

n2
.

Hence, if
k(n − k)

n2
>

2m

n(m + n)
+ 1

4(m + n)2
, (7)

then inequality (1) follows as above. Assume for contradiction that (7) fails.
Suppose first that either k = 2 or n − k = 2. Since (7) fails, we see that

2 − 4

n
= (n − 2)2

n
� k(n − k)

n
� 2m

m + n
+ n

4(m + n)2

=2 − 2n

m + n
+ n

4(m + n)2
. (8)

In view of Propositions 4 and 5, we may assume that δ � n − 3, and so,

2m = δn + k � δn + n − 2 � n2 − 2n − 2.

Noting that (8) increases in m, we obtain

− 4

n2
� − 4

n2 − 2
+ 1

(n2 − 2)2
,

a contradiction for n � 4.
Finally, let k � 3 and n − k � 3; thus, n � 6. We have

2m = δn + k � δn + n − 3 � (n − 2)n + n − 3.

By assumption inequality (7) fails; hence,

3 − 9

n
� (n − k)k

n
� 2 − 2n

m + n
+ n

4(m + n)2
� 2 − 4n

n2 + n − 3
+ n

(n2 + n − 3)2
.

This inequality is a contradiction for n � 6, completing the proof of (7).
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Proof of inequality (2) when G is subregular
As mentioned in the introduction, inequality (2) was first proved by Cioabă and Gregory [3].

For reader’s convenience we present here a more direct proof, based on the same ideas – equitable
partitions and interlacing.

Since G is subregular, it has either a single vertex of degree � or a single vertex of degree δ.
Clearly, δ � 1, and so, m > n/2.

Case: G has a single vertex of degree �
Setting � = k + 1 and

c = nk + 1

n
+ 1

n(k + 3)
= k + k + 4

n(k + 3)
,

in view of 2m = nk + 1, inequality (2) amounts to μ > c.

Select a vertex u ∈ V with d(u) = k + 1; partition V as V = {u} ∪ V \{u} and let B be the
quotient matrix of this partition (see, e.g. [8, chapter 9]), i.e.,

B =
(

0 k+1
n−1

k + 1 k − k+1
n−1

)
.

Writing P(x) for the characteristic polynomial of B and observing that k � n − 2, we have

P(c)=
(

k + k + 4

n(k + 3)

)(
k + k + 4

n(k + 3)
−
(

k − k + 1

n − 1

))
− (k + 1)2

n − 1

=k
k + 4

n(k + 3)
+ 1

n2

(
k + 4

k + 3

)2

+
(

k + 4

n(k + 3)

)
k + 1

n − 1
− k + 1

n − 1

=− 3

n(k + 3)
+ 1

n2

(
k + 4

k + 3

)2

+ (k + 1)

n(n − 1)(k + 3)

= 1

n2(k + 3)

(
−3n + 2k + 6 + 1

k + 3
+ k + 1

n − 1

)

� 1

n2(k + 3)

(
−3n + 2(n − 2) + 6 + 1

4
+ 1

)
< 0.

By interlacing, P(μ) � 0 > P(c), and so μ > c, completing the proof of (2) in this case.

Case: G has a single vertex of degree δ

Setting � = k and

c = nk − 1

n
+ 1

n(k + 3)
= k − k + 1

n(k + 2)
,

in view of 2m = nk − 1, inequality (2) amounts to μ > c.

Select u ∈ V with d(u) = k − 1; partition V as V = {u} ∪ V \{u} and let B be the quotient
matrix of this partition, i.e.,

B =
(

0 k−1
n−1

k − 1 k − k−1
n−1

)
.

Writing P(x) for the characteristic polynomial of B and observing that k � n − 2, we have

P(c)=
(

k − k + 1

n(k + 2)

)(
k − k + 1

n(k + 2)
−
(

k − k − 1

n − 1

))
− (k − 1)2

n − 1
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=− k(k + 1)

n(k + 2)
+ 1

n2

(
k + 1

k + 2

)2

+ k − 1

n(n − 1)(k + 2)
+ k − 1

n

=− 2

n(k + 2)
+ 1

n2

(
k + 1

k + 2

)2

+ k − 1

n(n − 1)(k + 2)

= 1

n2(k + 2)

(
−2n + 2k + 1 + 1

k + 2
+ k − 1

(n − 1)

)

<
1

n2(k + 2)

(
−2n + 2(n − 2) + 1 + 1

1 + 2
+ 1

)
< 0.

By interlacing, P(μ) � 0 > P(c), completing the proof of (2). �
Proof of Theorem 3. Set V = V (G) and μ = μ(G); given u ∈ V , write �(u) for the set of
neighbors of u. Select u ∈ V ; let A = �(u), B = V \(�(u) ∪ {u}), and e(A, B) be the number of
A − B edges. Since G contains no Bk+1 and no K2,l+1, we see that∑

v∈A

(d(v) − k − 1) �
∑
v∈A

|�(v) ∩ B| = e(A, B) =
∑
v∈A

|�(v) ∩ A| � (n − d(u) − 1) l. (9)

Letting A be the adjacency matrix of G, note that the uth row sum of the matrix

C = A2 − (k + 1 − l)A − (n − 1)lIn

is equal to∑
v∈A

(d(v) − k − 1) − (n − 1 − d(u))l;

consequently, all row sums C are nonpositive. Letting x = (x1, . . . , xn) be an eigenvector of A

to μ, we see that the value

λ = μ2 − (k + 1 − l)μ − (n − 1)l

is an eigenvalue of C with eigenvector x. Therefore, λ � 0, and so,

μ �
(
k − l + 1 +

√
(k − l + 1)2 + 4l(n − 1)

)/
2,

completing the proof of inequality (4).
Let equality hold in (4) and G be connected; thus, the eigenvector x = (x1, . . . , xn) to μ is

positive. We shall prove the necessity of conditions (i) and (ii). If

μ = � �
(
k − l + 1 +

√
(k − l + 1)2 + 4l(n − 1)

)/
2,

then �2 − �(k − l + 1) � l(n − 1) and G is �-regular.
On the other hand, if

μ =
(
k − l + 1 +

√
(k − l + 1)2 + 4l(n − 1)

)/
2 < �,

then �2 − �(k − l + 1) > l(n − 1) and λ = 0. Scaling x so that x1 + · · · + xn = 1, we see that
λ is a convex combination of the row sums of C which are nonpositive; thus, all row sums of C

are 0. Since equality holds in (9) for every u ∈ [n], every two vertices have exactly k common
neighbors if they are adjacent, and exactly l common neighbors otherwise. This completes the
proof. �
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3. Concluding remarks

Finding tight bounds on the spectral radius of subregular graphs is a challenging problem.
Specifically, we cannot determine for which subregular graphs G one has

μ(G) >
2m

n
+ 1

2m + 2n
.

Note that strongly regular graphs satisfy condition (ii) for equality in (4), but irregular graphs
can satisfy this condition as well, e.g., the star K1,n−1 and the friendship graph.

Finally, setting l = � or k = 0, Theorem 3 implies assertions that strengthen Corollaries 1 and
2 of [12].
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